
MapBasic
11.0

REFERENCE

Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor or its representatives. No part
of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, without the written
permission of Pitney Bowes Software Inc., One Global View, Troy, New York 12180-8399.
© 2011 Pitney Bowes Software Inc. All rights reserved. MapInfo, Group 1 Software, and MapBasic are trademarks of Pitney Bowes Software Inc. All other
marks and trademarks are property of their respective holders.

Contact information for all Pitney Bowes Software Inc. offices is located at: http://www.pbinsight.com/about/contact-us.
© 2011 Adobe Systems Incorporated. All rights reserved. Adobe, the Adobe logo, Acrobat and the Adobe PDF logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries.
© 2011 OpenStreetMap contributors, CC-BY-SA; see OpenStreetMap http://www.openstreetmap.org and CC-BY-SA http://creativecommons.org/
licenses/by-sa/2.0
libtiff © 1988-1995 Sam Leffler, © 2011 Silicon Graphics International. All Rights Reserved.
libgeotiff © 2011 Niles D. Ritter.
Amigo, Portions © 1999 3D Graphics, Inc. All Rights Reserved.
Halo Image Library © 1993 Media Cybernetics Inc. All Rights Reserved
Portions thereof LEAD Technologies, Inc. © 1991-2011. All Rights Reserved.
Portions © 1993-2011 Ken Martin, Will Schroeder, Bill Lorensen. All Rights Reserved.
ECW by ERDAS © 1993-2011 ERDAS Inc. and/or its suppliers. All rights reserved.
Portions © 2011 ERDAS Inc. All Rights Reserved.
MrSID, MrSID Decompressor and the MrSID logo are trademarks of LizardTech, A Celartem Company. used under license. Portions of this computer program
are copyright © 1995-1998 LizardTech, A Celartem Company, and/or the university of California or are protected by US patent nos. 5,710,835 or 5,467,110 and
are used under license. All rights reserved. MrSID is protected under US and international patent & copyright treaties and foreign patent applications are
pending. Unauthorized use or duplication prohibited.
Contains FME® Objects © 2005-2011 Safe Software Inc., All Rights Reserved.
© 2011 SAP AG, All Rights Reserved. Crystal Reports® and Business Objects™ are the trademark(s) or registered trademark(s) of SAP AG in Germany and in
several other countries.
Amyuni PDF Converter © 2000-2011, AMYUNI Consultants – AMYUNI Technologies. All rights reserved.
Civic England - Public Sector Symbols Copyright © 2011 West London Alliance. The symbols may be used free of charge. For more information on these
symbols, including how to obtain them for use in other applications, please visit the West London Alliance Web site at http://www.westlondonalliance.org/
© 2006-2011 Tele Atlas. All Rights Reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned or
licensed to Tele Atlas. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure
of this material.
Microsoft Bing: All contents of the Bing service are Copyright © 2011 Microsoft Corporation and/or its suppliers, One Microsoft Way, Redmond, WA 98052,
USA. All rights reserved. Microsoft or its suppliers own the title, copyright, and other intellectual property rights in the Bing service and content. Microsoft,
Windows, Windows Live, Windows logo, MSN, MSN logo (butterfly), Bing, and other Microsoft products and services may also be either trademarks or
registered trademarks of Microsoft in the United States and/or other countries.
This product contains 7-Zip, which is licensed under GNU Lesser General Public License, Version 3, 29 June 2007 with the unRAR restriction. The license can
be downloaded from http://www.7-zip.org/license.txt. The source code is available from http://www.7-zip.org.
Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the
benefit of the trademark owner, with no intent to infringe on the trademark.
May 17, 2011

United States:
Phone: 518.285.6000
Fax: 518.285.6070
Sales: 800.327.8627
Government Sales: 800.619.2333
Technical Support: 518.285.7283
Technical Support Fax: 518.285.6080
pbinsight.com

Canada:
Phone: 416.594.5200
Fax: 416.594.5201
Sales: 800.268.3282
Technical Support:.518.285.7283
Technical Support Fax: 518.285.6080
pbinsight.ca

Europe/United Kingdom:
Phone: +44.1753.848.200
Fax: +44.1753.621.140
Technical Support: +44.1753.848.229
pbinsight.co.uk

Asia Pacific/Australia:
Phone: +61.2.9437.6255
Fax: +61.2.9439.1773
Technical Support: 1.800.648.899
pbinsight.com.au

http://www.openstreetmap.org
http://creativecommons.org/licenses/by-sa/2.0
http://creativecommons.org/licenses/by-sa/2.0
http://www.westlondonalliance.org/
http://www.pbinsight.com/about/contact-us
http://www.7-zip.org/license.txt
http://www.7-zip.org
http://www.pbinsight.com
http://www.pbinsight.ca
http://www.pbinsight.co.uk
http://www.mapinfo.com.au

Table of Contents

Chapter 1: Introduction to MapBasic. 19
Type Conventions .20
Language Overview .20
MapBasic Fundamentals .20

Variables .20
Looping and Branching .21
Output and Printing .21
Procedures (Main and Subs) .21
Error Handling .21

Functions .22
Custom Functions .22
Data-Conversion Functions .22
Date and Time Functions .22
Math Functions. .23
String Functions .23

Working With Tables. .24
Creating and Modifying Tables .24
Querying Tables. .25
Working With Remote Data .25

Working With Files (Other Than Tables) .26
File Input/Output. .26
File and Directory Names. .27

Working With Maps and Graphical Objects .27
Creating Map Objects .27
Modifying Map Objects. .27
Querying Map Objects .28
Working With Object Styles .29
Working With Map Windows .29

Creating the User Interface .30
ButtonPads (ToolBars). .30
Dialog Boxes .30
MapBasic 11.0 3 Reference

Menus .30
Windows. .31
System Event Handlers .31

Communicating With Other Applications .32
DDE (Dynamic Data Exchange; Windows Only) .32
Integrated Mapping .32

Special Statements and Functions .32

Chapter 2: New and Enhanced MapBasic Statements and Functions 34
New MapBasic Functions and Statements .35
Enhancements to MapBasic Functions and Statements. .35

Chapter 3: A – Z MapBasic Language Reference. 38
Abs() function .39
Acos() function .39
Add Cartographic Frame statement .40
Add Column statement .42
Add Map statement .48
Alter Button statement .51
Alter ButtonPad statement .52
Alter Cartographic Frame statement .57
Alter Control statement .58
Alter MapInfoDialog statement .60
Alter Menu statement .62
Alter Menu Bar statement. .67
Alter Menu Item statement .68
Alter Object statement .70
Alter Table statement .76
ApplicationDirectory$() function .78
ApplicationName$() function .79
Area() function .79
AreaOverlap() function .80
Asc() function .81
Asin() function .82
Ask() function .83
Atn() function .84
AutoLabel statement. .85
Beep statement .86
Browse statement .86
BrowserInfo function .88
Brush clause .89
Buffer() function .92
MapBasic 11.0 4 Reference

ButtonPadInfo() function .93
Call statement .94
CartesianArea() function .96
CartesianBuffer() function. .97
CartesianConnectObjects() function .98
CartesianDistance() function .99
CartesianObjectDistance() function .100
CartesianObjectLen() function .100
CartesianOffset() function .101
CartesianOffsetXY() function .102
CartesianPerimeter() function. .103
Centroid() function .104
CentroidX() function. .105
CentroidY() function. .106
CharSet clause .107
ChooseProjection$() function .110
Chr$() function .111
Close All statement .112
Close Connection statement .112
Close File statement .113
Close Table statement .114
Close Window statement .115
ColumnInfo() function .116
Combine() function .118
CommandInfo() function .119
Commit Table statement .124
ConnectObjects() function .129
Continue statement .130
Control Button / OKButton / CancelButton clause .132
Control CheckBox clause. .133
Control DocumentWindow clause .134
Control EditText clause .135
Control GroupBox clause. .136
Control ListBox / MultiListBox clause. .137
Control PenPicker/BrushPicker/SymbolPicker/FontPicker clause 140
ControlPointInfo() function .141
Control PopupMenu clause .142
Control RadioGroup clause .143
Control StaticText clause .144
ConvertToPline() function .145
ConvertToRegion() function .146
MapBasic 11.0 5 Reference

ConvexHull() function .146
CoordSys clause .147

CoordSys Earth and NonEarth Projection .147
CoordSys Layout Units .150
CoordSys Table .150
CoordSys Window .151

CoordSysName$() function .151
CoordSysStringToEPSG() function .152
CoordSysStringToPRJ$() function .153
CoordSysStringToWKT$() function .153
Cos() function .154
Create Adornment statement .155
Create Arc statement .159
Create ButtonPad statement .160
Create ButtonPad As Default statement .164
Create ButtonPads As Default statement .165
Create Cartographic Legend statement .165
CreateCircle() function. .169
Create Collection statement. .171
Create Cutter statement .172
Create Ellipse statement. .173
Create Frame statement .174
Create Grid statement. .176
Create Index statement. .179
Create Legend statement .179
CreateLine() function .180
Create Line statement. .181
Create Map statement .182
Create Map3D statement .183
Create Menu statement. .185
Create Menu Bar statement .190
Create MultiPoint statement. .192
Create Object statement .194
Create Pline statement .199
CreatePoint() function .200
Create Point statement .201
Create PrismMap statement .202
Create Ranges statement .204
Create Rect statement .207
Create Redistricter statement .208
Create Region statement .209
MapBasic 11.0 6 Reference

Create Report From Table statement .211
Create RoundRect statement .212
Create Styles statement .213
Create Table statement. .214
CreateText() function .219
Create Text statement. .221
CurDate() function .222
CurDateTime() function .223
CurrentBorderPen() function .223
CurrentBrush() function .224
CurrentFont() function .225
CurrentLinePen() function. .226
CurrentPen() function .226
CurrentSymbol() function .227
CurTime() function .228
DateWindow() function .229
Day() function .229
DDEExecute statement .230
DDEInitiate() function. .231
DDEPoke statement .234
DDERequest$() function .236
DDETerminate statement .238
DDETerminateAll statement .239
Declare Function statement .239
Declare Method statement .241
Declare Sub statement .244
Define statement .246
DeformatNumber$() function .247
Delete statement .248
Dialog statement .249
Dialog Preserve statement .255
Dialog Remove statement .256
Dim statement .257
Distance() function. .261
Do Case…End Case statement .262
Do…Loop statement .264
Drop Index statement .266
Drop Map statement .266
Drop Table statement .267
End MapInfo statement. .268
End Program statement .269
MapBasic 11.0 7 Reference

EndHandler procedure .270
EOF() function .270
EOT() function .271
EPSGToCoordSysString$() function .272
Erase() function .273
Err() function. .274
Error statement .275
Error$() function .275
Exit Do statement .276
Exit For statement .277
Exit Function statement .277
Exit Sub statement .278
Exp() function .279
Export statement .279
ExtractNodes() function. .282
Farthest statement .283
Fetch statement. .286
FileAttr() function .288
FileExists() function .289
FileOpenDlg() function. .289
FileSaveAsDlg() function. .291
Find statement. .292
Find Using statement .296
Fix() function. .297
Font clause .298
For…Next statement .300
ForegroundTaskSwitchHandler procedure .302
Format$() function .303
FormatDate$() function .305
FormatNumber$() function .306
FormatTime$ function .307
FME Refresh Table statement .308
FrontWindow() function .309
Function…End Function statement. .309
Geocode statement .312
GeocodeInfo() function .317
Get statement .320
GetCurrentPath() function .322
GetDate() function .323
GetFolderPath$() function .323
GetGridCellValue() function .324
MapBasic 11.0 8 Reference

GetMetadata$() function .325
GetPreferencePath$() function .326
GetSeamlessSheet() function .327
GetTime() function .328
Global statement .328
Goto statement .329
Graph statement .330
GridTableInfo() function .331
GroupLayerInfo function .332
HomeDirectory$() function .334
HotlinkInfo function .334
Hour function .335
If…Then statement .336
Import statement .337
Include statement .343
Input # statement. .343
Insert statement. .344
InStr() function .346
Int() function .347
IntersectNodes() function .348
IsGridCellNull() function .348
IsogramInfo() function .349
IsPenWidthPixels() function .352
Kill statement. .352
LabelFindByID() function. .353
LabelFindFirst() function .354
LabelFindNext() function .355
LabelInfo() function .356
LabelOverrideInfo() function .359
LayerControlInfo() function. .363
LayerControlSelectionInfo() function. .363
LayerInfo() function .364
LayerListInfo function. .372
LayerStyleInfo() function .373
Layout statement. .374
LCase$() function .375
Left$() function .376
LegendFrameInfo() function .377
LegendInfo() function .378
LegendStyleInfo() function .379
Len() function .380
MapBasic 11.0 9 Reference

LibraryServiceInfo() function .381
Like() function. .382
Line Input statement .383
LocateFile$() function .384
LOF() function. .386
Log() function .386
LTrim$() function .387
Main procedure .388
MakeBrush() function .389
MakeCustomSymbol() function .390
MakeDateTime function .391
MakeFont() function .392
MakeFontSymbol() function .393
MakePen() function .394
MakeSymbol() function .395
Map statement .396
Map3DInfo() function .399
MapperInfo() function .402
Maximum() function .407
MBR() function .408
Menu Bar statement .409
MenuItemInfoByHandler() function .409
MenuItemInfoByID() function .411
Metadata statement. .412
MGRSToPoint() function .415
Mid$() function .416
MidByte$() function .417
Minimum() function .417
Minute function .418
Month() function .419
Nearest statement .420
Note statement .423
NumAllWindows() function .423
NumberToDate() function .424
NumberToDateTime function .425
NumberToTime function. .425
NumCols() function .426
NumTables() function .427
NumWindows() function .427
ObjectDistance() function .431
ObjectGeography() function .431
MapBasic 11.0 10 Reference

ObjectInfo() function .433
ObjectLen() function .438
ObjectNodeHasM() function .439
ObjectNodeHasZ() function. .440
ObjectNodeM() function. .441
ObjectNodeX() function .443
ObjectNodeY() function .444
ObjectNodeZ() function .445
Objects Check statement .446
Objects Clean statement .447
Objects Combine statement. .449
Objects Disaggregate statement .450
Objects Enclose statement .452
Objects Erase statement .453
Objects Intersect statement .455
Objects Move statement .457
Objects Offset statement .458
Objects Overlay statement .459
Objects Pline statement .460
Objects Snap statement .461
Objects Split statement .463
Offset() function .465
OffsetXY() function. .466
OnError statement. .467
Open Connection statement .469
Open File statement .470
Open Report statement. .472
Open Table statement. .473
Open Window statement .475
Overlap() function .476
OverlayNodes() function .477
Pack Table statement .478
PathToDirectory$() function .479
PathToFileName$() function .480
PathToTableName$() function .480
Pen clause .481
PenWidthToPoints() function .484
Perimeter() function .485
PointsToPenWidth() function .486
PointToMGRS$() function .487
PointToUSNG$(obj, datumid). .488
MapBasic 11.0 11 Reference

Print statement .490
Print # statement .491
PrintWin statement .492
PrismMapInfo() function .493
ProgramDirectory$() function .496
ProgressBar statement. .496
Proper$() function .499
ProportionOverlap() function .499
Put statement. .500
Randomize statement .501
RasterTableInfo() function. .502
RegionInfo() function .504
ReadControlValue() function. .504
ReDim statement .507
Register Table statement .508

Supporting Transaction Capabilities for WFS Layers .515
Relief Shade statement. .515
Reload Symbols statement .516
RemoteMapGenHandler procedure .516
RemoteMsgHandler procedure .517
RemoteQueryHandler() function. .518
Remove Cartographic Frame statement .519
Remove Map statement .520
Rename File statement .521
Rename Table statement .522
Reproject statement .523
Resume statement .523
RGB() function .524
Right$() function. .525
Rnd() function. .526
Rollback statement .527
Rotate() function. .528
RotateAtPoint() function .529
Round() function .530
RTrim$() function .531
Run Application statement. .531
Run Command statement. .532
Run Menu Command statement .534
Run Program statement .536
Save File statement. .538
Save MWS statement .538
MapBasic 11.0 12 Reference

Save Window statement .540
Save Workspace statement .542
SearchInfo() function .543
SearchPoint() function. .546
SearchRect() function .547
Second function .548
Seek() function .548
Seek statement .549
SelChangedHandler procedure .549
Select statement .551
SelectionInfo() function .560
Server Begin Transaction statement. .561
Server Bind Column statement .562
Server Close statement .563
Server_ColumnInfo() function. .564
Server Commit statement. .566
Server_Connect() function .567
Server_ConnectInfo() function .575
Server Create Map statement. .576
Server Create Style statement .578
Server Create Table statement. .579
Server Create Workspace statement. .581
Server Disconnect statement. .582
Server_DriverInfo() function .583
Server_EOT() function .584
Server_Execute() function. .585
Server Fetch statement. .586
Server_GetODBCHConn() function .588
Server_GetODBCHStmt() function .589
Server Link Table statement .590
Server_NumCols() function. .592
Server_NumDrivers() function .593
Server Refresh statement. .594
Server Remove Workspace statement .595
Server Rollback statement .595
Server Set Map statement .596
Server Versioning statement .597
Server Workspace Merge statement .599
Server Workspace Refresh statement. .601
SessionInfo() function .603
Set Adornment statement. .604
MapBasic 11.0 13 Reference

Set Application Window statement .607
Set Area Units statement .608
Set Browse statement. .609
Set Buffer Version statement .610
Set Cartographic Legend statement .611
Set Combine Version statement .612
Set Command Info statement. .613
Set Connection Geocode statement .614
Set Connection Isogram statement .617
Set CoordSys statement. .619
Set Date Window statement .620
Set Datum Transform Version statement .621
Set Digitizer statement .622
Set Distance Units statement. .624
Set Drag Threshold statement .625
Set Event Processing statement .625
Set File Timeout statement. .626
Set Format statement .627
Set Graph statement .628
Set Handler statement .633
Set Layout statement .634
Set Legend statement .636
Set LibraryServiceInfo statement .639
Set Map statement. .641

Changing the Behavior of the Entire Map .642
Changing the Current View of the Map .644
Managing Individual Layer Properties and Appearance .646
Settings That Have a Permanent Effect on a Map Layer .649
Managing Individual Label Properties .650
Adding Style Overrides to a Layer .654
Modifying Style Overrides for a Layer .657
Enabling, Disabling, or Removing Overrides for a Layer .658
Adding Overrides for Layer Labels. .659
Modifying Layer Label Overrides .662
Enabling, Disabling, or Removing Overrides for Layer Labels.665
Managing Group Layers. .666
Ordering Layers .667
Managing the Coordinate System of the Map .669
Managing Image Properties .670
Managing Hotlinks .671
Adding New HotLink Definitions. .674
MapBasic 11.0 14 Reference

Modifying Existing HotLink Definitions .675
Removing HotLink Definitions .676
Reordering HotLink Definitions .676

Set Map3D statement .677
Set Next Document statement .679
Set Paper Units statement .680
Set Path statement .681
Set PrismMap statement. .682
Set ProgressBars statement .684
Set Redistricter statement .684
Set Resolution statement .686
Set Shade statement .687
Set Style statement .688
Set Table Datum statement .689
Set Table statement .689
Set Target statement. .692
Set Window statement .692
Sgn() function .703
Shade statement .704

Shading by Ranges of Values .704
Shading by Individual Values .708
Dot Density. .710
Graduated Symbols .711
Pie Charts .712
Bar Charts .714

Sin() function .716
Space$() function .717
SphericalArea() function .718
SphericalConnectObjects() function .719
SphericalDistance() function. .719
SphericalObjectDistance() function .720
SphericalObjectLen() function .721
SphericalOffset() function .722
SphericalOffsetXY() function .723
SphericalPerimeter() function .724
Sqr() function .725
StatusBar statement .726
Stop statement .727
Str$() function. .728
String$() function .729
StringCompare() function .730
MapBasic 11.0 15 Reference

StringCompareIntl() function .731
StringToDate() function .731
StringToDateTime function .733
StringToTime function .733
StyleAttr() function .734
StyleOverrideInfo() function .736
Sub…End Sub statement .739
Symbol clause .740
SystemInfo() function .744
TableInfo() function .746
TableListInfo() function .751
TableListSelectionInfo() function .753
Tan() function .753
TempFileName$() function .754
Terminate Application statement. .755
TextSize() function .756
Time() function .756
Timer() function .757
ToolHandler procedure. .757
TriggerControl() function. .759
TrueFileName$() function .760
Type statement .761
UBound() function .762
UCase$() function. .763
UnDim statement. .763
UnitAbbr$() function .764
UnitName$() function .765
Unlink statement .766
Update statement .766
Update Window statement .767
URL clause. .768
USNGToPoint(string) .769
Val() function .770
Weekday() function .771
WFS Refresh Table statement .772
While…Wend statement .772
WinChangedHandler procedure .774
WinClosedHandler procedure .775
WindowID() function .776
WindowInfo() function .777
WinFocusChangedHandler procedure .784
MapBasic 11.0 16 Reference

Write # statement .785
Year() function .786
MICloseContent() procedure 794
MICloseFtpConnection() procedure .794
MICloseFtpFileFind() procedure .794
MICloseHttpConnection() procedure .795
MICloseHttpFile() procedure .795
MICloseSession() procedure. .796
MICreateSession() function. .796
MICreateSessionFull() function .797
MIErrorDlg() function .798
MIFindFtpFile() function .800
MIFindNextFtpFile() function. .801
MIGetContent() function .801
MIGetContentBuffer() function 803
MIGetContentLen() function .803
MIGetContentString() function .804
MIGetContentToFile() function .804
MIGetContentType() function .805
MIGetCurrentFtpDirectory() function .806
MIGetErrorCode() function .806
MIGetErrorMessage() function .807
MIGetFileURL() function .807
MIGetFtpConnection() function .808
MIGetFtpFile() function .809
MIGetFtpFileFind() function .810
MIGetFtpFileName() procedure. .811
MIGetHttpConnection() function. .811
MIIsFtpDirectory() function .812
MIIsFtpDots() function .813
MIOpenRequest() function .813
MIOpenRequestFull() function .814
MIParseURL() function. .816
MIPutFtpFile() function .817
MIQueryInfo() function. .818
MIQueryInfoStatusCode() function. .819
MISaveContent() function .820
MISendRequest() function. .820
MISendSimpleRequest() function .821
MISetCurrentFtpDirectory() function .822
MISetSessionTimeout() function .822
MapBasic 11.0 17 Reference

MIXmlAttributeListDestroy() procedure 825
MIXmlDocumentCreate() function .825
MIXmlDocumentDestroy() procedure. .826
MIXmlDocumentGetNamespaces() function .826
MIXmlDocumentGetRootNode() function .827
MIXmlDocumentLoad() function .827
MIXmlDocumentLoadXML() function .828
MIXmlDocumentLoadXMLString() function .829
MIXmlDocumentSetProperty() function .830
MIXmlGetAttributeList() function .831
MIXmlGetChildList() function .831
MIXmlGetNextAttribute() function .832
MIXmlGetNextNode() function .833
MIXmlNodeDestroy() procedure .833
MIXmlNodeGetAttributeValue() function .834
MIXmlNodeGetFirstChild() function .834
MIXmlNodeGetName() function .835
MIXmlNodeGetParent() function .836
MIXmlNodeGetText() function. .836
MIXmlNodeGetValue() function. .837
MIXmlNodeListDestroy() procedure .837
MIXmlSCDestroy() procedure .838
MIXmlSCGetLength() function .838
MIXmlSCGetNamespace() function .839
MIXmlSelectNodes() function .839
MIXmlSelectSingleNode() function. .840
 .843
Numeric Operators .845
Comparison Operators .845
Logical Operators .846
Geographical Operators .846

Precedence .847
Automatic Type Conversions. .847
Wildcards .848
MapBasic.DEF File .850
MapBasic 11.0 18 Reference

1

Introduction to MapBasic
This manual describes every statement and function in the MapBasic
Development Environment programming language. To learn about the concepts
behind MapBasic programming, or to learn about using the MapBasic
development environment, see the MapBasic User Guide.

Topics in this Section:

Type Conventions .20
Language Overview .20
MapBasic Fundamentals .20
Functions .22
Working With Tables .24
Working With Files (Other Than Tables) .26
Working With Maps and Graphical Objects27
Creating the User Interface .30
Communicating With Other Applications 32
Special Statements and Functions .32

Chapter 1: Introduction to MapBasic
Type Conventions
Type Conventions
This manual uses the following conventions to designate specific items in the text:

Language Overview
The following pages provide an overview of the MapBasic language. Task descriptions appear on
the left; corresponding statement names and function names appear on the right, in bold. Function
names are followed by parentheses ().

MapBasic Fundamentals

Variables

Convention Meaning

If, Call, Map, Browse, Area Bold words with the first letter capitalized are MapBasic keywords.

Within this manual, the first letter of each keyword is capitalized; however,
when you write MapBasic programs, you may enter keywords in upper-,
lower-, or mixed-case.

Main, Pen, Object Non-bold words with the first letter capitalized are usually special procedure
names or variable types.

table, handler, window_id Italicized words represent parameters to MapBasic statements. When you
construct a MapBasic statement, you must supply an appropriate
expression for each parameter.

[window_id], [Interactive] Keywords or parameters which appear inside square brackets are optional.

{ On | Off } When a syntax expression appears inside braces, the braces contain a list
of keywords or parameters, separated by the vertical bar character (|). You
must choose one of the options listed. For example, in the sample shown
on the left ({ On | Off }), you should choose either On or Off.

"Note "Hello,world!" Actual program samples are shown in Courier font.

Declare local or global variables: Dim, Global

Resize array variables: ReDim, UBound(), UnDim

Declare custom data structure: Type
MapBasic 11.0 20 Reference

Chapter 1: Introduction to MapBasic
MapBasic Fundamentals
Looping and Branching

Output and Printing

Procedures (Main and Subs)

Error Handling

Looping: For…Next, Exit For, Do…Loop, Exit Do,
While…Wend

Branching: If…Then, Do Case, GoTo

Other flow control: End Program, Terminate Application, End
MapInfo

Print a window's contents: PrintWin

Print text to message window: Print

Set up a Layout window: Layout, Create Frame, Set Window

Export a window to a file: Save Window

Controlling the Printer: Set Window, Window Info()

Define a procedure: Declare Sub, Sub…End Sub

Call a procedure: Call

Exit a procedure: Exit Sub

Main procedure: Main

Set up an error handler: OnError

Return current error information: Err(), Error$()

Return from error handler: Resume

Simulate an error: Error
MapBasic 11.0 21 Reference

Chapter 1: Introduction to MapBasic
Functions
Functions

Custom Functions

Data-Conversion Functions

Date and Time Functions

Define a custom function: Declare Function, Function…End Function

Exit a function: Exit Function

Convert strings to codes: Asc()

Convert codes to strings: Chr$()

Convert strings to numbers: Val()

Convert numbers to strings: Str$(), Format$()

Convert a number or a string to a date: NumberToDate(), StringToDate()

Converting to a 2-Digit Year: Set Date Window, DateWindow()

Convert object types: ConvertToRegion(), ConvertToPline()

Convert labels to text: LabelInfo()

Convert a point object to a MGRS coordinate: PointToMGRS$()

Convert a MGRS coordinate to a point object: MGRSToPoint()

Convert a point object to a USNG coordinate: PointToUSNG$(obj, datumid)

Convert a USNG coordinate to a point object: USNGToPoint(string)

Obtain the current date: CurDate()

Extract parts of a date: Day(), Month(), Weekday(), Year()

Read system timer: Timer()

Convert a number or a string to a date: NumhmmberToDate(), StringToDate()

Obtain the current time and date: CurTime(),CurDateTime()
MapBasic 11.0 22 Reference

Chapter 1: Introduction to MapBasic
Functions
Math Functions

String Functions

Obtain the date and time: GetDate(), GetTime()

Convert a number to date and time: NumberToDateTime(), NumberToTime()

Convert a string to date and time: StringToDateTime(), StringToTime()

Convert date and time to a particular format: FormatDate(), FormatTime()

Convert time to hour, minute and second: Hour(), Minute(), Second()

Trigonometric functions: Cos(), Sin(), Tan(), Acos(), Asin(), Atn()

Geographic functions: Area(), Perimeter(), Distance(),
ObjectLen(), CartesianArea(),
CartesianPerimeter(), CartesianDistance(),
CartesianObjectLen(), SphericalArea(),
SphericalPerimeter(), SphericalDistance(),
SphericalObjectLen()

Random numbers: Randomize, Rnd()

Sign-related functions: Abs(), Sgn()

Truncating fractions: Fix(), Int(), Round()

Other math functions: Exp(), Log(), Minimum(), Maximum(),
Sqr()

Upper / lower case: UCase$(), LCase$(), Proper$()

Find a sub-string: InStr()

Extract part of a string: Left$(), Right$(), Mid$(), MidByte$()

Trim blanks from a string: LTrim$(), RTrim$()

Format numbers as strings: Format$(), Str$(), Set Format,
FormatNumber$(), DeformatNumber$()

Determine string length: Len()

Convert character codes: Chr$(), Asc()
MapBasic 11.0 23 Reference

Chapter 1: Introduction to MapBasic
Working With Tables
Working With Tables

Creating and Modifying Tables

Compare strings: Like(), StringCompare(),
StringCompareIntl()

Repeat a string sequence: Space$(), String$()

Return unit name: UnitAbbr$(), UnitName$()

Convert a point object to a MGRS coordinate: PointToMGRS$()

Convert a MGRS coordinate to a point object: MGRSToPoint()

Convert an EPSG string to a CoordSys clause: EPSGToCoordSysString$()

Convert a point object to a USNG coordinate: PointToUSNG$(obj, datumid)

Convert a USNG coordinate to a point object: USNGToPoint(string)

Open an existing table: Open Table

Close one or more tables: Close Table, Close All

Create a new, empty table: Create Table

Turn a file into a table: Register Table

Import/export tables/files: Import, Export

Modify a table's structure: Alter Table, Add Column, Create Index, Drop Index, Create
Map, Drop Map

Create a Crystal Reports file: Create Report From Table

Load a Crystal Report: Open Report

Add, edit, delete rows: Insert, Update, Delete

Pack a table: Pack Table

Control table settings: Set Table

Save recent edits: Table

Discard recent edits: Rollback
MapBasic 11.0 24 Reference

Chapter 1: Introduction to MapBasic
Working With Tables
Querying Tables

Working With Remote Data

Rename a table: Rename Table

Delete a table: Drop Table

Position the row cursor: Fetch, EOT()

Select data, work with Selection: Select, SelectionInfo()

Find map objects by address: Find, Find Using, CommandInfo()

Find map objects at location: SearchPoint(), SearchRect(), SearchInfo()

Obtain table information: NumTables(), TableInfo()

Obtain column information: NumCols(), ColumnInfo()

Query a table's metadata: GetMetadata$(), Metadata

Query seamless tables: TableInfo(), GetSeamlessSheet()

Create a new table: Server Create Table

Communicate with data server: Server_Connect(), Server_ConnectInfo()

Begin work with remote server: Server Begin Transaction

Assign local storage: Server Bind Column

Obtain column information: Server_ColumnInfo(), Server_NumCols()

Send an SQL statement: Server_Execute()

Position the row cursor: Server Fetch, Server_EOT()

Save changes: Server

Discard changes: Server Rollback

Free remote resources: Server Close

Make remote data mappable: Server Create Map

Change object styles: Server Set Map
MapBasic 11.0 25 Reference

Chapter 1: Introduction to MapBasic
Working With Files (Other Than Tables)
Working With Files (Other Than Tables)

File Input/Output

Synchronize a linked table: Server Refresh

Create a linked table: Server Link Table

Unlink a linked table: Unlink

Disconnect from server: Server Disconnect

Retrieve driver information: Server_DriverInfo(), Server_NumDrivers()

Get ODBC connection handle: Server_GetODBCHConn()

Get ODBC statement handle: Server_GetODBCHStmt()

Set Object styles: Server Create Style

Open or create a file: Open File

Close a file: Close File

Delete a file: Kill

Rename a file: Rename File

Copy a file: Save File

Read from a file: Get, Seek, Input #, Line Input

Write to a file: Put, Print #, Write #

Determine file's status: EOF(), LOF(), Seek(), FileAttr(), FileExists()

Turn a file into a table: Register Table

Retry on sharing error: Set File Timeout
MapBasic 11.0 26 Reference

Chapter 1: Introduction to MapBasic
Working With Maps and Graphical Objects
File and Directory Names

Working With Maps and Graphical Objects

Creating Map Objects

Modifying Map Objects

Return system directories: ProgramDirectory$(), HomeDirectory$(),
ApplicationDirectory$()

Extract part of a filename: PathToTableName$(), PathToDirectory$(),
PathToFileName$()

Return a full filename: TrueFileName$()

Let user choose a file: FileOpenDlg(), FileSaveAsDlg()

Return temporary filename: TempFileName$()

Locate files: LocateFile$(), GetFolderPath$()

Creation statements: Create Arc, Create Ellipse, Create Frame, Create Line, Create
Object, Create PLine, Create Point, Create Rect, Create
Region, Create RoundRect, Create Text, AutoLabel, Create
Multipoint, Create Collection

Creation functions: CreateCircle(), CreateLine(), CreatePoint(), CreateText()

Advanced operations: Create Object, Buffer(), CartesianBuffer(), CartesianOffset(),
CartesianOffsetXY(), ConvexHull(), Offset(), OffsetXY(),
SphericalOffset(), SphericalOffsetXY()

Store object in table: Insert, Update

Create regions: Objects Enclose

Modify object attribute: Alter Object

Change object type: ConvertToRegion(), ConvertToPLine()

Offset objects: Objects Offset, Objects Move

Set the editing target: Set Target
MapBasic 11.0 27 Reference

Chapter 1: Introduction to MapBasic
Working With Maps and Graphical Objects
Querying Map Objects

Erase part of an object: CreateCutter, Objects Erase, Erase(), Objects Intersect,
Overlap()

Merge objects: Objects Combine, Combine(), Create Object

Rotate objects: Rotate(), RotateAtPoint()

Split objects: Objects Pline, Objects Split

Add nodes at intersections: Objects Overlay, OverlayNodes()

Control object resolution: Set Resolution

Store an object in a table: Insert, Update

Check Objects for bad data: Objects Check

Object processing: Objects Disaggregate, Objects Snap, Objects Clean

Return calculated values: Area(), Perimeter(), Distance(),
ObjectLen(), Overlap(), AreaOverlap(),
ProportionOverlap()

Return coordinate values: ObjectGeography(), MBR(), ObjectNodeX(),
ObjectNodeY(), ObjectNodeZ(), Centroid(),
CentroidX(), CentroidY(), ExtractNodes(),
IntersectNodes()

Return settings for coordinates, distance, area
and paper units:

SessionInfo()

Configure units of measure: Set Area Units, Set Distance Units, Set
Paper Units, UnitAbbr$(), UnitName$()

Configure coordinate system: Set CoordSys

Return style settings: ObjectInfo()

Query a map layer's labels: LabelFindByID(), LabelFindFirst(),
LabelFindNext(), Labelinfo()
MapBasic 11.0 28 Reference

Chapter 1: Introduction to MapBasic
Working With Maps and Graphical Objects
Working With Object Styles

Working With Map Windows

Return current styles: CurrentPen(), CurrentBorderPen(),
CurrentBrush(), CurrentFont(),
CurrentLinePen(), CurrentSymbol(), Set
Style, TextSize()

Return part of a style: LayerStyleInfo() function, StyleAttr()

Create style values: MakePen(), MakeBrush(), MakeFont(),
MakeSymbol(), MakeCustomSymbol(),
MakeFontSymbol(), Set Style, RGB()

Query object's style: ObjectInfo()

Modify object's style: Alter Object

Reload symbol styles: Reload Symbols

Style clauses: Pen clause, Brush clause, Symbol clause,
Font clause

Open a map window: Map

Create/edit 3DMaps: Create Map3D, Set Map3D, Map3DInfo(),
Create PrismMap, Set PrismMap,
PrismMapInfo()

Add a layer to a map: Add Map

Remove a map layer: Remove Map

Label objects in a layer: AutoLabel

Query a map's settings: MapperInfo(), LabelOverrideInfo() function,
LayerInfo(), StyleOverrideInfo() function

Change a map's settings: Set Map

Create or modify thematic layers: Shade, Set Shade, Create Ranges, Create
Styles, Create Grid, Relief Shade

Query a map layer's labels: LabelFindByID(), LabelFindFirst(),
LabelFindNext(), Labelinfo(),
LabelOverrideInfo() function
MapBasic 11.0 29 Reference

Chapter 1: Introduction to MapBasic
Creating the User Interface
Creating the User Interface

ButtonPads (ToolBars)

Dialog Boxes

Menus

Create a new ButtonPad: Create ButtonPad

Modify a ButtonPad: Alter ButtonPad

Modify a button: Alter Button

Query the status of a pad: ButtonPadInfo()

Respond to button use: CommandInfo()

Restore standard pads: Create ButtonPad As Default, Create
ButtonPads As Default

Display a standard dialog box: Ask(), Note, ProgressBar, FileOpenDlg(),
FileSaveAsDlg(), GetSeamlessSheet()

Display a custom dialog box: Dialog

Dialog handler operations: Alter Control, TriggerControl(),
ReadControlValue(), Dialog Preserve,
Dialog Remove

Determine whether user clicked OK: CommandInfo(CMD_INFO_DLG_OK)

Disable progress bars: Set ProgressBars

Modify a standard MapInfo Professional dialog box: Alter MapInfoDialog

Define a new menu: Create Menu

Redefine the menu bar: Create Menu Bar

Modify a menu: Alter Menu, Alter Menu Item

Modify the menu bar: Alter Menu Bar, Menu Bar
MapBasic 11.0 30 Reference

Chapter 1: Introduction to MapBasic
Creating the User Interface
Windows

System Event Handlers

Invoke a menu command: Run Menu Command

Query a menu item's status: MenuItemInfoByHandler(), MenuItemInfoByID()

Show or hide a window: Open Window, Close Window, Set Window

Open a new window: Map, Browse, Graph, Layout, Create Redistricter, Create
Legend, Create Cartographic Legend, LegendFrameInfo

Determine a window's ID: FrontWindow(), WindowID()

Modify an existing window: Set Map, Shade, Add Map, Remove Map, Set Browse, Set
Graph, Set Layout, Create Frame, Set Legend, Set
Cartographic Legend, Set Redistricter, StatusBar, Alter
Cartographic Frame, Add Cartographic Frame, Remove
Cartographic Frame

Return a window's settings: WindowInfo(), MapperInfo(), LayerInfo()

Print a window: PrintWin

Control window redrawing: Set Event Processing, Update Window, Control
DocumentWindow clause

Count number of windows: NumWindows(), NumAllWindows()

React to selection: SelChangedHandler

React to window closing: WinClosedHandler

React to map changes: WinChangedHandler

React to window focus: WinFocusChangedHandler

React to DDE request: RemoteMsgHandler,
RemoteQueryHandler()

React to OLE Automation method: RemoteMapGenHandler

Provide custom tool: ToolHandler

React to termination of application: EndHandler
MapBasic 11.0 31 Reference

Chapter 1: Introduction to MapBasic
Communicating With Other Applications
Communicating With Other Applications

DDE (Dynamic Data Exchange; Windows Only)

Integrated Mapping

Special Statements and Functions

React to MapInfo Professional getting or losing focus: ForegroundTaskSwitchHandler

Disable event handlers: Set Handler

Start a DDE conversation: DDEInitiate()

Send a DDE command: DDEExecute

Send a value via DDE: DDEPoke

Retrieve a value via DDE: DDERequest$()

Close a DDE conversation: DDETerminate, DDETerminateAll

Respond to a request: RemoteMsgHandler, RemoteQueryHandler(),
CommandInfo(CMD_INFO_MSG)

Set MapInfo Professional 's parent window: Set Application Window

Set a Map window's parent: Set Next Document

Create a Legend window: Create Legend

Defines the name and argument list of a
method/function in a .Net assembly

Declare Method()

Launch another program: Run Program

Return information about the system: SystemInfo()

Run a string as an interpreted command: Run Command

Save a workspace file: Save Workspace
MapBasic 11.0 32 Reference

Chapter 1: Introduction to MapBasic
Special Statements and Functions
Load a workspace file or an MBX: Run Application

Configure a digitizing tablet: Set Digitizer

Send a sound to the speaker: Beep

Set data to be read by CommandInfo: Set Command Info

Set duration of the drag-object delay: Set Drag Threshold
MapBasic 11.0 33 Reference

2

New and Enhanced
MapBasic Statements
and Functions
These are several new statements and functions added to the MapBasic API
that assist you in working with grids and in developing with .Net to create your
integrated mapping and other third-party solutions.

We have increased the size of text controls from 64K (65535) to 512K (524288),
so that you can open larger files in MapBasic.

Topics in this Section:

New MapBasic Functions and Statements 35
Enhancements to MapBasic Functions and Statements 35

Chapter 2: New and Enhanced MapBasic Statements and Functions
New MapBasic Functions and Statements
New MapBasic Functions and Statements
We have added the following statement and functions in this version of MapBasic:

BrowserInfo function

Returns information about a Browser window, such as: the total number of rows or columns in the
Browser window; or the row number, column number, or value contained in the current cell.

LibraryServiceInfo() function

Returns information about the Library Services, such as the current mode of operation, version, or
default URL for the Library Service. It also gives the list of CSW URL's exposed by the MapInfo
Manager sever.

Set LibraryServiceInfo statement

Resets the current Library Service related attributes.

GetCurrentPath() function

Returns the path of a special MapInfo Professional directory defined initially in the Preferences
dialog to access specific MapInfo files.

Set Path statement

Allows user to change programmatically the path of a special MapInfo Professional directory defined
initially in the Preferences dialog to access specific MapInfo files.

URL clause

Specifies the default Library Service URL to use. It checks that the input is a valid Library Service
URL, and displays an error message if it is not valid.

Enhancements to MapBasic Functions and Statements
This version of MapBasic provides more robust description for the Shade statement.

Additions to Existing Functions and Statements
This version of MapBasic adds functionality to the following functions and statements:

CommandInfo() function

The behavior of the ComandInfo() function is slightly modified to support the new Browser window.
The ComandInfo() function ignores any clicks made in the top-left corner of the Browser window—
above the select column and to the left of the column headers. Previously, it would return an (x, y) of
(0, 0). It also ignores clicks made beyond the last column or row. Previously, it would return an x
value for the last column and y value for the last row.
MapBasic 11.0 35 Reference

Chapter 2: New and Enhanced MapBasic Statements and Functions
Enhancements to MapBasic Functions and Statements
Create ButtonPad statement

You can create a menu item or a toolbar button to launch a preferences dialog box directly. The
Create ButtonPad statement now includes an example that illustrates how to create a toolbar button
to launch the Browser Window Preferences dialog box (to bypass selecting it from the Options menu
and Preferences dialog box).

Pen clause

Includes extended descriptions for the width and pattern components, and an example for how to
apply line styles to a layer in a map as a layer style override.

Run Application statement

The syntax of the Run Application statement is slightly modified:

Syntax

Run Application file

file is the name of an application file or a workspace file.

If the statement includes the NoMRU clause, the application or workspace name would not be
added to the Most recently Used list of files.

Set Browse statement

MapInfo Professional has an improved Browser window. As a result, the behavior of the Set Browse
statement is slightly modified to distinguish between a Browser window and a Redistricter window. It
also now includes an optional clause for automatic column resizing.

The optional Window clause lets you specify which document window to use. If a window_id is not
specified, then it searches for the most recently used Browser window or Redistricter window. If
neither Redistricter nor Browser is the front-most window, but both exist, then Set Browse finds the
Browser window instead of the Redistricter window. To specify which window type to use, either
include the window_id with the Set Browse statement or make the Redistricter window the front-
most window before calling Set Browse.

Component Description

width Integer value, usually from 1 to 7, representing the thickness of the line (in
pixels). To create an invisible line style, specify a width of zero, and use a
pattern value of 1 (one).

To specify a width using points, calculate the pen width from a point size using
the PointsToPenWidth() function. This calculation multiplies the point size by
10 and then adds 10 to the result, so the pen width is always larger than 10.

pattern Integer value from 1 to 118; see table below. Pattern 1 is invisible.

To specify an interleaved line style, add 128 to the pattern. However, not all
patterns benefit from an interleaved line style.
MapBasic 11.0 36 Reference

Chapter 2: New and Enhanced MapBasic Statements and Functions
Enhancements to MapBasic Functions and Statements
The optional Columns clause lets you set column resizing based on the width of the column header
(title) and the contents that are in view. On first display, the Browser window automatically resizes
columns to completely contain the data that is visible. When scrolling vertically, the Browser window
does not automatically adjust the column width for the new data in view. You must set the Columns
clause to make this happen. After recalculating column width, the width does not change while
scrolling—columns do not resize to the new data in view. If the user manually resizes a column, then
its width does not change.

Set Window statement

MapInfo Professional ignores the Antialiasing option when exporting the contents of a Browser
window.

TableInfo() function

Includes two new attributes to read the table ID and parent table ID value in .tab files, and a new
attribute to return TRUE if a table is managed in a library service.

attribute code ID TableInfo() returns

TAB_INFO_TABLEID 39 String result: returns the unique table ID for a TAB
file. If there is no Table ID in a TAB file, then it
returns an empty string.

TAB_INFO_PARENTTABLEID 40 String result: returns the table ID from which this
TAB file was copied. If this was not created from
another TAB file, then it returns an empty string.

TAB_INFO_ISMANAGED 41 Logical result: TRUE if table is managed in a library
service or FALSE if it is not.
MapBasic 11.0 37 Reference

3

A – Z MapBasic
Language Reference
This section describes the MapBasic language in detail. You will find both
statements and function descriptions arranged alphabetically. Each is
described in the following format:

Purpose

Brief description of the function, clause, or statement.

Restrictions

Information about limitations (for example, “The DDEInitiate function is only
available under Microsoft Windows,” “You cannot issue a For…Next
statement through the MapBasic window”).

Syntax

The format in which you should use the function or statement and
explanation of argument(s).

Return Value

The type of value returned by the function.

Description

Thorough explanation of the function or statement's role and any other
pertinent information.

Example

A brief example.

Related functions or statements. Most MapBasic statements can be typed
directly into MapInfo Professional, through the MapBasic window. If a
statement may not be entered through the MapBasic window, the
Restrictions section identifies the limitation. Generally, flow-control
statements (such as looping and branching statements) cannot be entered
through the MapBasic window.

Chapter 3: A – Z MapBasic Language Reference
Abs() function
Abs() function

Purpose

Returns the absolute value of a number. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Abs (num_expr)

num_expr is a numeric expression.

Return Value

Float

Description

The Abs() function returns the absolute value of the expression specified by num_expr.

If num_expr has a value greater than or equal to zero, Abs() returns a value equal to num_expr. If
num_expr has a negative value, Abs() returns a value equal to the value of num_expr multiplied by
negative one (-1).

Example

Dim f_x, f_y As Float
f_x = -2.5
f_y = Abs(f_x)

' f_y now equals 2.5

See Also:

Sgn() function

Acos() function

Purpose

Returns the arc-cosine value of a number. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Acos (num_expr)

num_expr is a numeric expression between one and negative one, inclusive.
MapBasic 11.0 39 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Cartographic Frame statement
Return Value

Float

Description

The Acos() function returns the arc-cosine of the numeric num_expr value. In other words, Acos()
returns the angle whose cosine is equal to num_expr.

The result returned from Acos() represents an angle, expressed in radians. This angle will be
somewhere between zero and Pi radians (given that Pi is equal to approximately 3.141593, and
given that Pi/2 radians represents 90 degrees).

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. Your program must Include MAPBASIC.DEF in
order to reference DEG_2_RAD or RAD_2_DEG.

Since cosine values range between one and negative one, the expression num_expr should
represent a value no larger than one and no smaller than negative one.

Example

Include "MAPBASIC.DEF"
Dim x, y As Float
x = 0.5
y = Acos(x) * RAD_2_DEG
' y will now be equal to 60,
' since the cosine of 60 degrees is 0.5

See Also:

Asin() function, Atn() function, Cos() function, Sin() function, Tan() function

Add Cartographic Frame statement
The Add Cartographic Frame statement allows you to add cartographic frames to an existing
cartographic legend created with the Create Cartographic Legend statement. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Add Cartographic Frame
[Window legend_window_id]

[Custom]
[Default Frame Title { def_frame_title } [Font...]]
[Default Frame Subtitle { def_frame_subtitle } [Font...]]
[Default Frame Style { def_frame_style } [Font...]]
[Default Frame Border Pen... pen_expr]
Frame From Layer { map_layer_id | map_layer_name }

[Position (x , y) [Units paper_units]]
[Using

[Column { column | object [FromMapCatalog { On | Off }]}]
MapBasic 11.0 40 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Cartographic Frame statement
[Label { expression | default }]
[Title [frame_title] [Font...]]
[SubTitle [frame_subtitle] [Font...]]
[Border Pen...]
[Style [Font...] [NoRefresh]
[Text { style_name } { Line Pen...

| Region Pen... Brush...
| Symbol Symbol... }]
[, ...]

]
[, ...]

legend_window_id is an integer window identifier which you can obtain by calling the
FrontWindow() function and WindowID() function.

def_frame_title is a string which defines a default frame title. It can include the special character “#”
which will be replaced by the current layer name.

def_frame_subtitle is a string which defines a default frame subtitle. It can include the special
character “#” which will be replaced by the current layer name.

def_frame_style is a string that displays next to each symbol in each frame. The “#” character will be
replaced with the layer name. The “%” character will be replaced by the text “Line”, “Point, “Region”,
as appropriate for the symbol. For example, “% of #” will expand to “Region of States” for the
STATES.TAB layer.

pen_expr is a Pen expression, for example, MakePen(width, pattern, color). If a default border pen
is defined, then it will be become the default for the frame. If a border pen clause exists at the frame
level, then it is used instead of the default.

map_layer_id or map_layer_name identifies a map layer; can be a SmallInt (e.g., use 1 to specify
the top map layer other than Cosmetic) or a string representing the name of a table displayed in the
map. For a theme layer you must specify the map_layer_id.

paper_units is a string representing a paper unit name (for example, “cm” for centimeters).

frame_title is a string which defines a frame title. If a Title clause is defined here for a frame, then it
will be used instead of the def_frame_title.

frame_subtitle is a string which defines a frame subtitle. If a SubTitle clause is defined here for a
frame, then it will be used instead of the def_frame_subtitle.

column is an attribute column name from the frame layer's table, or the object column (meaning that
legend styles are based on the unique styles in the mapfile). The default is 'object'.

style_name is a string which displays next to a symbol, line, or region in a custom frame.

Description

If the Custom keyword is included, then each frame section must include a Position clause. If
Custom is omitted and the legend is laid out in portrait or landscape, then the frames will be added
to the end.
MapBasic 11.0 41 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Column statement
The Position clause controls the frame's position on the legend window. The upper left corner of the
legend window has the position 0, 0. Position values use paper units settings, such as “in” (inches)
or “cm” (centimeters). MapBasic has a current paper units setting, which defaults to inches; a
MapBasic program can change this setting through the Set Paper Units statement.You can
override the current paper units by including the optional Units subclause within the Position
clause.

The defaults in this statement apply only to the frames being created in this statement. They have no
affect on existing frames. Frame defaults used in the Create Cartographic Legend statement have
no affect on frames created in this statement.

When you save to a workspace, the FromMapCatalog OFF clause is written to the workspace when
specified. This requires the workspace to bumped up to 800. If the FromMapCatalog ON clause is
specified, we do not write it to the workspace since it is default behavior. This lets us avoid bumping
up the workspace version in this case.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not
a live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (for
example, map styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table
must be a live access table that supports per record styles for this to occur. If the live table does not
support per record styles than the behavior is to revert to the default behavior for live tables, which is
to get the default styles from the MapCatalog (FromMapCatalog ON).

Label is a valid expression or default (meaning that the default frame style pattern is used when
creating each style's text, unless the style clause contains text). The default is default.

The Style clause and the NoRefresh keyword allow you to create a custom frame that will not be
overwritten when the legend is refreshed. If the NoRefresh keyword is used in the Style clause,
then the table is not scanned for styles. Instead, the Style clause must contain your custom list of
definitions for the styles displayed in the frame. This is done with the Text and appropriate Line,
Region, or Symbol clause.

See Also:

Create Cartographic Legend statement, Set Cartographic Legend statement, Alter
Cartographic Frame statement, Remove Cartographic Frame statement

Add Column statement

Purpose

Adds a new, temporary column to an open table, or updates an existing column with data from
another table. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Add Column table (column [datatype])
{ Values const [, const ...] |

From source_table
MapBasic 11.0 42 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Column statement
Set To expression
[Where { dest_column = source_column |

Within | Contains | Intersects }]
[Dynamic] }

table is the name of the table to which a column will be added.

column is the name of a new column to add to that table.

datatype is the data type of the column, defined as Char(width), Float, Integer, SmallInt,
Decimal(width, decimal_places), Date or Logical, DateTime; if not specified, type defaults to Float.

source_table is the name of a second open table.

expression is the expression used to calculate values to store in the new column; this expression
usually extracts data from the source_table, and it can include aggregate functions.

dest_column is the name of a column from the destination table (table).

source_column is the name of a column from the source_table.

Dynamic specifies a dynamic (hot) computed column that can be automatically update: if you
include this keyword, then subsequent changes made to the source table are automatically applied
to the destination table.

Description

The Add Column statement creates a temporary new column for an existing MapInfo Professional
table. The new column will not be permanently saved to disk. However, if the temporary column is
based on base tables, and if you save a workspace while the temporary column is in use, the
workspace will include information about the temporary column, so that the temporary column will be
rebuilt if the workspace is reloaded. To add a permanent column to a table, use the Alter Table
statement and Update statement.

See Also:

Alter Table statement, Update statement

Filling the New Column with Explicit Values
Using the Values clause, you can specify a comma-separated list of explicit values to store in the
new column.

The following example adds a temporary column to a table of “ward” regions. The values for the new
column are explicitly specified, through the Value clause.

Open Table "wards"
Add Column wards(percent_dem)
Values 31,17,22,24,47,41,66,35,32,88

Filling the New Column with Values from Another Table
If you specify a From clause instead of a Values clause, MapBasic derives the values for the new
column from a separate table (source_table). Both tables must already be open.
MapBasic 11.0 43 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Column statement
When you use a From clause, MapInfo Professional joins the two tables. To specify how the two
tables are joined, include the optional Where clause. If you omit the Where clause, MapInfo
Professional automatically tries to join the two tables using the most suitable method.

A Where clause of the form Where column = column joins the two tables by matching column values
from the two tables. This method is appropriate if a column from one of your tables has values
matching a column from the other table (e.g., you are adding a column to the States table, and your
other table also has a column containing state names).

If both tables contain map objects, the Where clause can specify a geographic join. For example, if
you specify the clause Where Contains, MapInfo Professional constructs a join by testing whether
objects from the source_table contain objects from the table that is being modified.

The following example adds a “County” column to a “Stores” table. The new column will contain
county names, which are extracted from a separate table of county regions:

Add Column
stores(county char(20) 'add "county" column
From counties 'derive data from counties table...
Set to cname 'using the counties table's "cname" column
Where Contains 'join: where a county contains a store site

The Where Contains method is appropriate when you add a column to a table of point objects, and
the secondary table represents objects that contain the points.

The following example adds a temporary column to the States table. The new column values are
derived from a second table (City_1K, a table of major U.S. cities). After the completion of the Add
Column statement, each row in the States table will contain a count of how many major cities are in
that state.

Open Table "states" Interactive
Open Table "city_1k" Interactive

Add Column states(num_cities)
From city_1k 'derive values from other table
Set To Count(*)'count cities in each state
Where Within 'join: where cities fall within states

The Set To clause in this example specifies an aggregate function, Count(*). Aggregate functions
are described below.

Filling an Existing Column with Values from Another Table
To update an existing column instead of adding a new column, omit the datatype parameter and
specify a From clause instead of a Values clause. When updating an existing column, MapBasic
ignores the Dynamic clause.

Filling the New Column with Aggregate Data
If you specify a From clause, you can calculate values for the new column by aggregating data from
the second table. To perform data aggregation, specify a Set To clause that includes an aggregate
function.
MapBasic 11.0 44 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Column statement
The following table lists the available aggregate functions.

Count returns an integer value. All other functions return a float value. (No MapBasic
function, aggregate or otherwise, returns a decimal value. A decimal field is only a way of
storing the data. The arithmetic is done with floating point numbers.)

Most of the aggregate functions operate on data values only. The last three functions (Proportion
Sum, Proportion Avg, Proportion WtAvg) perform calculations that take geographic relationships into
account. This is best illustrated by example.

Suppose you have a Counties table, containing county boundary regions and demographic
information (such as population) about each county. You also have a Risk table, which contains a
region object. The object in the Risk table represents some sort of area that is at risk; perhaps the
region object represents an area in danger of flooding due to proximity to a river.

Function Value Stored In The New Column

Avg(col) Average of values from rows in the source table.

Count(*) Number of rows in the source table that correspond to the
row in the table being updated.

Max(col) Largest of the values from rows in the source table.

Min(col) Smallest of the values from rows in the source table.

Sum(col) Sum of the values from rows in the source table.

WtAvg(col, weight_col) Weighted average of the values from the source table; the
averaging is weighted so that rows having a large
weight_col value have more of an impact than rows
having a small weight_col value.

Proportion Avg(col) Average calculation that makes adjustments based on
how much of an object is within another object.

Proportion Sum(col) Sum calculation that makes adjustments based on how
much of an object is within another object.

Proportion WtAvg(col , weight_col) Weighted average calculation that makes adjustments
based on how much of an object is within another object.
MapBasic 11.0 45 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Column statement
1 County Boundaries 2 Risk Buffer Region

Given these two tables, you might want to calculate the population that lives within the risk region. If
half of a county's area falls within the risk region, you will consider half of that county's population to
be at risk; if a third of a county's area falls within the risk region, you will consider a third of that
county's population to be at risk; etc.

The following example calculates the population at risk by using the Proportion Sum aggregate
function, then stores the calculation in a new column (population_at_risk):

Add Column Risk(population_at_risk Integer)
From counties

Set To Proportion Sum(county_pop)
Where Intersects

For each county that is at least partly within the risk region, MapInfo Professional adds some or all of
the counties county_pop value to a running total.

The Proportion Sum function produces results based on an assumption—the assumption that the
number being totalled is distributed evenly throughout the region. If you use Proportion Sum to
process population statistics, and half of a region falls within another region, MapInfo Professional
adds half of the region's population to the total. In reality, however, an area representing half of a
region does not necessarily contain half of the region's population. For example, the population of
New York State is not evenly distributed, because a large percentage of the population lives in New
York City.

If you use Proportion Sum in cases where the data values are not evenly distributed, the results
may not be realistic. To ensure accurate results, work with smaller region objects (for example,
operate on county regions instead of state regions).

1

2

MapBasic 11.0 46 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Column statement
The Proportion Avg aggregate function performs an average calculation which takes into account
the percentage of an object that is covered by another object. Continuing the previous example,
suppose the County table contains a column, median_age, that indicates the median age in each
county.

The following statement calculates the median age within the risk zone:

Add Column Risk(age Float)
From Counties

Set To Proportion Avg(median_age)
Where Intersects

For each row in the County table, MapInfo Professional calculates the percentage of the risk region
that is covered by the county; that calculation produces a number between zero and one, inclusive.
MapInfo Professional multiplies that number by the county’s median_age value, and adds the result
to a running total. Thus, if a county has a median_age value of 50, and if the county region covers
10% of the risk region, MapInfo Professional adds 5 (five) to the running total, because 10% of 50 is
5.

Both Proportion Sum and Proportion Avg keep running totals. For example:

If half the county falls in the risk area, then you take half the value and add it to the running total.
If it is 10%, then you add 10% of the value to the running total. However, Proportion Avg should
be an average, so if 4 counties intersect the risk area, then you take the running total and divide
by 4.
If county1 intersects the risk region, and 50% of county1 intersects the risk region, and the
population of county1 is 66, then you add 33 to the running total.
If 30% of county2’s area intersects the risk area and the population is 100, then add 30 to the
running total.
If county3 has 20% overlap with the risk area and has a population of 50, then add 10 to the
running total.
If county4 has 10% overlap with the risk area and has a population of 60, then add 6 to the
running total.
Then the Proportion Sum is 33+30+10+6 = 82
Then the Proportion Avg is (33+30+10+6)/4 = 20 (or 21 depending on round off, but I think 20).

Proportion WtAvg is similar to Proportion Avg, but it also lets you specify a data column for
weighting the average calculation; the weighting is also proportionate. For example:

Weighted Average should take a weighted value from another column; for the previous example
there is another column called RuralPercent in the County table. If the risk is for flood and the
rural areas are where it floods, then for risk you only want the population from the rural area.
If county1 has 50% overlap with the risk region, a population of 66, and a RuralPercent of 0.8,
then add (0.5 * 66 * 0.8) = 26.
If county3, 4, and 5 are all 50% rural, then:

county3 0.3 * 100 * 0.5 = 15
county4 0.2 * 50 * 0.5 = 5
county5 0.1 * 60 * 0.5 = 3

Then the proportion weighted Avg is: (26 + 15 + 5 + 3)/4 = 12
MapBasic 11.0 47 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Map statement
Using Proportion… Functions with Non-Region Objects
When you use Proportion functions and the source table contains region objects, MapInfo
Professional calculates percentages based on the overlap of regions. However, when the source
table contains non-region objects, MapInfo Professional treats each object as if it were completely
inside or completely outside of the destination region (depending on whether the non-region object's
centroid is inside or outside of the destination region).

Dynamic Columns
If you include the optional Dynamic keyword, the new column becomes a dynamic computed
column, meaning that subsequent changes made to the source table are automatically applied to
the destination table.

If you create a dynamic column, and then close the source table used to calculate the dynamic
column, the column values are frozen (the column is no longer updated dynamically).

Similarly, if a geographic join is used in the creation of a dynamic column, and you close either of the
maps used for the geographic join, the column values are frozen.

Add Map statement

Purpose

Adds one or more graphic layers, or a group layer, to a Map window. You can also select a
destination group layer and/or position to insert the new layers.

Syntax 1

Add Map
[Window window_id] [Auto]
Layer table [, table [Animate] ...]
[[DestGroupLayer group_id] Position position]

window_id is the window identifier of a Map window.

table is the name of a mappable open table to add to a Map window.

group_id is the identification for a group layer, either as a integer value (the group number) or as a
string value (the group name).

position is the 1-based index within the destination group where to insert the new list of layers.

Syntax 2

Add Map
[Window window_id] [Auto]
GroupLayer ("friendly_name" [, item ...])
[[DestGroupLayer group_id] Position position]

where:

item = table | [GroupLayer ("friendly_name" [, item ...])
MapBasic 11.0 48 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Map statement
Description

The Add Map statement adds one or more open tables, or a group layer, to a Map window, but not
both within the same statement. The group layer may contain any number of nested group layers.
MapInfo Professional then automatically redraws the Map window, unless you have suppressed
redraws through a Set Event Processing statement Off statement or Set Map statement Redraw
Off statement.

The window_id parameter is an integer window identifier representing an open Map window; you
can obtain a window identifier by calling the FrontWindow() function and WindowID() function. If
the Add Map statement does not specify a window_id value, the statement affects the topmost Map
window.

If you include the optional Auto keyword, MapInfo Professional tries to automatically position the
map layer, or group layers at an appropriate place in the set of layers. A raster table or a map of
region objects would be placed closer to the bottom of the map, while a map of point objects would
be placed on top.

If you omit the Auto keyword, the specified table becomes the topmost layer in the window; in other
words, when the map is redrawn, the new layer, or group layers will be drawn last. You can then use
the Set Map statement to alter the order of layers in the Map window.

If a DestGroupLayer is specified the Auto keyword will be ignored and the list of layers, or the group
layer will be inserted into the layer list, in the group specified, at the position specified. A group id of
0 is the top level list. If the DestGroupLayer is omitted the group ID defaults to 0.

The position is the 1-based index within the destination group of where to insert the new list of
layers. If the position is omitted it is assumed to be the first position in the group (position = 1). If the
position given exceeds the number of items in the destination group, the new layers and/or groups
will be inserted at the end of the destination group.

Layer and group IDs may be the numeric ID or name. Group IDs range from 0 to the total number of
groups in the list.

You cannot insert into the middle of a set of thematic layers. Thematic layers are inserted in
a certain order as they are created and this order is maintained. If the destination position
would cause the new layers to be inserted within a set of thematic layers, the final position
will be adjusted to avoid that.

Adding Layers of Different Projections

If the layer added is a raster table, and the map does not already contain any raster map layers, the
map adopts the coordinate system and projection of the raster image. If a Map window contains two
or more raster layers, the window dynamically changes its projection, depending on which image
occupies more of the window at the time.

If raster re-projection is turned on, then MapInfo Professional retains the coordinate system of the
map even if you add a raster table to the map.
MapBasic 11.0 49 Reference

Chapter 3: A – Z MapBasic Language Reference
Add Map statement
If the layer added is not a raster table, MapInfo Professional continues to display the Map window
using whatever coordinate system and projection were used before the Add Map statement, even if
the table specified is stored with a different native projection or coordinate system. When a table's
native projection differs from the projection of the Map window, MapInfo Professional converts the
table coordinates “on the fly” so that the entire Map window appears in the same projection.

When MapInfo Professional converts map layers in this fashion, map redraws take longer,
since MapInfo Professional must perform mathematical transformations while drawing the
map.

Using Animation Layers to Speed Up Map Redraws

If the Add Map statement includes the Animate keyword, the added layer becomes a special layer
known as the animation layer. When an object in the animation layer is moved, the Map window
redraws very quickly, because MapInfo Professional only redraws the one animation layer.

For an example of animation layers, see the sample program ANIMATOR.MB.

The animation layer is useful in real-time applications, where map features are updated frequently.
For example, you can develop a fleet-management application that represents each vehicle as a
point object. You can receive current vehicle coordinates by using GPS (Global Positioning Satellite)
technology, and then update the point objects to show the current vehicle locations on the map. In
this type of application, where map objects are constantly changing, the map redraws much more
quickly if the objects being updated are stored in the animation layer instead of a conventional layer.

The following example opens a table (Vehicles) and makes the table an animation layer:

Open Table "vehicles" Interactive
Add Map Layer vehicles Animate

In general, the last table to be followed by the Animate keyword will be the animation layer. Only
one layer at a time can be the Animation layer.

To terminate the animation layer processing, issue a Remove Map statement Layer Animate
statement.

Animation layers have special restrictions. For example, users cannot use the Info tool to click on
objects in an animation layer. Also, each Map window can have only one animation layer. For more
information about animation layers, see the MapBasic User's Guide.

Example

Open Table "world"
Map From world
Open Table "cust1992" As customers
Open Table "lead1992" As leads
Add Map Auto Layer customers, leads

Add a group layer example:

Open Table world
Open Table worldcap
Add Map Auto GroupLayer("new group", worldcap, world)
MapBasic 11.0 50 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Button statement
Open Table ocean
Add Map Layer ocean DestGrouplayer "new group" position 3

See Also:

Map statement, Remove Map statement, Set Map statement

Alter Button statement

Purpose

Enables, disables, selects, or deselects a button from a ButtonPad (toolbar).

Syntax

Alter Button { handler | ID button_id }
[{ Enable | Disable }]
[{ Check | Uncheck }]

handler is the handler that is already assigned to an existing button. The handler can be the name of
a MapBasic procedure, or a standard command code (e.g., M_TOOLS_RULER or
M_WINDOW_LEGEND) from MENU.DEF.

button_id is a unique integer button identification number.

Description

If the Alter Button statement specifies a handler (e.g., a procedure name), MapInfo Professional
modifies all buttons that call that handler. If the statement specifies a button_id number, MapInfo
Professional modifies only the button that has that ID.

The Disable keyword changes the button to a grayed-out state, so that the user cannot select the
button.

The Enable keyword enables a button that was previously disabled.

The Check and Uncheck keywords select and deselect ToggleButton type buttons, such as the
Show Statistics Window button. The Check keyword has the effect of “pushing in” a ToggleButton
control, and the Uncheck keyword has the effect of releasing the button. For example, the following
statement selects the Show Statistics Window button:

Alter Button M_WINDOW_STATISTICS Check

Checking or unchecking a standard MapInfo Professional button does not automatically
invoke that button's action; thus, checking the Show/Hide Statistics button does not actually
show the Statistics window—it only affects the appearance of the button. To invoke an action
as if the user had checked or unchecked the button, issue the appropriate statement; in this
example, the appropriate statement is the Open Window statement Statistics.
MapBasic 11.0 51 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter ButtonPad statement
Similarly, you can use the Check keyword to change the appearance of a ToolButton. However,
checking a ToolButton does not actually select that tool, it only changes the appearance of the
button. To make a standard tool the active tool, issue a Run Menu Command statement, such as
the following:

Run Menu Command M_TOOLS_RULER

To make a custom tool the active tool, use the syntax Run Menu Command ID IDnum.

See Also:

Alter ButtonPad statement, Create ButtonPad statement, Run Menu Command statement

Alter ButtonPad statement

Purpose

Displays / hides a ButtonPad (toolbar), or adds / removes buttons.

Syntax

Alter ButtonPad { current_title | ID pad_num }
[Add button_definition [button_definition ...]]
[Remove { handler_num | ID button_id } [, ...]]
[Title new_title]
[Width w]
[Position (x, y) [Units unit_name]]
[ToolbarPosition (row, column)]
[{ Show | Hide }]
[{ Fixed | Float | Top | Left | Right | Bottom }]
[Destroy]

current_title is the toolbar's title string (e.g., “Main”).

pad_num is the ID number for a standard toolbar:

• 1 for Main
• 2 for Drawing
• 3 for Tools
• 4 for Standard
• 5 for Database Management System (DBMS)
• 6 Web Services
• 7 Reserved

handler_num is an integer handler code, such as M_TOOLS_RULER (1710), from MENU.DEF.

button_id is a custom button's unique identification number.

new_title is a string that becomes the toolbar's new title; visible when toolbar is floating.

w is the pad width, in terms of the number of buttons across.

x, y specify the toolbar's position when floating; specified in paper units (e.g., inches).

unit_name is a string paper unit name (e.g., “in” for inches, “cm” for centimeters).
MapBasic 11.0 52 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter ButtonPad statement
row, column specify the toolbar's position when docked (e.g., 0, 0 places the pad at the left edge of
the top row of toolbars, and 0, 1 represents the second toolbar on the top row).

• row position starts at the top and increases in value going to the bottom. It is a relative value
to the rows existing in the same position (top or bottom). When there is a menu bar in the
same position, then the numbers become relative to the menu bar. When a toolbar is just
below the menu bar, its row value is 0. If it is directly above the menu bar, then its row value
is -1.

• column position starts at the left and increases in value going to the right. It is a relative value
to the columns existing in the same position (left or right). For example, if a toolbar is docked
to the left and the menu bar is docked to the left position, then the column number for the
column left of the menu bar is -1. The column number for the column to the right of the menu
bar is 0.

Each button_definition clause can consist of the keyword Separator, or it can have the following
syntax:

{ PushButton | ToggleButton | ToolButton }
Calling { procedure | menu_code | OLE methodname | DDE server, topic }
[ID button_id]
[Icon icon_code [File file_spec]]
[Cursor cursor_code [File file_spec]]
[DrawMode dm_code]
[HelpMsg msg]
[ModifierKeys { On | Off }]
[{ Enable | Disable }]
[{ Check | Uncheck }]

procedure is the handler procedure to call when a button is used.

menu_code is a standard MapInfo Professional menu code from MENU.DEF, such as
M_FILE_OPEN (102); MapInfo Professional runs the menu command when the user uses the
button.

methodname is a string specifying an OLE method name. For details on the Calling OLE clause
syntax, see Create ButtonPad statement.

server and topic are strings specifying a DDE server and topic name. For details on the Calling DDE
clause syntax, see Create ButtonPad statement.

button_id specifies the unique button number. This number can be used: as a tag in help; as a
parameter to allow the handler to determine which button is in use (in situations where different
buttons call the same handler); or as a parameter to be used with the Alter Button statement.

Icon icon_code specifies the icon to appear on the button; icon_code can be one of the standard
MapInfo icon codes listed in ICONS.DEF, such as MI_ICON_RULER (11). If the File sub-clause
specifies the name of a file containing icon resources, icon_code is an integer resource ID
identifying a resource in the file.

Cursor cursor_code specifies the shape the mouse cursor should adopt whenever the user chooses
a ToolButton tool; cursor_code is a code, such as MI_CURSOR_ARROW (0), from ICONS.DEF.
This clause applies only to ToolButtons. If the File sub-clause specifies the name of a file containing
icon resources, cursor_code is an integer resource ID identifying a resource in the file.
MapBasic 11.0 53 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter ButtonPad statement
dm_code specifies whether the user can click and drag, or only click with the tool; dm_code is a
code, such as DM_CUSTOM_LINE (33), from ICONS.DEF. Applies only to ToolButtons.

msg is a string that specifies the button's status bar help and, optionally, ToolTip help. The first part
of msg is the status bar help message. If the msg string includes the letters \n then the text following
the \n is used as the button's ToolTip help.

The ModifierKeys clause applies only to ToolButtons; it controls whether the shift and control keys
affect “rubber-band” drawing if the user drags the mouse while using a ToolButton. Default is Off
(modifier keys have no effect).

Description

Use the Alter ButtonPad statement to show, hide, modify, or destroy an existing ButtonPad. For an
introduction to ButtonPads, see the MapBasic User Guide.

To show or hide a ButtonPad, include the Show or Hide keyword; see example below. The user
also can show or hide ButtonPads by choosing the Options > Toolbars command.

To set whether the pad is fixed to the top of the screen (“docked”) or floating like a window, include
the Fixed or the Float keyword. The user can also control whether the pad is docked or not by
dragging the pad to or from the top of the screen. For more control over the location on the screen
that the pad is docked to, use the Top (which is the same as using Fixed), Left, Right, or Bottom
keywords.

When a pad is floating, its position is controlled by the Position clause; when a pad is docked, its
position is controlled by the ToolbarPosition clause.

To destroy a ButtonPad, include the Destroy keyword. Once a ButtonPad is destroyed, it no longer
appears in the Options > Toolbars dialog box.

The Alter ButtonPad statement can add buttons to existing ButtonPads, such as Main and
Drawing. There are three types of button controls you can add: PushButton controls (which the user
can click and release—for example, to display a dialog box); ToggleButton controls (which the user
can select by clicking, then deselect by clicking again); and ToolButton controls (which the user can
select, and then use for clicking on a Map or Layout window).

If you include the optional Disable keyword when adding a button, the button is disabled (grayed
out) when it appears. Subsequent Alter Button statements can enable the button. However, if the
button's handler is a standard MapInfo Professional command, MapInfo Professional automatically
enables or disables the button depending on whether the command is currently enabled.

If you include the optional Check keyword when adding a ToggleButton or a ToolButton, the button
is automatically selected (“checked”) when it first appears.

If the user clicks while using a custom ToolButton tool, MapInfo Professional automatically calls the
tool's handler, unless the user cancels (e.g., by pressing the Esc key while dragging the mouse). A
handler procedure can call CommandInfo() to determine where the user clicked. If two or more
tools call the same handler procedure, the procedure can call CommandInfo() to determine the ID
of the button currently in use.
MapBasic 11.0 54 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter ButtonPad statement
Custom Icons and Cursors

The Icon clause specifies the icon that appears on the button. If you omit the File clause, then the
parameter n must refer to one of the icon codes listed in ICONS.DEF, such as MI_ICON_RULER
(11).

MapInfo Professional has many built-in icons that are not part of the normal user interface.
To see a demonstration of these icons, run the sample program ICONDEMO.MBX. This
sample program displays icons, and also lets you copy any icon's define code to the
clipboard (so that you can then paste the code into your program).

The File file_spec sub-clause refers to a DLL file that contains bitmap resources; the n parameter
refers to the ID of a bitmap resource. For more information on creating Windows icons, see the
MapBasic User Guide.

A ToolButton definition also can include a Cursor clause, which controls the appearance of the
mouse cursor while the user is using the custom tool. Available cursor codes are listed in
ICONS.DEF, such as MI_CURSOR_CROSSHAIR (138) or MI_CURSOR_ARROW (0). The
procedure for specifying a custom cursor is similar to the procedure for specifying a custom icon.

For custom icon size requirements for different MapInfo Professional versions, see Create
ButtonPad statement About Icon Size on page 162.

Custom Drawing Modes

A ToolButton definition can include a DrawMode clause, which controls whether the user can drag
with the tool (e.g., to draw a line) or only click (e.g., to draw a point). The following table lists the
available drawing modes. Codes in the left column are defined in ICONS.DEF.

DrawMode parameter ID Description

DM_CUSTOM_POINT 34 The user cannot drag while using the custom tool.

DM_CUSTOM_LINE 33 As the user drags, a line connects the cursor with the location
where the user clicked.

DM_CUSTOM_RECT 32 As the user drags, a rectangular marquee appears.

DM_CUSTOM_CIRCLE 30 As the user drags, a circular marquee appears.

DM_CUSTOM_ELLIPSE 31 As the user drags, an elliptical marquee appears; if you
include the ModifierKeys clause, the user can force the
marquee to a circular shape by holding down the Shift key.
MapBasic 11.0 55 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter ButtonPad statement
All of the draw modes except for DM_CUSTOM_POINT (34) support the Autoscroll feature, which
allows the user to scroll a Map or Layout by clicking and dragging to the edge of the window. To
disable autoscroll, see Set Window statement.

MapBasic supports an additional draw mode that is not available to MapInfo Professional
users. If a custom ToolButton has the following Calling clause Calling
M_TOOLS_SEARCH_POLYGON (1733) then the tool allows the user to draw a polygon.
When the user double-clicks to close the polygon, MapInfo Professional selects all objects
(from selectable map layers) within the polygon. The polygon is not saved.

Examples

The following example shows the Main ButtonPad and hides the Drawing ButtonPad:

Alter ButtonPad "Main" Show
Alter ButtonPad "Drawing" Hide

The next example docks the Main ButtonPad and sets its docked position to 0,0 (upper left):

Alter ButtonPad "Main" Fixed ToolbarPosition(0,0)

The next example moves the Main ButtonPad so that it is floating instead of docked, and sets its
floating position to half an inch inside the upper-left corner of the screen.

Alter ButtonPad "Main" Float Position(0.5,0.5) Units "in"

The sample program, ScaleBar, contains the following Alter ButtonPad statement, which adds a
custom ToolButton to the Tools ButtonPad. (Note that “ID 3" identifies the Tools ButtonPad.)

Alter ButtonPad ID 3
Add

Separator
ToolButton

Icon MI_ICON_CROSSHAIR
HelpMsg "Draw a distance scale on a map\nScale Bar"
Cursor MI_CURSOR_CROSSHAIR
DrawMode DM_CUSTOM_POINT

DM_CUSTOM_POLYGON 35 The user may draw a polygon. To retrieve the object drawn by
the user, use the function call: CommandInfo() function
(CMD_INFO_CUSTOM_OBJ).

DM_CUSTOM_POLYLINE 36 The user may draw a polyline. To retrieve the object drawn by
the user, use the function call: CommandInfo() function
(CMD_INFO_CUSTOM_OBJ).

DrawMode parameter ID Description
MapBasic 11.0 56 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Cartographic Frame statement
Calling custom_tool_routine
Show

The Separator keyword inserts space between the last button on the Tools ButtonPad and
the new MI_CURSOR_CROSSHAIR (138) button.

See Also:

Alter Button statement, ButtonPadInfo() function, Create ButtonPad statement, Set Window
statement

Alter Cartographic Frame statement

Purpose

The Alter Cartographic Frame statement changes a frame(s) position, title, subtitle, border and
style of an existing cartographic legend created with the Create Cartographic Legend statement.
(To change the size, position or title of the legend window, use the Set Window statement.) You can
issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Alter Cartographic Frame
[Window legend_window_id]
Id { frame_id }

[Position (x, y) [Units paper_units]]
[Title [frame_title] [Font...]]
[SubTitle [frame_subtitle] [Font...]]
[Border Pen...]
[Style [Font...]

[ID { id } Text { style_name }]
[Line Pen... | Region Pen... Brush... | Symbol Symbol...]]
[, ...]

legend_window_id is an integer window identifier which you can obtain by calling the
FrontWindow() function and WindowID() function.

frame_id is the ID of the frame on the legend. You cannot use a layer name. For example, three
frames on a legend would have the successive ID's 1, 2, and 3.

frame_title is a string which defines a frame title.

frame_subtitle is a string which defines a frame subtitle.

id is the position within the style list for that frame. Currently there is no MapBasic function to get
information about the number of styles in a frame.

style_name is a string that displays next to each symbol for the frame specified in ID. The “#”
character will be replaced with the layer name. The “%” character will be replaced by the text “Line”,
“Point, “Region”, as appropriate for the symbol. For example, “% of #” will expand to “Region of
States” for the frame corresponding to the STATES.TAB layer.
MapBasic 11.0 57 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Control statement
Description

If a Window clause is not specified MapInfo Professional will use the topmost legend window.

The Position clause controls the frame's position on the legend window. The upper left corner of the
legend window has the position 0, 0. Position values use paper units settings, such as “in” (inches)
or “cm” (centimeters). MapBasic has a current paper units setting, which defaults to inches; a
MapBasic program can change this setting through the Set Paper Units statement. An Alter
Cartographic Frame statement can override the current paper units by including the optional Units
subclause within the Position clause.

The Title and SubTitle clauses accept new text, new font or both.

The Style clause must contain a list of definitions for the styles displayed in frame. You can only
update the Style type for a custom style. You can update the Text of any style. There is no way to
add or remove styles from any type of frame.

See Also:

Create Cartographic Legend statement, Set Cartographic Legend statement, Add
Cartographic Frame statement, Remove Cartographic Frame statement

Alter Control statement

Purpose

Changes the status of a control in the active custom dialog box.

Syntax

Alter Control id_num
[Title { title | From Variable array_name }]
[Value value]
[{ Enable | Disable }]
[{ Show | Hide }]
[Active]

id_num is an integer identifying one of the controls in the active dialog box.

title is a string representing the new title to assign to the control.

array_name is the name of an array variable; used to reset the contents of ListBox, MultiListBox,
and PopupMenu controls.

value is the new value to associate with the specified control.

Restrictions

You cannot issue this statement through the MapBasic window.
MapBasic 11.0 58 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Control statement
Description

The Alter Control statement modifies one or more attributes of a control in the active dialog box;
accordingly, the Alter Control statement should only be issued while a dialog box is active (for
example, from within a handler procedure that is called by one of the dialog box controls). If there
are two or more nested dialog boxes on the screen, the Alter Control statement only affects
controls within the topmost dialog box.

The id_num specifies which dialog box control should be modified; this corresponds to the id_num
parameter specified within the ID clause of the Dialog statement.

Each of the optional clauses (Title, Value, Enable/Disable, Hide/Show, Active) modifies a different
attribute of a dialog box control. Note that all of these clauses can be included in a single statement;
thus, a single Alter Control statement could change the name, the value, and the enabled/disabled
status of a dialog box control.

Some attributes do not apply to all types of controls. For example, a Button control may be enabled
or disabled, but has no value attribute.

The Title clause resets the text that appears on most controls (except for Picker controls and
EditText controls; to reset the contents of an EditText control, set its Value). If the control is a
ListBox, MultiListBox, or PopupMenu control, the Title clause can read the control's new contents
from an array of string variables, by specifying a From Variable clause.

The Active keyword applies only to EditText controls. An Alter Control…Active statement puts the
keyboard focus on the specified EditText control.

Use the Hide and Show keywords to make controls disappear or reappear.

To de-select all items in a MultiListBox control, use a value setting of zero. To add a list item to the
set of selected MultiListBox items, issue an Alter Control statement with a positive integer value
corresponding to the number of the list item.

In this case, do not issue the Alter Control statement from within the MultiListBox control's
handler.

You can use an Alter Control statement to modify the text that appears in a StaticText control.
However, MapInfo Professional cannot increase the size of the StaticText control after it is created.
Therefore, if you plan to alter the length of a StaticText control, you may want to pad it with spaces
when you first define it. For example, your Dialog statement could include the following clause:

Control StaticText ID 1 Title "Message goes here" + Space$(30)

Example

The following example creates a dialog box containing two checkboxes, an OK button, and a Cancel
button. Initially, the OK button is disabled (grayed out). The OK button is only enabled if the user
selects one or both of the check boxes.

Include "mapbasic.def"
Declare Sub Main
Declare Sub checker
Sub Main
MapBasic 11.0 59 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter MapInfoDialog statement
Dim browse_it, map_it As Logical
Dialog

Title "Display a file"
Control CheckBox

Title "Display in a Browse window"
Value 0
Calling checker
ID 1
Into browse_it

Control CheckBox
Title "Display in a Map window"
Value 0
Calling checker
ID 2
Into map_it

Control CancelButton
Control OKButton

ID 3
Disable

If CommandInfo(CMD_INFO_DLG_OK) Then
' ... then the user clicked OK...
End If

End Sub
Sub checker
' If either check box is checked,
' enable the OK button; otherwise, Disable it.

If ReadControlValue(1) Or ReadControlValue(2) Then
Alter Control 3 Enable

Else
Alter Control 3 Disable

End If
End Sub

Alter MapInfoDialog statement

Purpose

Disables, hides, or assigns new values to controls in MapInfo Professional's standard dialog boxes.

Restrictions

CAUTION: The Alter MapInfoDialog statement may not be supported in future versions of
MapInfo Professional. As a result, MapBasic programs that use this statement
may not work correctly when run using future versions of MapInfo Professional.
Use this statement with caution.

Syntax 1 (assigning non-default settings)

Alter MapInfoDialog dialog_ID
Control control_ID

{ Disable | Hide | Value new_value } [, { Disable... }]
[Control...]
MapBasic 11.0 60 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter MapInfoDialog statement
Syntax 2 (restoring default settings)

Alter MapInfoDialog dialog_ID Default

dialog_ID is an integer ID number, indicating which MapInfo Professional dialog box to alter.

control_ID is an integer ID number, 1 or larger, indicating which control to modify.

new_value is a new value assigned to the dialog box control.

Description

Use this statement if you need to disable, hide, or assign new values to controls—buttons, check
boxes, etc.—in MapInfo Professional's standard dialog boxes.

Use this statement to modify only MapInfo Professional's standard dialog boxes. To modify
custom dialog boxes that you create using the Dialog statement, use the Alter Control
statement.

Determining ID Numbers

To determine a dialog box's ID number, run MapInfo Professional with this command line:

mapinfow.exe -helpdiag

After you run MapInfo Professional with the -helpdiag argument, display a MapInfo Professional
dialog box and click the Help button. Ordinarily, the Help button launches Help, but because you
used the -helpdiag argument, MapInfo Professional displays the ID number of the current dialog
box.

There are different “common dialog boxes” (such as the Open and Save dialog boxes) for
different versions of Windows. If you want to modify a common dialog box, and if your
application will be used under different versions of Windows, you may need to issue two
Alter MapInfoDialog statements, ne for each version of the common dialog box.

Each individual control has an ID number. For example, most OK buttons have an ID number of 1,
and most Cancel buttons have an ID number of 2. To determine the ID number for a specific control,
you must use a third-party developer's utility, such as the Spy++ utility that Microsoft provides with
its C compiler. The MapBasic software does not provide a Spy++ utility.

Although the Alter MapInfoDialog statement changes the initial appearance of a dialog box, the
changes do not have any effect unless the user clicks OK. For example, you can use Alter
MapInfoDialog to store an address in the Find dialog box; however, MapInfo Professional will not
perform the Find operation unless you display the dialog box and the user clicks OK.

Types of Changes Allowed

Use the Disable keyword to disable (gray out) the control.

Use the Hide keyword to make the control disappear.

Use the Value clause to change the setting of the control.
MapBasic 11.0 61 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Menu statement
When you alter common dialog boxes (e.g., the Open dialog box), you may reset the item selected
in a combo box control, or you may assign new text to static text, button, and edit box controls.

You can change the orientation control in the Page Setup dialog box. The Portrait and Landscape
buttons are 1056 and 1057, respectively.

When you alter other MapInfo Professional dialog boxes, the following list summarizes the types of
changes you may make.

• Button, static text, edit box, editable combo box: You may assign new text by using a text
string in the new_value parameter.

• List box, combo box: You may set which item is selected by using a numeric new_value.
• Checkbox: You may set the checkbox (specify a value of 1) or clear it (value of zero).
• Radio button: Setting a button's value to 1 selects that button from the radio group.
• Symbol style button: You may assign a new symbol style (e.g., use the return value from the

MakeSymbol() function).
• Pen style button: You may assign a new Pen value.
• Brush style button: You may assign a new Brush value.
• Font style button: You may assign a new Font value.
• Combined Pen/Brush style button: Specify a Pen value to reset the Pen style, or specify a

Brush value to reset the Brush style. (For an example of this type of control, see MapInfo
Professional's Region Style dialog box, which appears when you double-click an editable
region.)

Example

The following example alters MapInfo Professional's Find dialog box by storing a text string (“23
Main St.”) in the first edit box and hiding the Respecify button.

If SystemInfo(SYS_INFO_MIVERSION) = 400 Then
Alter MapInfoDialog 2202

Control 5 Value "23 Main St."
Control 12 Hide

End If
Run Menu Command M_ANALYZE_FIND

The ID number 2202 refers to the Find dialog box. Control 5 is the edit box where the user types an
address. Control 12 is the Respecify button, which this example hides. All ID numbers are subject to
change in future versions of MapInfo Professional; therefore, this example calls the SystemInfo()
function to determine the MapInfo Professional version number.

See Also:

Alter Control statement, SystemInfo() function

Alter Menu statement

Purpose

Adds or removes items from an existing menu.
MapBasic 11.0 62 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Menu statement
Syntax 1

Alter Menu { menuname | ID menu_id }
Add menudef [, menudef...]

Where each menudef defines a menu item, according to the syntax:

newmenuitem
[ID menu_item_id]
[HelpMsg help]
[{ Calling handler | As menuname }]

menuname is the name of an existing menu (for example, “File”).

menu_id is a standard integer menu ID from 1 to 64; 1 represents the File menu.

newmenuitem is a string, the name of an item to add to the specified menu.

menu_item_id is a custom integer menu item identifier, which can be used in subsequent Alter
Menu Item statements.

help is a string that will appear on the status bar while the menu item is highlighted.

handler is the name of a procedure, or a code for a standard menu command (e.g., M_FILE_NEW),
or a special syntax for handling the menu event by calling OLE or DDE. If you specify a command
code for a standard MapInfo Professional Show/Hide command (such as
M_WINDOW_STATISTICS), the newmenuitem string must start with an exclamation point and
include a caret (^), to preserve the item's Show/Hide behavior. For more details on the different
types of handler syntax, see the Create Menu statement.

Syntax 2

Alter Menu { menuname | ID menu_id }
Remove { handler | submenuname | ID menu_item_id }

[, { handler | submenuname | ID menu_item_id } ...]

menuname is the name of an existing menu.

menu_id is an integer menu ID from 1 to 64; 1 represents the File menu.

handler is either the name of a sub procedure or the code for a standard MapInfo Professional
command.

submenuname is the name of a hierarchical submenu to remove from the specified menu.

menu_item_id is a custom integer menu item identifier.

Description

The Alter Menu statement adds menu items to an existing menu or removes menu items from an
existing menu.

The statement can identify the menu to be modified by specifying the name of the menu (e.g., “File”)
through the menuname parameter.
MapBasic 11.0 63 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Menu statement
If the menu to be modified is one of the standard MapInfo Professional menus, the Alter Menu
statement can identify which menu to alter by using the ID clause. The ID clause identifies the menu
by a number from 1 to 64. The following table lists the names and ID numbers of all standard
MapInfo Professional menus.

ID Numbers for Menus

Menu Name Define ID Description

File M_FILE 1 File menu.

Edit M_EDIT 2 Edit menu.

Search M_SEARCH 3 Search menu.

Query M_QUERY 3 Query menu.

Programs M_PGM 4 Programs menu.

Tools M_TOOLS 4 Tools menu.

Options M_OPTIONS 5 Options menu.

Window M_WINDOW 6 Window menu.

Help M_HELP 7 Help menu.

Browse M_BROWSE 8 Browse menu. Ordinarily, this only appears when a
Browser window is the active window.

Map M_MAP 9 Map menu. Ordinarily, this menu is only available when
a Map window is active.

Layout M_LAYOUT 10 Layout menu. Available when a Layout window is
active.

Graph M_GRAPH 11 Graph menu. Available when a Graph window is active.

MapBasic M_MAPBASIC 12 MapBasic menu. Available when the MapBasic window
is active.

Redistrict M_REDISTRICT 13 Redistrict menu. Available when a Districts Browser is
active.

Objects M_OBJECTS 14 Objects menu.

Table M_TABLE 15 Table menu.
MapBasic 11.0 64 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Menu statement
Menus 16 through 36 are shortcut menus, which appear if the user clicks with the right mouse
button.

ID Numbers for Shortcut Menus

Menu Name Define ID Description

DefaultShortcut M_SHORTCUT_DFLT 16 The default shortcut menu. This menu
appears if the user right-clicks on a
window that does not have its own
shortcut menu defined.

MapperShortcut M_SHORTCUT_MAPPER 17 The Map window shortcut menu.

BrowserShortcut M_SHORTCUT_BROWSER 18 The Browse window shortcut menu.

LayoutShortcut M_SHORTCUT_LAYOUT 19 The Layout window shortcut menu.

GrapherShortcut M_SHORTCUT_GRAPHER 20 The Graph window shortcut menu. This
menu contains options for creating
graphs.

CmdShortcut M_SHORTCUT_CMD 21 The MapBasic window shortcut menu.

RedistrictShortcut M_SHORTCUT_REDISTRIC
TER

22 The Redistricting shortcut menu; available
when the Districts Browser is active.

LegendShortcut M_SHORTCUT_LEGEND 23 The Legend window shortcut menu.

GrapherShortcut M_SHORTCUT_GRAPHTD
G

24 The Graph window shortcut menu. This
menu contains options for formatting
graphs already created.

3DMapShortcut M_SHORTCUT_3DMAP 25 The 3D Map window shortcut menu.

MessageWinShort
cut

M_SHORTCUT_MSG_WIN 26 The Message window shortcut menu.

StatisticsWinShort
cut

M_SHORTCUT_STAT_WIN 27 The Statistics window shortcut menu.

AdornmentShortc
ut

M_SHORTCUT_ADORNME
NT

32 The Adornment window shortcut.

LcLayersShortcut M_SHORTCUT_LC_LAYER
S

33 The menu you get when you right-click a
regular layer in the layer list

LcMapsShortcut M_SHORTCUT_LC_MAPS 34 The menu you get when you right-click a
Map node in the layer list
MapBasic 11.0 65 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Menu statement
When altering a Custom menu (even if you create it with an Custom ID, such as 999), you are
required to use the Custom menuname, not the Custom ID, to alter it.

Examples

The following statement adds an item to the File menu.

Alter Menu "File" Add
"Special" Calling sub_procedure_name

In the following example, the menu to be modified is identified by its number.

Alter Menu ID 1 Add
"Special" Calling sub_procedure_name

In the following example, the menu item that is added contains an ID clause. The ID number (300)
can be used in subsequent Alter Menu Item statements.

Alter Menu ID 1 Add
"Special" ID 300 Calling sub_procedure_name

The following example removes the custom item from the File menu.

Alter Menu ID 1 Remove sub_procedure_name

The sample program, TextBox, uses a Create Menu statement to create a menu called “TextBox,”
and then issues the following Alter Menu statement to add the TextBox menu as a hierarchical
menu located on the Tools menu:

Alter Menu "Tools" Add
"(-",
"TextBox" As "TextBox"

LcGroupsShortcut M_SHORTCUT_LC_GROUP
S

35 The menu you get when you right-click a
Group Layer in the layer list

TableAdornmentS
hortcut

M_SHORTCUT_TABLEADO
RNMENT

36 Reserved for future use.

ID Numbers for Non-Shortcut Menus

Menu Name Define ID Description

3DWindow M_3DMAP 28 3D Map window.

Graph M_GRAPHTDG 29 Graph menu.

Legend M_LEGEND 31 Legend menu.

ID Numbers for Shortcut Menus

Menu Name Define ID Description
MapBasic 11.0 66 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Menu Bar statement
The following example adds a custom command to the Map window's shortcut menu (the menu that
appears when an MapInfo Professional user right-clicks on a Map window).

Alter Menu ID 17 Add
"Find Nearest Site" Calling sub_procedure_name

See Also:

Alter Menu Bar statement, Alter Menu Item statement, Create Menu statement, Create Menu
Bar statement

Alter Menu Bar statement

Purpose

Adds or removes menus from the menu bar.

Syntax

Alter Menu Bar { Add | Remove }
{ menuname | ID menu_id }

[, { menuname | ID menu_id } ...]

menuname is the name of an available menu (e.g., “File”)

menu_id is a standard menu ID from one to fifteen; one represents the File menu.

Description

The Alter Menu Bar statement adds or removes one or more menus from the current menu bar.

The menuname parameter is a string representing the name of a menu, such as “File” or “Edit”. The
menuname parameter may also refer to the name of a custom menu created by a Create Menu
statement (see example below)

If the application is running on a non-English language version of MapInfo, and if the menu
names have been translated, the Alter Menu Bar statement must specify the translated
version of the menu name. However, each of MapInfo Professional's standard menus (File,
Edit, etc.) also has a menu ID, which you can use regardless of whether the menu names
have been translated. For example, specifying ID 2 always refers to the Edit menu,
regardless of whether the menu has been translated.

For a list of MapInfo Professional's standard menu names and their corresponding ID numbers, see
Alter Menu statement.

Adding Menus to the Menu Bar

An Alter Menu Bar Add statement adds a menu to the right end of the menu bar. If you need to
insert a menu at another position on the menu bar, use the Create Menu Bar statement to redefine
the entire menu bar.
MapBasic 11.0 67 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Menu Item statement
If you add enough menus to the menu bar, the menu bar wraps down onto a second line of menu
names.

Removing Menus from the Menu Bar

An Alter Menu Bar Remove… statement removes a menu from the menu bar. However, the menu
remains part of the “pool” of available menus. Thus, the following pair of statements would first
remove the Query menu from the menu bar, and then add the Query menu back onto the menu bar
(at the right end of the bar).

Alter Menu Bar Remove "Query"
Alter Menu Bar Add "Query"

After an Alter Menu Bar Remove… statement removes a menu, MapInfo Professional ignores any
hotkey sequences corresponding to items that were on the removed menu. For example, a MapInfo
Professional user might ordinarily press Ctrl-O to bring up the File menu's Open dialog box;
however, if an Alter Menu Bar Remove statement removed the File menu, MapInfo Professional
would ignore any Ctrl-O key-presses.

Example

The following example creates a custom menu, called DataEntry, then uses an Alter Menu Bar Add
statement to add the DataEntry menu to MapInfo Professional's menu bar.

Declare Sub addsub
Declare Sub editsub
Declare Sub delsub
Create Menu "DataEntry" As

"Add" Calling addsub,
"Edit" Calling editsub,
"Delete" Calling delsub

'Remove the Window menu and Help menu
Alter Menu Bar Remove ID 6, ID 7
'Add the custom menu, then the Window & Help menus
Alter Menu Bar Add "DataEntry", ID 6, ID 7

Before adding the custom menu to the menu bar, this program removes the Help menu (menu ID 7)
and the Window menu (ID 6) from the menu bar. The program then adds the custom menu, the
Window menu, and the Help menu to the menu bar. This technique guarantees that the last two
menus will always be Window and Help.

See Also:

Alter Menu statement, Alter Menu Item statement, Create Menu statement, Create Menu Bar
statement, Menu Bar statement

Alter Menu Item statement

Purpose

Alters the status of a specific menu item.
MapBasic 11.0 68 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Menu Item statement
Syntax

Alter Menu Item { handler | ID menu_item_id }
{ [Check | Uncheck] |
 [Enable | Disable] |
 [Text itemname] |
 [Calling handler | As menuname] }

handler is either the name of a Sub procedure or the code for a standard MapInfo Professional
command.

menu_item_id is an integer that identifies a menu item; this corresponds to the menu_item_id
parameter specified in the statement that created the menu item (Create Menu statement or Alter
Menu statement).

itemname is the new text for the menu item (may contain embedded codes).

menuname is the name of an existing menu.

Description

The Alter Menu Item statement alters one or more of the items that make up the available menus.
For example, you could use the Alter Menu Item statement to check or disable (gray out) a menu
item.

The statement must either specify a handler (e.g., the name of a procedure in the same program), or
an ID clause to indicate which menu item(s) to modify. Note that it is possible for multiple, separate
menu items to call the same handler procedure. If the Alter Menu Item statement includes the name
of a handler procedure, MapInfo Professional alters all menu items that call that handler. If the
statement includes an ID clause, MapInfo Professional alters only the menu item that was defined
with that ID.

The Alter Menu Item statement can only refer to a menu item ID if the statement which defined the
menu item included an ID clause. A MapBasic application cannot refer to menu item IDs created by
other MapBasic applications.

The Check clause and the Uncheck clause affect whether the item appears with a checkmark on
the menu. Note that a menu item may only be checked if it was defined as “checkable” (for example,
if the Create Map statement included a “!” as the first character of the menu item name).

The Disable clause and the Enable clause control whether the item is disabled (grayed out) or
enabled. Note that MapInfo Professional automatically enables and disables various menu items
based on the current circumstances. For example, the File > Close command is disabled whenever
there are no tables open. Therefore, MapBasic applications should not attempt to enable or disable
standard MapInfo Professional menu items. Similarly, although you can treat specific tools as menu
items (by referencing defines from MENU.DEF, such as M_TOOLS_RULER), you should not
attempt to enable or disable tools through the Alter Menu Item statement.

The Text clause allows you to rename a menu item.

The Calling clause specifies a handler for the menu item. If the user chooses the menu item,
MapInfo Professional calls the item's handler.
MapBasic 11.0 69 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Object statement
Examples

The following example creates a custom “DataEntry” menu.

Declare Sub addsub
Declare Sub editsub
Declare Sub delsub
Create Menu "DataEntry" As

"Add" Calling addsub,
"Edit" Calling editsub,
"Delete" ID 100 Calling delsub,
"Delete All" ID 101 Calling delsub

'Remove the Help menu
Alter Menu Bar Remove ID 7
'Add both the new menu and the Help menu
Alter Menu Bar Add "DataEntry" , ID 7

The following Alter Menu Item statement renames the “Edit” item to read “Edit…”

Alter Menu Item editsub Text "Edit…"

The following statement disables the “Delete All” menu item.

Alter Menu Item ID 101 Disable

The following statement disables both the “Delete” and the “Delete All” items, because it identifies
the handler procedure delsub, which is the handler for both menu items.

Alter Menu Item delsub Disable

See Also:

Alter Menu statement, Alter Menu Bar statement, Create Menu statement

Alter Object statement

Purpose

Modifies the shape, position, or graphical style of an object. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Alter Object obj
{ Info object_info_code, new_info_value |

Geography object_geo_code , new_geo_value |
Node { Add [Position polygon_num, node_num] (x, y) |

Set Position polygon_num, node_num (x , y) |
Remove Position polygon_num, node_num

}
}

obj is an object variable.

object_info_code is an integer code relating to the ObjectInfo() function (e.g., OBJ_INFO_PEN).
MapBasic 11.0 70 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Object statement
new_info_value specifies the new object_info_code attribute to apply (e.g., a new Pen style).

object_geo_code is an integer code relating to the ObjectGeography() function (e.g.,
OBJ_GEO_POINTX).

new_geo_value specifies the new object_geo_code value to apply (e.g., the new x-coordinate).

polygon_num is a integer value (one or larger), identifying one polygon from a region object or one
section from a polyline object.

node_num is a integer value (one or larger), identifying one node from a polyline or polygon.

x, y are x- and y-coordinates of a node.

Description

The Alter Object statement alters the shape, position, or graphical style of an object.

The effect of an Alter Object statement depends on whether the statement includes an Info clause,
a Node clause, or a Geography clause. If the statement includes an Info clause, MapBasic alters
the object's graphical style (e.g., the object's Pen and Brush styles). If the statement includes a
Node clause, MapBasic adds, removes, or repositions a node (this applies only to polyline or region
objects). If the statement includes a Geography clause, MapBasic alters a geographical attribute for
objects other than polylines and regions (e.g., the x- or y-coordinate of a point object).

Info clause

By issuing an Alter Object statement with an Info clause, you can reset an object's style (e.g., the
Pen or Brush). The Info clause lets you modify the same style attributes that you can query through
the ObjectInfo() function.

For example, you can determine an object's current Brush style by calling the ObjectInfo()
function:

Dim b_fillstyle As Brush
b_fillstyle = ObjectInfo(Selection.obj, OBJ_INFO_BRUSH)

Conversely, the following Alter Object statement allows you to reset the Brush style:

Alter Object obj_variable_name
Info OBJ_INFO_BRUSH, b_fillstyle

Note that you use the same code (e.g., OBJ_INFO_BRUSH) in both the ObjectInfo() function and
the Alter Object statement.
MapBasic 11.0 71 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Object statement
The table below summarizes the values you can specify in the Info clause to perform various types
of style alterations. Note that the obj_info_code values are defined in the standard MapBasic
definitions file, MAPBASIC.DEF. Accordingly, your program should Include “MAPBASIC.DEF” if you
intend to use the Alter Object…Info statement.

Geography clause

By issuing an Alter Object statement with a Geography clause, you can alter an object's
geographical coordinates. The Geography clause applies to all object types except for polylines and
regions. To alter the coordinates of a polyline or region object, use the Node clause (described
below) instead of the Geography clause.

obj_info_code Value ID Result of Alter Object

OBJ_INFO_PEN 2 Resets object's Pen style; new_info_value must be a Pen
expression.

OBJ_INFO_BRUSH 3 Resets object's Brush style; new_info_value must be a Brush
expression.

OBJ_INFO_TEXTFONT 2 Resets a Text object's Font style; new_info_value must be a
Font expression.

OBJ_INFO_SYMBOL 2 Resets a Point object's Symbol style; new_info_value must be
a Symbol expression.

OBJ_INFO_SMOOTH 4 Resets a Polyline object's smoothed/unsmoothed setting;
new_info_value must be a logical expression.

OBJ_INFO_FRAMEWIN 4 Changes which window is displayed in a Layout frame;
new_info_value must be an integer window ID.

OBJ_INFO_FRAMETITLE 6 Changes the title of a Frame object; new_info_value must be a
string.

OBJ_INFO_TEXTSTRING 3 Changes the text string that comprises a Text object;
new_info_value must be a string expression.

OBJ_INFO_TEXTSPACING 4 Changes a Text object's line spacing; new_info_value must be
a float value of 1, 1.5, or 2.

OBJ_INFO_TEXTJUSTIFY 5 Changes a Text object's alignment; new_info_value must be 0
for left-justified, 1 for center-justified, or 2 for right-justified.

OBJ_INFO_TEXTARROW 6 Changes a Text object's label line setting; new_info_value
must be 0 for no line, 1 for simple line, or 2 for a line with an
arrow.
MapBasic 11.0 72 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Object statement
The Geography clause lets you modify the same attributes that you can query through the
ObjectGeography() function. For example, you can obtain a line object's end coordinates by
calling the ObjectGeography() function:

Dim o_cable As Object
Dim x, y As Float
x = ObjectGeography(o_cable, OBJ_GEO_LINEENDX)
y = ObjectGeography(o_cable, OBJ_GEO_LINEENDY)

Conversely, the following Alter Object statements let you alter the line object's end coordinates:

Alter Object o_cable
Geography OBJ_GEO_LINEENDX, x

Alter Object o_cable
Geography OBJ_GEO_LINEENDY, y

You use the same codes (e.g., OBJ_GEO_LINEENDX) in both the ObjectGeography()
function and the Alter Object statement.

The table below summarizes the values you can specify in the Geography clause in order to perform
various types of geographic alterations. Note that the obj_geo_code values are defined in the
standard MapBasic definitions file, MAPBASIC.DEF. Your program should Include
“MAPBASIC.DEF” if you intend to use the Alter Object…Geography statement.

obj_geo_code Value ID Result of Alter Object

OBJ_GEO_MINX 1 Alters object's minimum bounding rectangle.

OBJ_GEO_MINY 2 Alters object's MBR.

OBJ_GEO_MAXX 3 Alters object's MBR; does not apply to Point objects.

OBJ_GEO_MAXY 4 Alters object's MBR; does not apply to Point objects.

OBJ_GEO_ARCBEGANGLE 5 Alters beginning angle of an Arc object.

OBJ_GEO_ARCENDANGLE 6 Alters ending angle of an Arc object.

OBJ_GEO_LINEBEGX 1 Alters a Line object's starting node.

OBJ_GEO_LINEBEGY 2 Alters a Line object's starting node.

OBJ_GEO_LINEENDX 3 Alters a Line object's ending node.

OBJ_GEO_LINEENDY 4 Alters a Line object's ending node.

OBJ_GEO_POINTX 1 Alters a Point object's x coordinate.

OBJ_GEO_POINTY 2 Alters a Point object's y coordinate.
MapBasic 11.0 73 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Object statement
Node clause

By issuing an Alter Object statement with a Node clause, you can add, remove, or reposition nodes
in a polyline or region object.

If the Node clause includes an Add sub-clause, the Alter Object statement adds a node to the
object. If the Node clause includes a Remove sub-clause, the statement removes a node. If the
Node clause includes a Set Position sub-clause, the statement repositions a node.

The Alter Object statement's Node clause is often used in conjunction with the Create Pline
statement and the Create Region statement. Create statements allow you to create new polyline
and region objects. However, Create statements are somewhat restrictive, because they force you
to state at compile time the number of nodes that will comprise the object. In some situations, you
may not know how many nodes should go into an object until run-time.

If your program will not know until run-time how many nodes should comprise an object, you can
issue a Create Pline statement or a Create Region statement which creates an “empty” object (an
object with zero nodes). Your program can then issue an appropriate number of Alter
Object…Node Add statements, to add nodes as needed.

Within the Node clause, the Position sub-clause includes two parameters, polygon_num and
node_num, that let you specify exactly which node you want to reposition or remove. The Position
sub-clause is optional when you are adding a node. The polygon_num and node_num parameters
should always be 1 (one) or greater.

The polygon_num parameter specifies which polygon in a multiple-polygon region (or which section
in a multiple-section polyline) should be modified.

Region Centroids

The Centroid of a Region can be set by using the Alter Object command with the syntax noted
below:

Alter Object Obj Geography OBJ_GEO_CENTROID, PointObj

Note that PointObj is a point object. This differs from other values input by Alter Object Geography,
which are all scalars. A point is needed in this instance because we need two values which define a
point. The Point that is input is checked to make sure it is a valid Centroid (for example, it is inside
the region). If the Obj is not a region, or if PointObj is not a point object, or if the point is not a valid
centroid, then an error is returned.

OBJ_GEO_ROUNDRADIUS 5 Alters the diameter of the circle that defines the rounded
corner of a Rounded Rectangle object.

OBJ_GEO_TEXTLINEX 5 Alters x coordinate of the end of a Text object's label line.

OBJ_GEO_TEXTLINEY 6 Alters y coordinate of the end of a Text object's label line.

OBJ_GEO_TEXTANGLE 7 Alters rotation angle of a Text object.

obj_geo_code Value ID Result of Alter Object
MapBasic 11.0 74 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Object statement
An easy way to center an X and Y value for a centroid is as follows:

Alter Object Obj Geography OBJ_GEO_CENTROID, CreatePoint(X, Y)

The user can also query the centroid by using the ObjectGeography() function as follows:

PointObj = ObjectGeography(Obj, OBJ_GEO_CENTROID)

There are other ways to get the Centroid, including the Centroid() function, CentroidX()
function, and CentroidY() function.

OBJ_GEO_CENTROID is defined in MAPBASIC.DEF.

Multipoint Objects and Collections

The Alter Object statement supports the following object types.

• Multipoint: sets a Multipoint symbol as shown in the following:
Alter Object obj_variable_mpoint

Info OBJ_INFO_SYMBOL, NewSymbol

• Collection: By issuing an Alter Object statement with an Info clause, you can reset collection
parts (Region, Polyline or Multipoint) inside the collection object. The Info clause allows you to
modify the same attributes that you can query through the ObjectInfo() function. For example,
you can determine a collection object's region part by calling the ObjectInfo() function:
Dim ObjRegion As Object
ObjRegion = ObjectInfo(Selection.obj, OBJ_INFO_REGION)

Also, the following Alter Object statement allows you to reset the region part of a collection
object:
Alter Object obj_variable_name
Info OBJ_INFO_REGION, ObjRegion

You use the same code (e.g., OBJ_INFO_REGION) in both the ObjectInfo() function and
the Alter Object statement.

The Alter Object statement inserts and deletes nodes to/from Multipoint objects.

Alter Object obj Node statement

To insert nodes within a Multipoint object:

Dim mpoint_obj as object
Create Multipoint Into Variable mpoint_obj 0
Alter Object mpoint_obj Node Add (0,1)
Alter Object mpoint_obj Node Add (2,1)

Nodes for Multipoint are always added at the end.

To delete nodes from a Multipoint object:

Alter Object mpoint_obj Node Remove Position polygon_num, node_num

mpoint_obj is a Multipoint object variable.

polygon_num is ignored for Multipoint, it is advisable to set it to 1.
MapBasic 11.0 75 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Table statement
node_num is the number of a node to be removed.

To set nodes inside a Multipoint object:

Alter Object mpoint_obj Node Set Position polygon_num, node_num (x,y)

mpoint_obj is a Multipoint object variable.

polygon_num is ignored for Multipoint, it is advisable to set it to 1.

node_num is the number of a node to be changed.

x and y are the new coordinates of the node node_num.

Example

Dim myobj As Object, i As Integer
Create Region Into Variable myobj 0
For i = 1 to 10

Alter Object myobj
Node Add (Rnd(1) * 100, Rnd(1) * 100)

Next

After using the Alter Object statement to modify an object, use an Insert statement or an
Update statement to store the object in a table.

See Also:

Create Pline statement, Create Region statement, Insert statement, ObjectGeography()
function, ObjectInfo() function, Update statement

Alter Table statement

Purpose

Alters the structure of a table. Cannot be used on linked tables. You can issue this statement from
the MapBasic Window in MapInfo Professional.

Syntax

Alter Table table (
[Add columnname columntype [, ...]]
[Modify columnname columntype [, ...]]
[Drop columnname [, ...]]
[Rename oldcolumnname newcolumnname [, ...]]
[Order columnname, columnname [,...]])
[Interactive]

table is the name of an open table.

columnname is the name of a column; column names can be up to 31 characters long, and can
contain letters, numbers, and the underscore character, and column names cannot begin with
numbers.
MapBasic 11.0 76 Reference

Chapter 3: A – Z MapBasic Language Reference
Alter Table statement
columntype indicates the datatype of a table column (including the field width if necessary).

oldcolumnname represents the previous name of a column to be renamed.

newcolumnname represents the intended new name of a column to be renamed.

Description

The Alter Table statement lets you modify the structure of an open table, allowing you to add
columns, change column widths or datatypes, drop (delete) columns, rename columns, and change
column ordering.

If you have edited a table, you must save or discard your edits before you can use the Alter
Table statement.

Each columntype should be one of the following: integer, SmallInt, float, decimal(size, decplaces),
char(size), date, or logical, DateTime.

By including an Add clause in an Alter Table statement, you can add new columns to your table. By
including a Modify clause, you can change the datatypes of existing columns. A Drop clause lets
you delete columns, while a Rename clause lets you change the names of existing columns. The
Order clause lets you specify the order of the columns. Altogether, an Alter Table statement can
have up to five clauses. Note that each of these five clauses can operate on a list of columns; thus,
with a single Alter Table statement, you can make all of the structural changes that you need to
make (see example below).

The Order clause affects the order of the columns, not the order of rows in the table. Column order
dictates the relative positions of the columns when you browse the table; the first column appears at
the left edge of a Browser window, and the last column appears at the right edge. Similarly, a table's
first column appears at the top of an Info tool window.

If a MapBasic application issues an Alter Table statement affecting a table which has memo fields,
the memo fields will be lost. No warning will be displayed.

An Alter Table statement may cause map layers to be removed from a Map window, possibly
causing the loss of themes or cosmetic objects. If you include the Interactive keyword, MapInfo
Professional prompts the user to save themes and/or cosmetic objects (if themes or cosmetic
objects are about to be lost).

Example

In the following example, we have a hypothetical table, “gcpop.tab” which contains the following
columns: pop_88, metsize, fipscode, and utmcode. The Alter Table statement below makes several
changes to the gcpop table. First, a Rename clause changes the name of the pop_88 column to
population. Then the Drop clause deletes the metsize, fipscode, and utmcode columns. An Add
clause creates two new columns: a small (2-byte) integer column called schoolcode, and a floating
point column called federalaid. Finally, an Order clause specifies the order for the new set of
columns: the schoolcode column comes first, followed by the population column, etc.

Open Table "gcpop"
Alter Table gcpop

(Rename pop_88 population
MapBasic 11.0 77 Reference

Chapter 3: A – Z MapBasic Language Reference
ApplicationDirectory$() function
Drop metsize, fipscode, utmcode
Add schoolcode SmallInt, federalaid Float
Order schoolcode, population, federalaid)

See Also:

Add Column statement, Create Index statement, Create Map statement, Create Table
statement

ApplicationDirectory$() function

Purpose

Returns a string containing the path from which the current MapBasic application is executing. You
can call this function from the MapBasic Window in MapInfo Professional.

Syntax

ApplicationDirectory$()

Return Value

String expression, representing a directory path.

Description

By calling the ApplicationDirectory$() function from within a compiled MapBasic application, you
can determine the directory or folder from which the application is running. If no application is
running (e.g., if you call the function by typing into the MapBasic window), ApplicationDirectory$()
returns a null string.

To determine the directory or folder where the MapInfo Professional software is installed, call the
ProgramDirectory$() function.

Example

Dim sAppPath As String
sAppPath = ApplicationDirectory$()
' At this point, sAppPath might look like this:
'
' "C:\MAPBASIC\CODE\"

See Also:

ProgramDirectory$() function, ApplicationName$() function
MapBasic 11.0 78 Reference

Chapter 3: A – Z MapBasic Language Reference
ApplicationName$() function
ApplicationName$() function

Purpose

Returns a string containing the name of the current MapBasic application that is running. You can
call this function from the MapBasic Window in MapInfo Professional.

Syntax

ApplicationName$()

Return Value

String expression representing the name of the MapBasic program.

Description

By calling the ApplicationName$() function from within a compiled MapBasic application, you can
determine the name of the running application. If no application is running (if you call the function by
typing into the MapBasic window), then ApplicationName$() returns an empty string.

To determine the path from which the current MapBasic application is executing call the
ApplicationDirectory$() function.

Example

Dim sAppName As String
sAppName = ApplicationName$()
' At this point, sAppName might look like this:
'
' "Test.MBX"

See Also:

ApplicationDirectory$() function

Area() function

Purpose

Returns the geographical area of an Object. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Area(obj_expr, unit_name)

obj_expr is an object expression.

unit_name is a string representing the name of an area unit (e.g., “sq km”).
MapBasic 11.0 79 Reference

Chapter 3: A – Z MapBasic Language Reference
AreaOverlap() function
Return Value

Float

Description

The Area() function returns the area of the geographical object specified by obj_expr.

The function returns the area measurement in the units specified by the unit_name parameter; for
example, to obtain an area in acres, specify “acre” as the unit_name parameter. See Set Area Units
statement for the list of available unit names.

Only regions, ellipses, rectangles, and rounded rectangles have any area. By definition, the area of
a point, arc, text, line, or polyline object is zero. The Area() function returns approximate results
when used on rounded rectangles. MapBasic calculates the area of a rounded rectangle as if the
object were a conventional rectangle.

For the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
spherical operation is performed unless the coordinate system is NonEarth, in which case, a
Cartesian operation is performed.

Examples

The following example shows how the Area() function can calculate the area of a single geographic
object. Note that the expression tablename.obj (as in states.obj) represents the geographical object
of the current row in the specified table.

Dim f_sq_miles As Float
Open Table "states"
Fetch First From states
f_sq_miles = Area(states.obj, "sq mi")

You can also use the Area() function within the SQL Select statement, as shown in the following
example.

Select state, Area(obj, "sq km")
From states Into results

See Also:

ObjectLen() function, Perimeter() function, CartesianArea() function, SphericalArea()
function, Set Area Units statement

AreaOverlap() function

Purpose

Returns the area resulting from the overlap of two closed objects. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

AreaOverlap(object1, object2)
MapBasic 11.0 80 Reference

Chapter 3: A – Z MapBasic Language Reference
Asc() function
object1 and object2 are closed objects.

Return Value

A float value representing the area (in MapBasic's current area units) of the overlap of the two
objects.

Restrictions

AreaOverlap() only works on closed objects. If both objects are not closed (such as points and
lines), then you may see an error message. Closed objects are objects that can produce an area,
such as regions (polygons).

See Also:

Overlap() function, ProportionOverlap() function, Set Area Units statement

Asc() function

Purpose

Returns the character code for the first character in a string expression. You can call this function
from the MapBasic Window in MapInfo Professional.

Syntax

Asc(string_expr)

string_expr is a string expression.

Return Value

Integer

Description

The Asc() function returns the character code representing the first character in the string specified
by string_expr.

If string_expr is a null string, the Asc() function returns a value of zero.

All MapInfo Professional environments have common character codes within the range of 32
(space) to 126 (tilde).

On a system that supports double-byte character sets (e.g., Windows Japanese): if the first
character of string_expr is a single-byte character, Asc() returns a number in the range 0 - 255; if
the first character of string_expr is a double-byte character, Asc() returns a value in the range 256 -
65,535.

On systems that do not support double-byte character sets, Asc() returns a number in the range 0 -
255.
MapBasic 11.0 81 Reference

Chapter 3: A – Z MapBasic Language Reference
Asin() function
Example

Dim code As SmallInt
code = Asc("Afghanistan")
' code will now be equal to 65,
' since 65 is the code for the letter A

See Also:

Chr$() function

Asin() function

Purpose

Returns the arc-sine value of a number. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Asin(num_expr)

num_expr is a numeric expression from one to negative one, inclusive.

Return Value

Float

Description

The Asin() function returns the arc-sine of the numeric num_expr value. In other words, Asin()
returns the angle whose sine is equal to num_expr.

The result returned from Asin() represents an angle, expressed in radians. This angle will be
somewhere between -Pi/2 and Pi/2 radians (given that Pi is approximately equal to 3.141593, and
given that Pi/2 radians represents 90 degrees).

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).

Since sine values range between one and negative one, the expression num_expr should represent
a value no larger than one (1) and no smaller than negative one (-1).

Example

Include "MAPBASIC.DEF"
Dim x, y As Float
x = 0.5
y = Asin(x) * RAD_2_DEG

' y will now be equal to 30,
' since the sine of 30 degrees is 0.5
MapBasic 11.0 82 Reference

Chapter 3: A – Z MapBasic Language Reference
Ask() function
See Also:

Acos() function, Atn() function, Cos() function, Sin() function, Tan() function

Ask() function

Purpose

Displays a dialog box, asking the user a yes or no (OK or Cancel) question. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

Ask(prompt, ok_text, cancel_text)

prompt is a string to appear as a prompt in the dialog box.

ok_text is a string (e.g., “OK”) that appears on the confirmation button.

cancel_text is a string (e.g., “Cancel”) that appears on the cancel button.

Return Value

Logical

Description

The Ask() function displays a dialog box, asking the user a yes-or-no question. The prompt
parameter specifies a message, such as “File already exists; do you want to continue?” The length
of the prompt string passed to the Ask() function can be approximately 2000 characters long, only
the first 299 characters will be displayed in the dialog box.

The limit is based on the internal buffer size, the size of the dialog box that is used for the
Ask() function, and the size of the static text control in that dialog box.

The dialog box contains two buttons; the user can click one button to give a Yes answer to the
prompt, or click the other button to give a No answer. The ok_text parameter specifies the name of
the Yes-answer button (e.g., “OK” or “Continue”), and the cancel_text parameter specifies the name
of the No-answer button (e.g., “Cancel” or “Stop”).

If the user selects the ok_text button, the Ask() function returns TRUE. If the user clicks the
cancel_text button or otherwise cancels the dialog box (e.g., by pressing the Esc key), the Ask()
function returns FALSE. Since the buttons are limited in size, the ok_text and cancel_text strings
should be brief. If you need to display phrases that are too long to fit in small dialog box buttons, you
can use the Dialog statement instead of calling the Ask() function. The ok_text button is the
default button (the button which will be selected if the user presses Enter instead of clicking with the
mouse).
MapBasic 11.0 83 Reference

Chapter 3: A – Z MapBasic Language Reference
Atn() function
Example

Dim more As Logical
more = Ask("Do you want to continue?", "OK", "Stop")

See Also:

Dialog statement, Note statement, Print statement

Atn() function

Purpose

Returns the arc-tangent value of a number. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Atn(num_expr)

num_expr is a numeric expression.

Return Value

Float

Description

The Atn() function returns the arc-tangent of the numeric num_expr value. In other words, Atn()
returns the angle whose tangent is equal to num_expr. The num_expr expression can have any
numeric value.

The result returned from Atn() represents an angle, expressed in radians, in the range -Pi/2 radians
to Pi/2 radians.

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).

Example

Include "MAPBASIC.DEF"
Dim val As Float

val = Atn(1) * RAD_2_DEG
'val is now 45, since the
'Arc tangent of 1 is 45 degrees

See Also:

Acos() function, Asin() function, Cos() function, Sin() function, Tan() function
MapBasic 11.0 84 Reference

Chapter 3: A – Z MapBasic Language Reference
AutoLabel statement
AutoLabel statement

Purpose

Draws labels in a Map window, and stores the labels in the Cosmetic layer. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

AutoLabel
[Window window_id]
[{ Selection | Layer layer_id }]
[Overlap [{ On | Off }]]
[Duplicates [{ On | Off }]]

window_id is an integer window identifier for a Map window.

layer_id is a table name (e.g., World) or a SmallInt layer number (e.g., 1 to draw labels for the top
layer).

Description

The AutoLabel statement draws labels (text objects) in a Map window. Only objects that are
currently visible in the Map window are labeled. The Window clause controls which Map window is
labeled. If you omit the Window clause, MapInfo Professional draws labels in the front-most Map
window. If you specify Selection, only selected objects are labeled. If you omit both the Selection
and the Layer clause, all layers are labeled.

The Overlap clause controls whether MapInfo Professional draws labels that overlap other labels.
This setting defaults to Off (MapInfo Professional will not draw overlapping labels). To force MapInfo
Professional to draw a label for every map object, regardless of whether the labels overlap, specify
Overlap On. The Duplicates clause controls whether MapInfo Professional draws a new label for
an object that has already been labeled. This setting defaults to Off (duplicates not allowed). The
AutoLabel statement uses whatever font and position settings are in effect. Set label options by
choosing Map > Layer Control. To control font and position settings through MapBasic, issue a Set
Map statement.

Example

Open Table "world" Interactive
Open Table "worldcap" Interactive
Map From world, worldcap
AutoLabel

Window FrontWindow()
Layer world

See Also:

Set Map statement
MapBasic 11.0 85 Reference

Chapter 3: A – Z MapBasic Language Reference
Beep statement
Beep statement

Purpose

Makes a beeping sound. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Beep

Description

The Beep statement sends a sound to the speaker.

Browse statement

Purpose

Opens a new Browser window. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Browse expression_list From table
[Position (x, y) [Units paper_units]]
[Width window_width [Units paper_units]]
[Height window_height [Units paper_units]]
[Row n]
[Column n]
[Min | Max]

expression_list is either an asterisk or a comma-separated list of column expressions.

table is a string representing the name of an open table.

x, y specifies the position of the upper left corner of the Browser, in paper_units.

paper_units is a string representing a paper unit name (for example, “cm” for centimeters).

window_width and window_height specify the size of the Browser, in paper_units.

n is a positive integer value.

Description

The Browse statement opens a Browse window to display a table.

If the expression_list is simply an asterisk (*), the new Browser includes all fields in the table.
Alternately, the expression_list clause can consist of a comma-separated list of expressions, each of
which defines one column that is to appear in the Browser. Expressions in the list can contain
column names, operators, functions, and variables. Each column's name is derived from the
MapBasic 11.0 86 Reference

Chapter 3: A – Z MapBasic Language Reference
Browse statement
expression that defines the column. Thus, if a column is defined by the expression population /
area(obj, “acre”), that expression will appear on the top row of the Browser, as the column name. To
assign an alias to an expression, follow the expression with a string; see the example below.

An optional Position clause lets you specify where on the screen to display the Browser. The x
coordinate specifies the distance (in paper units) from the left edge of the MapInfo Professional
application window to the left edge of the Browser. The y coordinate specifies the distance from the
top of the MapInfo Professional window down to the top of the Browser. The optional Width and
Height clauses specify the size of the Browser window, in paper units. If no Width and Height
clauses are provided, MapInfo Professional assigns the Browser window a default size which
depends on the table in question: the Browser height will generally be one quarter of the screen
height, unless the table does not have enough rows to fill a Browser window that large; and the
Browser width will depend on the widths of the fields in the table.

If the Browse statement includes the optional Max keyword, the resultant Browser window is
maximized, taking up all of the screen space available to MapInfo Professional. Conversely, if the
Browse statement includes the Min keyword, the Browser window is minimized immediately.

The Row clause dictates which row of the table should appear at the top of the Browser. If the
Browse statement does not include a Row clause, the first row of the table will be the top row in the
Browser.

Similarly, the Column clause dictates which of the table's columns should appear at the left edge of
the Browser. If the Browse statement does not include a Column clause, the table's first column will
appear at the left edge of the Browser window.

Example

The following example opens the World table and displays all columns from the table in a Browser
window.

Open Table "world"
Browse * From world

The next example specifies exactly which column expressions from the World table should be
displayed in the Browser.

Open Table "world"
Browse

country,
population,
population/area(obj, "sq km") "Density"
From world

The resultant Browser has three columns. The first two columns represent data as it is stored in the
World table, while the third column is derived. Through the third expression, MapBasic divides the
population of each country record with the geographic area of the region associated with that record.
The derived column expression has an alias (“Density”) which appears on the top row of the Browse
window.

See Also:

Set Browse statement, Set Window statement
MapBasic 11.0 87 Reference

Chapter 3: A – Z MapBasic Language Reference
BrowserInfo function
BrowserInfo function

Purpose

Returns information about a Browser window, such as: the total number of rows or columns in the
Browser window; or the row number, column number, or value contained in the current cell.

You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

BrowserInfo(window_id, attribute)

window_id is an integer window identifier.

attribute is an integer code indicating what type of information to return. For values, see the table
later in this description.

Return Value

Float, logical, or string depending on the attribute parameter.

Description

The BrowserInfo() function returns information about a Browser window. The function does not
apply to the Redistricter window.

The window_id parameter specifies which Browser window to query. To obtain a window identifier,
call the FrontWindow() function immediately after opening a window, or call the WindowID()
function at any time after the window's creation.

There are several attributes that BrowserInfo() returns about any given Browser window. The
attribute parameter tells the BrowserInfo () function what Browser window statistic to return. The
attribute parameter should be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.

attribute parameter ID Return Value

BROWSER_INFO_NROWS 1 The total number of rows in the Browser
window.

BROWSER_INFO_NCOLS 2 The total number of columns in the
Browser window.

BROWSER_INFO_CURRENT_ROW 3 The row number of the current cell in the
Browser window. Row numbers start at
one (1).
MapBasic 11.0 88 Reference

Chapter 3: A – Z MapBasic Language Reference
Brush clause
Error Conditions

ERR_BAD_WINDOW (590) error generated if parameter is not a valid window number.

ERR_FCN_ARG_RANGE (644) error generated if an argument is outside of the valid range.

ERR_WANT_BROWSER_WIN (312) error generated if window id is not a Browser window.

See Also:

FrontWindow() function, WindowID() function

Brush clause

Purpose

Specifies a fill style for graphic objects. You can use this clause in the MapBasic Window in MapInfo
Professional.

Syntax

Brush brush_expr

brush_expr is a Brush expression, such as MakeBrush(pattern, fgcolor, bgcolor). (See
MakeBrush() function for more information.) or a Brush variable.

Description

The Brush clause specifies a brush style—in other words, a set of color and pattern settings that
dictate the appearance of a filled object, such as a circle or rectangle. Brush is a clause, not a
complete MapBasic statement. Various object-related statements, such as Create Ellipse
statement, allow you to specify a brush value. The keyword Brush may be followed by an
expression which evaluates to a Brush value. This expression can be a Brush variable:

Brush br_var

or a call to a function which returns a Brush value:

Brush MakeBrush(64, CYAN, BLUE)

With some MapBasic statements (e.g., Set Map statement), the keyword Brush can be followed
immediately by the three parameters that define a Brush style (pattern, foreground color, and
background color) within parentheses:

Brush(64, CYAN, BLUE)

BROWSER_INFO_CURRENT_COLUMN 4 The column number of the current cell in
the Browser window. Column numbers
start at zero (0).

BROWSER_INFO_CURRENT_CELL_VALUE 5 The value contained in the current cell in
the Browser window.

attribute parameter ID Return Value
MapBasic 11.0 89 Reference

Chapter 3: A – Z MapBasic Language Reference
Brush clause
Some MapBasic statements take a Brush expression as a parameter (e.g., the name of a Brush
variable), rather than a full Brush clause (the keyword Brush followed by the name of a Brush
variable). The Alter Object statement is one example.

The following table summarizes the three components (pattern, foreground color, background color)
that define a Brush:

To specify a transparent background, use pattern 3 or larger, and omit the background color from
the Brush clause. For example, specify Brush(5, BLUE) to see thin blue stripes with no background
fill color. Omitting the background parameter is like clearing the Background check box in MapInfo
Professional's Region Style dialog box.

To specify a transparent background when calling the MakeBrush() function specify -1 as the
background color.

Component Description

pattern Integer value from 1 to 8 or from 12 to 71; see table below.

foreground color Integer RGB color value; see RGB() function. The definitions file,
MAPBASIC.DEF, includes Define statements for BLACK, WHITE, RED,
GREEN, BLUE, CYAN, MAGENTA, and YELLOW.

background color Integer RGB color value.
MapBasic 11.0 90 Reference

Chapter 3: A – Z MapBasic Language Reference
Brush clause
The available patterns appear as follows. Pattern 2 produces a solid fill; pattern 1 produces no fill.

For a comprehensive list of fill patterns, see the MapInfo Professional Help System—launch MapInfo
Professional and from the Help menu, select MapInfo Professional Help Topics and then search
for MapInfo Professional Fill Pattern Table.

See Also:

CurrentBrush() function, MakeBrush() function, Pen clause, Font clause, Symbol clause
MapBasic 11.0 91 Reference

Chapter 3: A – Z MapBasic Language Reference
Buffer() function
Buffer() function

Purpose

Returns a region object that represents a buffer region (the area within a specified buffer distance of
an existing object). You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

Buffer(inputobject, resolution, width, unit_name)

inputobject is an object expression.

resolution is a SmallInt value representing the number of nodes per circle at each corner.

width is a float value representing the radius of the buffer; if width is negative, and if inputobject is a
closed object, the object returned represents an object smaller than the original object. If the width is
negative, and the object is a linear object (line, polyline, arc) or a point, then the absolute value of
width is used to produce a positive buffer.

unit_name is the name of the distance unit (e.g., “mi” for miles, “km” for kilometers) used by width.

Return Value

Returns a region object.

Description

The Buffer() function returns a region representing a buffer.

The Buffer() function operates on one single object at a time. To create a buffer around a set of
objects, use the Create Object statement As Buffer. The object will be created using the current
MapBasic coordinate system. The method used to calculate the buffer depends on the coordinate
system. If it is NonEarth, then a Cartesian method will be used. Otherwise, a spherical method will
be used.

Example

The following program creates a line object, then creates a buffer region surrounding the line. The
buffer region extends ten miles in all directions from the line.

Dim o_line, o_region As Object
o_line = CreateLine(-73.5, 42.5, -73.6, 42.8)
o_region = Buffer(o_line, 20, 10, "mi")

See Also:

Create Object statement
MapBasic 11.0 92 Reference

Chapter 3: A – Z MapBasic Language Reference
ButtonPadInfo() function
ButtonPadInfo() function

Purpose

Returns information about a ButtonPad. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

ButtonPadInfo(pad_name, attribute)

pad_name is a string representing the name of an existing ButtonPad; use “Main”, “Drawing”, “Tools”
or “Standard” to query the standard pads, or specify the name of a custom pad.

attribute is a code indicating which information to return; see table below.

Return Value

Depends on the attribute parameter specified.

Description

The attribute parameter specifies what to return. Codes are defined in MAPBASIC.DEF

attribute code ID ButtonPadInfo() returns:

BTNPAD_INFO_FLOATING 1 Logical. TRUE means the pad is floating, FALSE means the
pad is docked.

BTNPAD_INFO_WIDTH 2 SmallInt: The width of the pad, expressed as a number of
buttons (not including separators).

BTNPAD_INFO_NBTNS 3 SmallInt. The number of buttons on the pad.

BTNPAD_INFO_X 4 A number indicating the x-position of the upper-left corner of
the pad. If the pad is docked, this is an integer. The value is
negative when a toolbar is docked to the left of the menu
bar. If the pad is floating, this is a float value, in paper units
such as inches.

BTNPAD_INFO_Y 5 A number indicating the y-position of the upper-left corner of
the pad. This value is negative when a toolbar is docked
above the menu bar.
MapBasic 11.0 93 Reference

Chapter 3: A – Z MapBasic Language Reference
Call statement
Example

Include "mapbasic.def"
If ButtonPadInfo("Main", BTNPAD_INFO_FLOATING) Then

'...then the Main pad is floating; now let's dock it.
Alter ButtonPad "Main" ToolbarPosition(0,0) Fixed

End If

See Also:

Alter ButtonPad statement

Call statement

Purpose

Calls a sub procedure or an external routine (DLL, XCMD).

Restrictions

You cannot issue a Call statement through the MapBasic window.

Syntax

Call subproc [([parameter] [, ...])]

subproc is the name of a sub procedure.

parameter is a parameter expression to pass to the sub procedure.

Description

The Call statement calls a procedure. The procedure is usually a conventional MapBasic sub
procedure (defined through the Sub…End Sub statement). Alternately, a program running under
MapInfo Professional can call a Windows Dynamic Link Library (DLL) routine through the Call
statement.

BTNPAD_INFO_WINID 6 Integer. The window ID of the specified pad.

BTNPAD_INFO_DOCK_PO
SITION

7 Returns the position of the button pad as Floating, Left,
Top, Right or Bottom. Use for floating toolbars as an
alternative to BTNPAD_INFO_FLOATING. Returns:

• BTNPAD_INFO_DOCK_NONE (0)
• BTNPAD_INFO_DOCK_LEFT (1)
• BTNPAD_INFO_DOCK_TOP (2)
• BTNPAD_INFO_DOCK_RIGHT (3)
• BTNPAD_INFO_DOCK_BOTTOM (4)

attribute code ID ButtonPadInfo() returns:
MapBasic 11.0 94 Reference

Chapter 3: A – Z MapBasic Language Reference
Call statement
When a Call statement calls a conventional MapBasic procedure, MapBasic begins executing the
statements in the specified sub procedure, and continues until encountering an End Sub or an Exit
Sub statement. At that time, MapBasic returns from the sub procedure, then executes the
statements following the Call statement. The Call statement can only access sub procedures which
are part of the same application.

A MapBasic program must issue a Declare Sub statement to define the name and parameter list of
any procedure which is to be called. This requirement is independent of whether the procedure is a
conventional MapBasic Sub procedure, a DLL procedure or an XCMD.

Parameter Passing

Sub procedures may be defined with no parameters. If a particular sub procedure has no
parameters, then calls to that sub procedure may appear in either of the following forms:

Call subroutine

or

Call subroutine()

By default, each sub procedure parameter is defined “by reference.” When a sub procedure has a
by-reference parameter, the caller must specify the name of a variable to pass as the parameter.

If the procedure then alters the contents of the by-reference parameter, the caller's variable is
automatically updated to reflect the change. This allows the caller to examine the results returned by
the sub procedure.

Alternately, any or all sub procedure parameters may be passed “by value” if the keyword ByVal
appears before the parameter name in the Sub and Declare Sub declarations. When a parameter is
passed by value, the sub procedure receives a copy of the value of the parameter expression; thus,
the caller can pass any expression, rather than having to pass the name of a variable.

A sub procedure can take an entire array as a single parameter. When a sub procedure expects an
array as a parameter, the caller should specify the name of an array variable, without parentheses.

Calling External Routines

When a Call statement calls a DLL routine, MapBasic executes the routine until the routine returns.
The specified DLL routine is actually located in a separate file (e.g., “KERNEL.EXE”). The specified
DLL file must be present at run-time for MapBasic to complete a DLL Call.

Similarly, if a Call statement calls an XCMD, the file containing the XCMD must be present at run-
time. When calling XCMDs, you cannot specify array variables or variables of custom data Types as
parameters.

Example

In the following example, the sub procedure Cube cubes a number (raises the number to the power
of three), and returns the result. The sub procedure takes two parameters; the first parameter
contains the number to be cubed, and the second parameter passes the results back to the caller.

Declare Sub Cube(ByVal original As Float, cubed As Float)
Dim x, result As Float
MapBasic 11.0 95 Reference

Chapter 3: A – Z MapBasic Language Reference
CartesianArea() function
Call Cube(2, result)
' result now contains the value: 8 (2 x 2 x 2)
x = 1
Call Cube(x + 2, result)
' result now contains the value: 27 (3 x 3 x 3)

End Program
Sub Cube (ByVal original As Float, cubed As Float)

' Cube the "original" parameter, and store
' the result in the "cubed" parameter.
cubed = original ^ 3

End Sub

See Also:

Declare Sub statement, Exit Sub statement, Global statement, Sub…End Sub statement

CartesianArea() function

Purpose

Returns the area as calculated in a flat, projected coordinate system using a Cartesian algorithm.
You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

CartesianArea(obj_expr, unit_name)

obj_expr is an object expression.

unit_name is a string representing the name of an area unit (e.g., “sq km”).

Return Value

Float

Description

The CartesianArea() function returns the Cartesian area of the geographical object specified by
obj_expr.

The function returns the area measurement in the units specified by the unit_name parameter; for
example, to obtain an area in acres, specify “acre” as the unit_name parameter. See the Set Area
Units statement for the list of available unit names.

The CartesianArea() function will always return the area using a cartesian algorithm. A value of -1
will be returned for data that is in a Latitude/Longitude since the data is not projected.

Only regions, ellipses, rectangles, and rounded rectangles have any area. By definition, the
CartesianArea() of a point, arc, text, line, or polyline object is zero. The CartesianArea() function
returns approximate results when used on rounded rectangles. MapBasic calculates the area of a
rounded rectangle as if the object were a conventional rectangle.
MapBasic 11.0 96 Reference

Chapter 3: A – Z MapBasic Language Reference
CartesianBuffer() function
Examples

The following example shows how the CartesianArea() function can calculate the area of a single
geographic object. Note that the expression tablename.obj (as in states.obj) represents the
geographical object of the current row in the specified table.

Dim f_sq_miles As Float
Open Table "counties"
Fetch First From counties
f_sq_miles = CartesianArea(counties.obj, "sq mi")

You can also use the CartesianArea() function within the Select statement, as shown in the
following example.

Select lakes, CartesianArea(obj, "sq km")
From lakes Into results

See Also:

Area() function, SphericalArea() function

CartesianBuffer() function

Purpose

Returns a region object that represents a buffer region (the area within a specified buffer distance of
an existing object). You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

CartesianBuffer(inputobject, resolution, width, unit_name)

inputobject is an object expression.

resolution is a SmallInt value representing the number of nodes per circle at each corner.

width is a float value representing the radius of the buffer; if width is negative, and if inputobject is a
closed object, the object returned represents an object smaller than the original object.

unit_name is the name of the distance unit (e.g., “mi” for miles, “km” for kilometers) used by width.

Return Value

Region Object

Description

The CartesianBuffer() function returns a region representing a buffer and operates on one single
object at a time.

To create a buffer around a set of objects, use the Create Object statement As Buffer. If width is
negative, and the object is a linear object (line, polyline, arc) or a point, then the absolute value of
width is used to produce a positive buffer.
MapBasic 11.0 97 Reference

Chapter 3: A – Z MapBasic Language Reference
CartesianConnectObjects() function
The CartesianBuffer() function calculates the buffer by assuming the object is in a flat projection
and using the width to calculate a cartesian distance calculated buffer around the object.

If the inputobject is in a Latitude/Longitude Projection, then Spherical calculations will be used
regardless of the Buffer function used.

Example

The following program creates a line object, then creates a buffer region that extends 10 miles
surrounding the line.

Dim o_line, o_region As Object
o_line = CreateLine(-73.5, 42.5, -73.6, 42.8)
o_region = CartesianBuffer(o_line, 20, 10, "mi")

See Also:

Buffer() function, Creating Map Objects

CartesianConnectObjects() function

Purpose

Returns an object representing the shortest or longest distance between two objects. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

CartesianConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Return Value

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there
are multiple instances where the minimum or maximum distance exists (e.g., the two points returned
are not uniquely the shortest distance and there are other points representing “ties”) then these
functions return one of the instances. There is no way to determine if the object returned is uniquely
the shortest distance.
MapBasic 11.0 98 Reference

Chapter 3: A – Z MapBasic Language Reference
CartesianDistance() function
CartesianConnectObjects() returns a Polyline object connecting object1 and object2 in the
shortest (min == TRUE) or longest (min == FALSE) way using a cartesian calculation method. If the
calculation cannot be done using a cartesian distance method (e.g., if the MapBasic Coordinate
System is Lat/Long), then this function will produce an error.

CartesianDistance() function

Purpose

Returns the distance between two locations. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

CartesianDistance(x1, y1, x2, y2, unit_name)

x1 and x2 are x-coordinates.

y1 and y2 are y-coordinates.

unit_name is a string representing the name of a distance unit (e.g., “km”).

Return Value

Float

Description

The CartesianDistance() function calculates the Cartesian distance between two locations. It
returns the distance measurement in the units specified by the unit_name parameter; for example,
to obtain a distance in miles, specify “mi” as the unit_name parameter. See Set Distance Units
statement for the list of available unit names.

The CartesianDistance() function always returns a value using a cartesian algorithm. A value of -1
is returned for data that is in a Latitude/Longitude coordinate system, since Latitude/Longitude data
is not projected and not cartesian.

The x- and y-coordinate parameters must use MapBasic's current coordinate system. By default,
MapInfo Professional expects coordinates to use a Latitude/Longitude coordinate system. You can
reset MapBasic's coordinate system through the Set CoordSys statement.

Example

Dim dist, start_x, start_y, end_x, end_y As Float
Open Table "cities"
Fetch First From cities
start_x = CentroidX(cities.obj)
start_y = CentroidY(cities.obj)
Fetch Next From cities
end_x = CentroidX(cities.obj)
end_y = CentroidY(cities.obj)
dist = CartesianDistance(start_x,start_y,end_x,end_y,"mi")
MapBasic 11.0 99 Reference

Chapter 3: A – Z MapBasic Language Reference
CartesianObjectDistance() function
See Also:

Math Functions, CartesianDistance() function, Distance() function

CartesianObjectDistance() function

Purpose

Returns the distance between two objects. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

CartesianObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Return Value

Float

Description

CartesianObjectDistance() returns the minimum distance between object1 and object2 using a
cartesian calculation method with the return value in unit_name. If the calculation cannot be done
using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat/Long), then this
function will produce an error.

CartesianObjectLen() function

Purpose

Returns the geographic length of a line or polyline object. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

CartesianObjectLen(obj_expr, unit_name)

obj_expr is an object expression.

unit_name is a string representing the name of a distance unit (e.g., “km”).

Return Value

Float
MapBasic 11.0 100 Reference

Chapter 3: A – Z MapBasic Language Reference
CartesianOffset() function
Description

The CartesianObjectLen() function returns the length of an object expression. Note that only line
and polyline objects have length values greater than zero; to measure the circumference of a
rectangle, ellipse, or region, use the Perimeter() function.

The CartesianObjectLen() function will always return a value using a cartesian algorithm. A value
of -1 will be returned for data that is in a Latitude/Longitude coordinate system, since
Latitude/Longitude data is not projected and not cartesian.

The CartesianObjectLen() function returns a length measurement in the units specified by the
unit_name parameter; for example, to obtain a length in miles, specify “mi” as the unit_name
parameter. See the Set Distance Units statement for the list of valid unit names.

Example

Dim geogr_length As Float
Open Table "streets"
Fetch First From streets
geogr_length = CartesianObjectLen(streets.obj, "mi")
' geogr_length now represents the length of the
' street segment, in miles

See Also:

SphericalObjectLen() function, CartesianObjectLen() function, ObjectLen() function

CartesianOffset() function

Purpose

Returns a copy of the input object offset by the specified distance and angle using a Cartesian
DistanceType. You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

CartesianOffset(object, angle, distance, units)

object is the object being offset.

angle is the angle to offset the object.

distance is the distance to offset the object.

units is a string representing the unit in which to measure distance.

Return Value

Object
MapBasic 11.0 101 Reference

Chapter 3: A – Z MapBasic Language Reference
CartesianOffsetXY() function
Description

This function produces a new object that is a copy of the input object offset by distance along angle
(in degrees with horizontal in the positive X-axis being 0 and positive being counterclockwise). The
unit string, similar to that used for ObjectLen() function or Perimeter() function, is the unit for the
distance value. The DistanceType used is Cartesian. If the coordinate system of the input object is
Lat/Long, an error will occur, since Cartesian DistanceTypes are not valid for Lat/Long. This is
signified by returning a NULL object. The coordinate system used is the coordinate system of the
input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees,
and the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (e.g.,
the center of the bounding box), and then that value is converted from the input units into the
coordinate system's units. If the coordinate system is Lat/Long, the conversion to degrees uses the
fixed point. The actual converted distance measurement could vary at different locations on the
object. The distance from the input object and the new offset object is only guaranteed to be exact at
the single fixed point used.

Example

CartesianOffset(Rect, 45, 100, "mi")

See Also:

CartesianOffsetXY() function

CartesianOffsetXY() function

Purpose

Returns a copy of the input object offset by the specified X and Y offset values using a cartesian
DistanceType. You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

CartesianOffsetXY(object, xoffset, yoffset, units)

object is the object being offset.

xoffset and yoffset are the distance along the x and y axes to offset the object.

units is a string representing the unit in which to measure distance.

Return Value

Object
MapBasic 11.0 102 Reference

Chapter 3: A – Z MapBasic Language Reference
CartesianPerimeter() function
Description

This function produces a new object that is a copy of the input object offset by xoffset along the X-
axis and yoffset along the Y-axis. The unit string, similar to that used for ObjectLen() function or
Perimeter() function, is the unit for the distance values. The DistanceType used is Cartesian. If the
coordinate system of the input object is Lat/Long, an error will occur, since Cartesian DistanceTypes
are not valid for Lat/Long. This is signified by returning a NULL object. The coordinate system used
is the coordinate system of the input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees,
and the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (e.g.,
the center of the bounding box), and then that value is converted from the input units into the
coordinate system's units. If the coordinate system is Lat/Long, the conversion to degrees uses the
fixed point. The actual converted distance measurement could vary at different locations on the
object. The distance from the input object and the new offset object is only guaranteed to be exact at
the single fixed point used.

Example

CartesianOffset(Rect, 45, 100, "mi")

See Also:

CartesianOffset() function

CartesianPerimeter() function

Purpose

Returns the perimeter of a graphical object. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

CartesianPerimeter(obj_expr , unit_name)

obj_expr is an object expression.

unit_name is a string representing the name of a distance unit (e.g., “km”).

Return Value

Float
MapBasic 11.0 103 Reference

Chapter 3: A – Z MapBasic Language Reference
Centroid() function
Description

The CartesianPerimeter() function calculates the perimeter of the obj_expr object. The
Perimeter() function is defined for the following object types: ellipses, rectangles, rounded
rectangles, and polygons. Other types of objects have perimeter measurements of zero.

The CartesianPerimeter() function will always return a value using a Cartesian algorithm. A value
of -1 will be returned for data that is in a Latitude/Longitude coordinate system, since
Latitude/Longitude data is not projected and not Cartesian.

The CartesianPerimeter() function returns a length measurement in the units specified by the
unit_name parameter; for example, to obtain a length in miles, specify “mi” as the unit_name
parameter. See the Set Distance Units statement for the list of valid unit names.
CartesianPerimeter() returns approximate results when used on rounded rectangles. MapBasic
calculates the perimeter of a rounded rectangle as if the object were a conventional rectangle.

Example

The following example shows how you can use the CartesianPerimeter() function to determine the
perimeter of a particular geographic object.

Dim perim As Float
Open Table "world"
Fetch First From world
perim = CartesianPerimeter(world.obj, "km")
' The variable perim now contains
' the perimeter of the polygon that's attached to
' the first record in the World table.

You can also use the CartesianPerimeter() function within the Select statement. The following
Select statement extracts information from the States table, and stores the results in a temporary
table called Results. Because the Select statement includes the CartesianPerimeter() function,
the Results table will include a column showing each state's perimeter.

Open Table "states"
Select state, CartesianPerimeter(obj, "mi")

From states
Into results

See Also:

CartesianPerimeter() function, SphericalPerimeter() function, Perimeter() function

Centroid() function

Purpose

Returns the centroid (center point) of an object. You can call this function from the MapBasic
Window in MapInfo Professional.
MapBasic 11.0 104 Reference

Chapter 3: A – Z MapBasic Language Reference
CentroidX() function
Syntax

Centroid(obj_expr)

obj_expr is an object expression.

Return Value

Point object

Description

The Centroid() function returns a point object, which is located at the centroid of the specified
obj_expr object. A region's centroid does not represent its center of mass. Instead, it represents the
location used for automatic labeling, geocoding, and placement of thematic pie and bar charts. If you
edit a map in reshape mode, you can reposition region centroids by dragging them.

If the obj_expr parameter represents a point object, the Centroid() function returns the position of
the point. If the obj_expr parameter represents a line object, the Centroid() function returns the
point midway between the ends of the line.

If the obj_expr parameter represents a polyline object, the Centroid() function returns a point
located at the mid point of the middle segment of the polyline.

If the obj_expr parameter represents any other type of object, the Centroid() function returns a
point located at the true centroid of the original object. For rectangle, arc, text, and ellipse objects,
the centroid position is halfway between the upper and lower extents of the object, and halfway
between the left and right extents. For region objects, however, the centroid position is always on
the object in question, and therefore may not be located halfway between the object's extents.

Example

Dim pos As Object
Open Table "world"
Fetch First From world
pos = Centroid(world.obj)

See Also:

Alter Object statement, CentroidX() function, CentroidY() function

CentroidX() function

Purpose

Returns the x-coordinate of the centroid of an object. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

CentroidX(obj_expr)

obj_expr is an object expression
MapBasic 11.0 105 Reference

Chapter 3: A – Z MapBasic Language Reference
CentroidY() function
Return Value

Float

Description

The CentroidX() function returns the X coordinate (e.g., Longitude) component of the centroid of
the specified object. See the Centroid() function for a discussion of what the concept of a centroid
position means with respect to different types of graphical objects (lines vs. regions, etc.).

The coordinate information is returned in MapBasic's current coordinate system; by default,
MapBasic uses a Longitude/Latitude coordinate system. The Set CoordSys statement allows you
to change the coordinate system used.

Examples

The following example shows how the CentroidX() function can calculate the longitude of a single
geographic object.

Dim x As Float
Open Table "world"
Fetch First From world
x = CentroidX(world.obj)

You can also use the CentroidX() function within the Select statement. The following Select
statement extracts information from the World table, and stores the results in a temporary table
called Results. Because the Select statement includes the CentroidX() function and the
CentroidY() function, the Results table will include columns which display the longitude and
latitude of the centroid of each country.

Open Table "world"
Select country, CentroidX(obj), CentroidY(obj)

From world Into results

See Also:

Centroid() function, CentroidY() function, Set CoordSys statement

CentroidY() function

Purpose

Returns the y-coordinate of the centroid of an object. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

CentroidY(obj_expr)

obj_expr is an object expression.
MapBasic 11.0 106 Reference

Chapter 3: A – Z MapBasic Language Reference
CharSet clause
Return Value

Float

Description

The CentroidY() function returns the Y-coordinate (e.g., latitude) component of the centroid of the
specified object. See the Centroid() function for a discussion of what the concept of a centroid
position means, with respect to different types of graphical objects (lines vs. regions, etc.).

The coordinate information is returned in MapBasic's current coordinate system; by default,
MapBasic uses a Longitude/Latitude coordinate system. The Set CoordSys statement allows you
to change the coordinate system used.

Example

Dim y As Float
Open Table "world"
Fetch First From world
y = CentroidY(world.obj)

See Also:

Centroid() function, CentroidX() function, Set CoordSys statement

CharSet clause

Purpose

Specifies which character set MapBasic uses for interpreting character codes.

See the MapInfo Professional User Guide documentation for changes affecting this clause.

Syntax

CharSet char_set

char_set is a string that identifies the name of a character set; see table below.

Description

The CharSet clause specifies which character set MapBasic should use when reading or writing
files or tables. Note that CharSet is a clause, not a complete statement. Various file-related
statements, such as the Open File statement, can incorporate optional CharSet clauses.

What Is A Character Set?

Every character on a computer keyboard corresponds to a numeric code. For example, the letter “A”
corresponds to the character code 65. A character set is a set of characters that appear on a
computer, and a set of numeric codes that correspond to those characters.
MapBasic 11.0 107 Reference

Chapter 3: A – Z MapBasic Language Reference
CharSet clause
Different character sets are used in different countries. For example, in the version of Windows for
North America and Western Europe, character code 176 corresponds to a degrees symbol;
however, if Windows is configured to use a different character set, character code 176 may
represent a different character.

Call SystemInfo(SYS_INFO_CHARSET) to determine the character set in use at run-time.

How Do Character Sets Affect MapBasic Programs?

If your files use only standard ASCII characters in the range of 32 (space) to 126 (tilde), you do not
need to worry about character set conflicts, and you do not need to use the CharSet clause.

Even if your files include “special” characters (for example, characters outside the range 32 to 126),
if you do all of your work within one environment (e.g., Windows) using only one character set, you
do not need to use the CharSet clause.

If your program needs to read an existing file that contains “special” characters, and if the file was
created in a character set that does not match the character set in use when you run your program,
your program should use the CharSet clause. The CharSet clause should indicate what character
set was in use when the file was created.
MapBasic 11.0 108 Reference

Chapter 3: A – Z MapBasic Language Reference
CharSet clause
The CharSet clause takes one parameter: a string expression which identifies the name of the
character set to use. The following table lists all character sets available.

Character Set Comments

“Neutral” No character conversions performed.

“ISO8859_1” ISO 8859-1 (UNIX)

“ISO8859_2” ISO 8859-2 (UNIX)

“ISO8859_3” ISO 8859-3 (UNIX)

“ISO8859_4” ISO 8859-4 (UNIX)

“ISO8859_5” ISO 8859-5 (UNIX)

“ISO8859_6” ISO 8859-6 (UNIX)

“ISO8859_7” ISO 8859-7 (UNIX)

“ISO8859_8” ISO 8859-8 (UNIX)

“ISO8859_9” ISO 8859-9 (UNIX)

“PackedEUCJapanese” UNIX, standard Japanese implementation.

“WindowsLatin2”
“WindowsArabic”
“WindowsCyrillic”
“WindowsGreek”
“WindowsHebrew”
“WindowsTurkish”

Windows Eastern Europe

“WindowsTradChinese” Windows Traditional Chinese

“WindowsSimpChinese” Windows Simplified Chinese

“WindowsJapanese”

“WindowsKorean”

“CodePage437” DOS Code Page 437 = IBM Extended ASCII

“CodePage850” DOS Code Page 850 = Multilingual

“CodePage852” DOS Code Page 852 = Eastern Europe

“CodePage855” DOS Code Page 855 = Cyrillic

“CodePage857”
MapBasic 11.0 109 Reference

Chapter 3: A – Z MapBasic Language Reference
ChooseProjection$() function
You never need to specify a CharSet clause in an Open Table statement. Each table's .TAB
file contains information about the character set used by the table. When opening a table,
MapInfo Professional reads the character set information directly from the .TAB file, then
automatically performs any necessary character translations.

To force MapInfo Professional to save a table in a specific character set, include a CharSet clause
in the Commit Table statement.

See Also:

Commit Table statement, Create Table statement, Export statement, Open File statement,
Register Table statement

ChooseProjection$() function

Purpose

Displays the Choose Projection dialog box and returns the coordinate system selected by the user.
You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

ChooseProjection$(initial_coordsys, get_bounds)

initial_coordsys is a string value in the form of a CoordSys clause. It is used to set which coordinate
system is selected when the dialog box is first displayed. If initial_coordsys is empty or an invalid
CoordSys clause, then the default Longitude/Latitude coordinate system is used as the initial
selection.

get_bounds is a logical value that determines whether the users is prompted for boundary values
when a non-earth projection is selected. If get_bounds is true then the boundary dialog box is
displayed. If false, then the dialog box is not displayed and the default boundary is used.

“CodePage860” DOS Code Page 860 = Portuguese

“CodePage861” DOS Code Page 861 = Icelandic

“CodePage863” DOS Code Page 863 = French Canadian

“CodePage864” DOS Code Page 864 = Arabic

“CodePage865” DOS Code Page 865 = Nordic

“CodePage869” DOS Code Page 869 = Modern Greek

“LICS” Lotus worksheet release 1,2 character set

“LMBCS” Lotus worksheet release 3,4 character set

Character Set Comments
MapBasic 11.0 110 Reference

Chapter 3: A – Z MapBasic Language Reference
Chr$() function
Description

This function displays the Choose Projection dialog box and returns the selected coordinate system
as a string. The returned string is in the same format as the CoordSys clause. Use this function if
you wish to allow the user to set a projection within your application.

Example

Dim strNewCoordSys As String
strNewCoordSys = ChooseProjection$("", True)
strNewCoordSys = "Set " + strNewCoordSys
Run Command strNewCoordSys

See Also:

MapperInfo() function

Chr$() function

Purpose

Returns a one-character string corresponding to a specified character code. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

Chr$(num_expr)

num_expr is an integer value from 0 to 255 (or, if a double-byte character set is in use, from 0 to
65,535), inclusive.

Return Value

String

Description

The Chr$() function returns a string, one character long, based on the character code specified in
the num_expr parameter. On most systems, num_expr should be a positive integer value between 0
and 255. On systems that support double-byte character sets (e.g., Windows Japanese), num_expr
can have a value from 0 to 65,535.

All MapInfo Professional environments have common character codes within the range of 32
(space) to 126 (tilde).

If the num_expr parameter is fractional, MapBasic rounds to the nearest integer.

Character 12 is the form-feed character. Thus, you can use the statement Print Chr$(12) to clear the
Message window. Character 10 is the line-feed character; see example below.
MapBasic 11.0 111 Reference

Chapter 3: A – Z MapBasic Language Reference
Close All statement
Character 34 is the double-quotation mark ("). If a string expression includes the function call
Chr$(34), MapBasic embeds a double-quote character in the string.

Error Conditions

ERR_FCN_ARG_RANGE (644) error is generated if an argument is outside of the valid range.

Example

Dim s_letter As String * 1
s_letter = Chr$(65)
Note s_letter ' This displays the letter "A"
Note "This message spans" + Chr$(10) + "two lines."

See Also:

Asc() function

Close All statement

Purpose

Closes all open tables. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Close All [Interactive]

Description

If a MapBasic application issues a Close All statement, and the affected table has edits pending
(the table has been modified but the modifications have not yet been saved to disk), the edits will be
discarded before the table is closed. No warning will be displayed. If you do not want to discard
pending edits, use the optional Interactive clause to prompt the user to save or discard changes.

See Also:

Close Table statement

Close Connection statement

Purpose

Closes a connection opened with the Open Connection statement. You can issue this statement
from the MapBasic Window in MapInfo Professional.

Syntax

Close Connection connection_handle
MapBasic 11.0 112 Reference

Chapter 3: A – Z MapBasic Language Reference
Close File statement
connection_handle is an integer expression representing the value returned from the Open
Connection statement.

Description

The Close Connection statement closes the specified connection using the connection handle that is
returned from an Open Connection statement. Any service specific properties associated with the
connection are lost.

See Also:

Open Connection statement

Close File statement

Purpose

Closes an open file.

Syntax

Close File [#] filenum

filenum is an integer number identifying which file to close.

Description

The Close File statement closes a file which was opened through the Open File statement.

The Open File statement and Close File statement operate on files in general, not on
MapInfo Professional tables. MapBasic provides a separate set of statements (e.g., Open
Table statement) for manipulating MapInfo tables.

Example

Open File "cxdata.txt" For INPUT As #1
'
' read from the file... then, when done:
'
Close File #1

See Also:

Open File statement
MapBasic 11.0 113 Reference

Chapter 3: A – Z MapBasic Language Reference
Close Table statement
Close Table statement

Purpose

Closes an open table. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Close Table table [Interactive]

table is the name of a table that is open

Description

The Close Table statement closes an open table. To close all tables, use the Close All statement.

If a table is displayed in one or more Grapher or Browser windows, those windows disappear
automatically when the table is closed. If the Close Table statement closes the only table in a Map
window, the window closes. If you use the Close Table statement to close a linked table that has
edits pending, MapInfo Professional keeps the edits pending until a later session.

Saving Edits

If you omit the optional Interactive keyword, MapBasic closes the table regardless of whether the
table has unsaved edits; any unsaved edits are discarded. If you include the Interactive keyword,
and if the table has unsaved edits, MapBasic displays a dialog box allowing the user to save or
discard the edits or cancel the close operation.

To guarantee that pending edits are discarded, omit the Interactive keyword or issue a Rollback
statement before calling Close Table. To guarantee that pending edits are saved, issue a Commit
Table statement before the Close Table statement. To determine whether a table has unsaved
edits, call the TableInfo() function(table, TAB_INFO_EDITED) function.

Saving Themes and Cosmetic Objects

When you close the last table in a Map window, the window closes. However, the user may want to
save thematic layers or cosmetic objects before closing the window. To prompt the user to save
themes or cosmetic objects, include the Interactive keyword.

If you omit the Interactive keyword, the Close Table statement will not prompt the user to save
themes or cosmetic objects. If you include the Interactive keyword, dialog boxes will prompt the
user to save themes and/or cosmetic objects, if such prompts are appropriate. (The user is not
prompted if the window has no themes or cosmetic objects.)

Examples

Open Table "world"
' ... when done using the WORLD table,
' close it by saying:
Close Table world
MapBasic 11.0 114 Reference

Chapter 3: A – Z MapBasic Language Reference
Close Window statement
To deselect the selected rows, close the Selection table.

Close Table Selection

See Also:

Close All statement, Commit Table statement, Open Table statement, Rollback statement,
TableInfo() function

Close Window statement

Purpose

Closes or hides a window. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Close Window window_spec [Interactive]

window_spec is a window name (e.g., Ruler), a window code (e.g., WIN_RULER), or an integer
window identifier.

Description

The Close Window statement closes or hides a MapInfo Professional window.

To close a document window (Map, Browse, Graph, or Layout), specify an integer window identifier
as the window_spec parameter. You can obtain integer window identifiers through the
FrontWindow() function and the WindowID() function.

To close a special MapInfo Professional window, specify one of the window names from the table
below as the window_spec parameter. You can identify a special window by name (e.g., Ruler) or by
code (e.g., WIN_RULER).

To close an adornment window, specify the window ID of the adornment as determined by the
MapperInfo() function.

The following table lists the available window_spec values:

window_spec value Window description

MapBasic The MapBasic window. You can also refer to this window by its define
code: WIN_MAPBASIC.

Help The Help window. Its define code: WIN_HELP.

Statistics The Statistics window. Its define code: WIN_STATISTICS.

Legend The Theme Legend window. Its define code: WIN_LEGEND.

Info The Info tool window. Its define code: WIN_INFO.
MapBasic 11.0 115 Reference

Chapter 3: A – Z MapBasic Language Reference
ColumnInfo() function
Saving Themes and Cosmetic Objects

The user may want to save thematic layers or cosmetic objects before closing the window. To
prompt the user to save themes or cosmetic objects, include the Interactive keyword.

If you omit the Interactive keyword, the Close Window statement will not prompt the user to save
themes or cosmetic objects. If you include the Interactive keyword, dialog boxes will prompt the
user to save themes and/or cosmetic objects, if such prompts are appropriate. (The user will not be
prompted if the window has no themes or cosmetic objects.)

Example

Close Window Legend

See Also:

Open Window statement, Print statement, Set Window statement

ColumnInfo() function

Purpose

Returns information about a column in an open table. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

ColumnInfo({ tablename | tablenum } ,
{ columnname | "COLn"} , attribute)

tablename is a string representing the name of an open table.

tablenum is an integer representing the number of an open table.

columnname is the name of a column in that table.

n is the number of a column in the table.

attribute is a code indicating which aspect of the column to read.

Return Value

Depends on the attribute parameter specified.

Ruler The Ruler tool window. Its define code: WIN_RULER.

Message The Message window (which appears when you issue a Print
statement). Its define code: WIN_MESSAGE.

window_spec value Window description
MapBasic 11.0 116 Reference

Chapter 3: A – Z MapBasic Language Reference
ColumnInfo() function
Description

The ColumnInfo() function returns information about one column in an open table.

The function's first parameter specifies either the name or the number of an open table. The second
parameter specifies which column to query. The attribute parameter dictates which of the column's
attributes the function should return. The attribute parameter can be any value from this table.

If the ColumnInfo() function call specifies COL_INFO_TYPE as its attribute parameter, MapBasic
returns one of the values from the table below:

attribute setting ID ColumnInfo() returns:

COL_INFO_NAME 1 String identifying the column name.

COL_INFO_NUM 2 SmallInt indicating the number of the column.

COL_INFO_TYPE 3 SmallInt indicating the column type (see table below).

COL_INFO_WIDTH 4 SmallInt indicating the column width; applies to Character or
Decimal columns only.

COL_INFO_DECPLACES 5 SmallInt indicating the number of decimal places in a Decimal
column.

COL_INFO_INDEXED 6 Logical value indicating if column is indexed.

COL_INFO_EDITABLE 7 Logical value indicating if column is editable.

ColumnInfo() returns: ID Type of column indicated:

COL_TYPE_CHAR 1 Character.

COL_TYPE_DECIMAL 2 Fixed-point decimal.

COL_TYPE_INTEGER 3 Integer (4-byte).

COL_TYPE_SMALLINT 4 Small integer (2-byte).

COL_TYPE_DATE 5 Date.

COL_TYPE_LOGICAL 6 Logical (TRUE or FALSE).

COL_TYPE_GRAPHIC 7 special column type Obj; this represents the graphical objects
attached to the table.

COL_TYPE_FLOAT 8 Floating-point decimal.

COL_TYPE_TIME 37 Time.

COL_TYPE_DATETIME 38 DateTime.
MapBasic 11.0 117 Reference

Chapter 3: A – Z MapBasic Language Reference
Combine() function
The codes listed in both of the above tables are defined in the standard MapBasic definitions file,
MAPBASIC.DEF. Your program must Include “MAPBASIC.DEF” if you intend to reference these
codes.

Error Conditions

ERR_TABLE_NOT_FOUND (405) error generated if the specified table is not available.

ERR_FCN_ARG_RANGE (644) error generated if an argument is outside of the valid range.

Example

Include "MAPBASIC.DEF"
Dim s_col_name As String, i_col_type As SmallInt
Open Table "world"
s_col_name = ColumnInfo("world","col1",COL_INFO_NAME)
i_col_type = ColumnInfo("world","col1",COL_INFO_TYPE)

See Also:

NumCols() function, TableInfo() function

Combine() function

Purpose

Returns a region or polyline representing the union of two objects. The objects cannot be Text
objects. You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

Combine(object1, object2)

object1, object2 are two object expressions; both objects can be closed (e.g., a region and a circle),
or both objects can be linear (e.g., a line and a polyline)

Return Value

An object that is the union of object1 and object2.

Description

The Combine() function returns an object representing the geographical union of two object
expressions. The union of two objects represents the entire area that is covered by either object.

The Combine() function has been updated to allow heterogeneous combines, and to allow Points,
MultiPoints, and Collections as input objects. Previously, both objects had to be either linear objects
(Lines, Polylines, or Arcs) and produce Polylines as output; or both input objects had to be closed
(Regions, Rectangles, Rounded Rectangles, or Ellipses) and produce Regions as output.
Heterogeneous combines are not allowed, as are combines containing Point, MultiPoint and
Collection objects. Text objects are still not allowed as input to Combine().
MapBasic 11.0 118 Reference

Chapter 3: A – Z MapBasic Language Reference
CommandInfo() function
MultiPoint and Collection objects, introduced in MapInfo Professional 6.5, extend the Combine
operation. The following table details the possible combine options available and the output results:

The results returned by Combine() are similar to the results obtained by choosing MapInfo
Professional's Objects > Combine menu item, except that the Combine menu item modifies the
original objects; the Combine() function does not alter the object1 or object2 expressions. Also, the
Combine() function does not perform data aggregation.

The object returned by the Combine() function retains the styles (e.g., color) of the object1
parameter when possible. Collection objects produced as output will get those portions of style that
are possible from object1, and the remaining portions of style from objects2. For example, if object1
is a Region and object2 is a Polyline, then the output collection will use the brush and boarder pen of
object1 for the Region style contained in the collection, and the pen from object2 for the Polyline
style in the collection.

See Also:

Objects Combine statement

CommandInfo() function

Purpose

Returns information about recent events. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

CommandInfo(attribute)

attribute is an integer code indicating what type of information to return.

Return Value

Logical, float, integer, or string, depending on circumstances.

Input Object Type Input Object Type
OutputObject

Type

Point or MultiPoint Point or MultiPoint MultiPoint

Linear (Line, Polyline, Arc) Linear Polyline

Closed (Region, Rectangle, Rounded
Rectangle, Ellipse)

Closed Region

Point, MultiPoint, Linear, Closed, Collection Point, MultiPoint, Linear,
Closed, Collection

Collection
MapBasic 11.0 119 Reference

Chapter 3: A – Z MapBasic Language Reference
CommandInfo() function
Description

The CommandInfo() function returns information about recent events that affect MapInfo
Professional—for example, whether the “Selection” table has changed, where the user clicked with
the mouse, or whether it was a simple click or a SHIFT+click.

After Displaying a Dialog Box

When you call CommandInfo() after displaying a custom dialog box, the attribute parameter can be
one of these codes:

Within a Custom Menu or Dialog Handler

When you call CommandInfo() from within the handler procedure for a custom menu command or
a custom dialog box, the attribute parameter can be one of these codes:

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_DLG_OK 1 Logical value: TRUE if the user dismissed a custom dialog box by
clicking OK; FALSE if user canceled by clicking Cancel, pressing
Esc. (This call is only valid following a Dialog statement.)

CMD_INFO_STATUS 1 Logical value: TRUE if the user allowed a progress-bar operation
to complete, or FALSE if the user pressed the Cancel button to
halt.

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_MENUITEM 8 Integer value, representing the ID of the menu item the user
chose. This call is only valid within the handler procedure of a
custom menu item.

CMD_INFO_DLG_DBL 1 Logical value: TRUE if the user double-clicked on a ListBox or
MultiListBox control within a custom dialog box. This call is only
valid within the handler procedure of a custom dialog box.
MapBasic 11.0 120 Reference

Chapter 3: A – Z MapBasic Language Reference
CommandInfo() function
Within a Standard Handler Procedure

When you call CommandInfo() from within a standard system handler procedure (such as
SelChangedHandler), the attribute parameter can be any of the codes from the following table. For
details, see the separate discussions of SelChangedHandler, RemoteMsgHandler procedure,
WinChangedHandler and WinClosedHandler. From within SelChangedHandler:

From within the RemoteMsgHandler procedure, the RemoteQueryHandler() function, or the
RemoteMapGenHandler procedure:

From within WinChangedHandler procedure or WinClosedHandler procedure:

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_SELTYPE 1 1 if one row was added to the selection;
2 if one row was removed from the selection;
3 if multiple rows were added to the selection;
4 if multiple rows were de-selected.

CMD_INFO_ROWID 2 Integer value: The number of the row that was selected or de-
selected (only applies if a single row was selected or de-
selected).

CMD_INFO_INTERRUPT 3 Logical value: TRUE if the user interrupted a selection by
pressing Esc, FALSE otherwise.

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_MSG 1000 String value, representing the execute string or the item name
sent to MapInfo Professional by a client program. For details,
see RemoteMsgHandler procedure,
RemoteQueryHandler() function, or
RemoteMapGenHandler procedure.

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_WIN 1 Integer value, representing the ID of the window that changed
or the window that closed. For details, see
WinChangedHandler procedure or WinClosedHandler
procedure.
MapBasic 11.0 121 Reference

Chapter 3: A – Z MapBasic Language Reference
CommandInfo() function
From within ForegroundTaskSwitchHandler procedure:

After a Find Operation

Following a Find statement, the attribute parameter can be one of these codes:

Within a Custom ToolButton's Handler Procedure

Within a custom ToolHandler procedure, you can specify any of these codes:

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_TASK_SWITCH Integer value, indicating whether MapInfo Professional
just became the active application or just stopped being
the active application. The return value matches one of
these codes: SWITCHING_INTO_MI Pro (If MapInfo
Professional received the focus)
SWITCHING_OUT_OF_MapInfo Professional (If
MapInfo Professional lost the focus).

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_FIND_RC 3 Integer value, indicating whether the Find statement
found a match.

CMD_INFO_FIND_ROWID 4 Integer value, indicating the Row ID number of the row
that was found.

CMD_INFO_X or CMD_INFO_Y 1, 2 Floating-point number, indicating x- or y-coordinates of
the location that was found.

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_X 1 x coordinate of the spot where the user clicked:

• If the user clicked on a Map, the return value
represents a map coordinate (e.g., longitude), in the
current coordinate system unit.

• If the user clicked on a Browser, the value represents
the number of a column in the Browser (e.g., one for
the left most column, or zero for the select-box
column).*

• If the user clicked in a Layout, the value represents the
distance from the left edge of the Layout (e.g., zero
represents the left edge), in MapBasic's current paper
units.
MapBasic 11.0 122 Reference

Chapter 3: A – Z MapBasic Language Reference
CommandInfo() function
* The CommandInfo() function ignores any clicks made in the top-left corner of a Browser window—
above the select column and to the left of the column headers. It also ignores clicks made beyond the
last column or row.

Hotlink Support

MapBasic applications launched via the Hotlink Tool can use the CommandInfo() function to obtain
information about the object that was activated. The following is a table of the attributes that can be
queried:

CMD_INFO_Y 2 y-coordinate of the spot where the user clicked:

• If the user clicked on a map, the value represents a
map coordinate (e.g., Latitude).

• If the user clicked on a Browser, the value represents a
row number; a value of one represents the top row, and
a value of zero represents the row of column headers
at the top of the window.*

• If the user clicked on a Layout, the value represents the
distance from the top edge of the Layout.

CMD_INFO_X2 5 x-coordinate of the spot where the user released the
mouse button. This only applies if the toolbutton was
defined with a draw mode that allows dragging, e.g.,
DM_CUSTOM_LINE.

CMD_INFO_Y2 6 y-coordinate of the spot where the user released the
mouse button.

CMD_INFO_SHIFT 3 Logical value: TRUE if the user held down the Shift key
while clicking.

CMD_INFO_CTRL 4 Logical value: TRUE if the user held down the Ctrl key
while clicking.

CMD_INFO_TOOLBTN 7 Integer value, representing the ID of the button the user
clicked.

CMD_INFO_CUSTOM_OBJ 1 Object value: a polyline or polygon drawn by the user.
Applies to drawing modes DM_CUSTOM_POLYLINE or
DM_CUSTOM_POLYGON.

attribute code ID CommandInfo(attribute) returns:

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_HL_WINDOW_ID 17 ID of map or browser window.

CMD_INFO_HL_TABLE_NAME 18 Name of table associated with the map layer or
browser.
MapBasic 11.0 123 Reference

Chapter 3: A – Z MapBasic Language Reference
Commit Table statement
See Also:

FrontWindow() function, SelectionInfo() function, Set Command Info statement,
WindowInfo() function

Commit Table statement

Purpose

Saves recent edits to disk, or saves a copy of a table. In the past, you were unable to save queries
that contained indeterminate types, such as often occurred in ObjectInfo queries. We have added an
Interactive parameter to allow you to specify indeterminate types in such a query. If you do not use
the interactive parameter, the system uses a default type instead. You can issue this statement from
the MapBasic Window in MapInfo Professional.

Syntax

Commit Table table
[As filespec

 [Type { NATIVE |
DBF [Charset char_set] |
Access Database database_filespec

 Version version
Table tablename
[Password pwd] [Charset char_set] |

QUERY |
ODBC Connection ConnectionNumber Table tablename

 [Type SQLServerSpatial {Geometry | Geography}]
[ConvertDateTime {ON | OFF | INTERACTIVE}] }]

 [CoordSys...]
 [Version version]]
 [Interactive]

[{ Interactive | Automatic commit_keyword }]
[ConvertObjects {ON | OFF | INTERACTIVE}]

tableName is the name of the table as you want it to appear in database. The name can include a
schema name, which specifies the schema that the table belongs to. If no schema name is provided,
the table belongs to the default schema. The user is responsible for providing an eligible schema
name and must know if the login user has the proper permissions on the given schema. This
extension is for SQL Server 2005 only.

CMD_INFO_HL_ROWID 19 ID of the table row corresponding to the map object or
browser row.

CMD_INFO_HL_LAYER_ID 20 Layer ID, if the program was launched from a map
window.

CMD_INFO_HL_FILE_NAME 21 Name of file launched.

attribute code ID CommandInfo(attribute) returns:
MapBasic 11.0 124 Reference

Chapter 3: A – Z MapBasic Language Reference
Commit Table statement
filespec is a file specification (optionally including directory path). This is where the MapInfo .TAB file
is saved.

ConvertDateTime If the source table contains Time or Date type columns, these columns will be
converted to DATETIME or TIMESTAMP depending on whether the server supports the data types.
However, you can control this behavior using the clause ConvertDateTime. If the source table does
not contain a Time or Date type, this clause is a non-operational. If ConvertDateTime is set to ON
(which is the default setting), Time or Date type columns will be converted to DATETIME or
TIMESTAMP. If ConvertDateTime is set to OFF, the conversion is not done and the operation will be
cancelled if necessary. If ConvertDateTime is set to INTERACTIVE a dialog box will pop up to
prompt the user and the operation will depend on the user's choice. If the user chooses to convert,
then the operation will convert and continue; if the user chooses to cancel, the operation will be
cancelled.

The Time type requires conversion for all supported servers (Oracle, PostGIS, SQL Server Spatial,
MS SQL Server and Access) and the Date type requires conversion for MS SQL Server and Access
database servers.

For MS SQL Server and Access database servers, this restriction could be an backward
compatibility issue. In previous releases, we did the conversion without explaining it. In this
release, we suggest you use the DateTime data type instead of Date data type. If you still
use the Date data type, the conversion operation will fail.

version is an expression that specifies the version of the Microsoft Jet database format to be used by
the new database. Acceptable values are 4.0 (for Access 2000) or 3.0 (for Access '95/'97). If
omitted, the default version is 12.0. If the database in which the table is being created already exists,
the specified database version is ignored.

ConvertObjects ON automatically converts any unsupported objects encountered in supported
objects.

ConvertObjects OFF This does not convert any unsupported objects. If they are encountered, an
error message is displayed saying the table can not be saved. (Before implementation of this feature
this was the only behavior.)

ConvertObjects Interactive If any unsupported objects are encountered in a table, ask the user what
she wants to do.

char_set is the name of a character set; see CharSet clause.

database_filespec is a string that identifies the name and path of a valid Access database. If the
specified database does not exist, MapInfo Professional creates a new Access (.MDB or .ACCDB)
file.

pwd is the database-level password for the database, to be specified when database security is
turned on.

ODBC indicates a copy of the Table will be saved on the DBMS specified by ConnectionNumber.

ConnectionNumber is an integer value that identifies the specific connection to a database.

SQL Server Spatial, SQL Server 2008 supports spatial data with GEOGRAPHY and GEOMETRY
data types.
MapBasic 11.0 125 Reference

Chapter 3: A – Z MapBasic Language Reference
Commit Table statement
CoordSys is a coordinate system clause; see CoordSys clause.

version is 100 (to create a table that can be read by versions of MapInfo Professional) or 300
(MapInfo Professional 3.0 format) for non-Access tables. For Access tables, version is 410.

commit_keyword is one of the following keywords: NoCollision, ApplyUpdates, DiscardUpdates

ConvertDateTime Examples

Example 1

Commit Table DATETIME90 As "D:\MapInfo\Data\Remote\DATETIME90CPY.TAB"
Type ODBC Connection 1 Table """EAZYLOADER"".""DATETIME90CPY"""
ConvertDateTime Interactive

Example 2

Server 1 Create Table """EAZYLOADER"".""CITY_125AA""" (Field1
Char(10),Field2 Char(10),Field3 Char(10),MI_STYLE Char(254)) KeyColumn
SW_MEMBER ObjectColumn SW_GEOMETRY
or
Server 1 Create Table "EAZYLOADER.CITY_125AA" (Field1 Char(10),Field2
Char(10),Field3 Char(10),MI_STYLE Char(254)) KeyColumn SW_MEMBER
ObjectColumn SW_GEOMETRY

Commit Table City_125aa As
"C:\Projects\Data\TestScripts\English\remote\City_125aacpy.tab" Type ODBC
Connection 1 Table """EAZYLOADER"".""CITY_125AACPY"""
or
Commit Table City_125aa As
"C:\Projects\Data\TestScripts\English\remote\City_125aacpy.tab" Type ODBC
Connection 1 Table "EAZYLOADER.CITY_125AACPY"

Description

If no As clause is specified, the Commit Table statement saves any pending edits to the table. This
is analogous to the user choosing File > Save.

A Commit Table statement that includes an As clause has the same effect as a user choosing File
> Save Copy As. The As clause can be used to save the table with a different name, directory, file
type, or projection.

To save the table under a new name, specify the new name in the filespec string. To save the table
in a new directory path, specify the directory path at the start of the filespec string.

To save the table using a new file type, include a Type clause within the As clause.

The CharSet clause specifies a character set. The char_set parameter should be a string constant,
such as “WindowsLatin1”. If no CharSet clause is specified, MapBasic uses the default character
set for the hardware platform that is in use at runtime. See CharSet clause for more information.

To save the table using a different coordinate system or projection, include a CoordSys clause
within the As clause. Note that only a mappable table may have a coordinate system or a projection.
MapBasic 11.0 126 Reference

Chapter 3: A – Z MapBasic Language Reference
Commit Table statement
To save a Query use the QUERY type for the table. Only queries made from the user interface and
queries created from Run Command statements in MapBasic can be saved. The Commit Table
statement creates a .TAB file and a .QRY file.

The Version clause controls the table's format. If you specify Version 100, MapInfo Professional
stores the table in a format readable by versions of MapInfo Professional. If you specify Version 300,
MapInfo Professional stores the table in MapInfo Professional 3.0 format. Note that region and
polyline objects having more than 8,000 nodes and multiple-segment polyline objects require
version 300. If you omit the Version clause, the table is saved in the version 300 format.

If a MapBasic application issues a Commit Table…As statement affecting a table which has
memo fields, the memo fields will not be retained in the new table. No warning will be
displayed. If the table is saved to a new table through MapInfo Professional's user interface
(by choosing File > Save Copy As), MapInfo Professional warns the user about the loss of
the memo fields. However, when the table is saved to a new table name through a MapBasic
program, no warning appears.

Saving Linked Tables

Saving a linked table can generate a conflict, when another user may have edits the same data in
the same table MapInfo Professional will detect if there were any conflicts and allows the user to
resolve them. The following clauses let you control what happens when there is a conflict. (These
clauses have no effect on saving a conventional MapInfo table.)

Interactive

In the event of a conflict, MapInfo Professional displays the Conflict Resolution dialog box. After a
successful Commit Table Interactive statement, MapInfo Professional displays a dialog box
allowing the user to refresh.

Interactive when invoked for Commit Table As, handles the case when a user is saving a query with
one or more columns which are of indeterminate type. Using the Interactive parameter presents the
user with a message indicating which column(s) contain the indeterminate type and allows the user
to select new types and/or widths for these columns. If the Interactive parameter is not used, the
system assigns a Char(254) type to the indeterminate type column(s) by default.

Example

Issue the following query in the SQL Select dialog box and click OK or type this query in the
MapBasic window:

Select Highway, objectinfo(obj, 20) from US_HIWAY into Selection
MapBasic 11.0 127 Reference

Chapter 3: A – Z MapBasic Language Reference
Commit Table statement
When you select File > Save Copy As, select the current query, and click the Save As button, the
following error message displays:

Typically this dialog box contains a list of all columns that contain indeterminate types.
In this query, there is only one.

Click OK to display the Set Field Properties dialog box.

Use this dialog box to select the type information for this column. If there is more than one
indeterminate type, you can set each of these types one at a time. If there are columns whose type
is already defined, you will not be able to edit that information.

Click OK to save your query.

Automatic NoCollision

In the event of a conflict, MapInfo Professional does not perform the save. (This is the default
behavior if the statement does not include an Interactive clause or an Automatic clause.)

Automatic ApplyUpdates

In the event of a conflict, MapInfo Professional saves the local updates. (This is analogous to
ignoring conflicts entirely.)

Automatic DiscardUpdates

In the event of a conflict, MapInfo Professional saves the local updates already in the RDBMS
(discards your local updates). You can copy a linked table by using the As clause; however, the new
copy is not a linked table and no changes are updated to the server.
MapBasic 11.0 128 Reference

Chapter 3: A – Z MapBasic Language Reference
ConnectObjects() function
ODBC Connection

The length of tablename varies with databases. We recommend 14 or fewer characters for a table
name in order to work correctly for all databases. The statement limits the length of the tablename to
a maximum of 31 characters.

If the As clause is used and ODBC is the Type, a copy of the table will be saved on the database
specified by ConnectionNumber and named as tablename. If the source table is mappable, three
more columns, Key column, Object column, and Style column, may be added to the destination
database table, tablename, whether or not the source table has those columns. If the source table is
not mappable, one more column, Key column, may be added to the database table, tablename,
even if the source table does not have a Key column. The Key column will be used to create a
unique index.

A spatial index will be created on the Object column if one is present. The supported databases
include Oracle, SQL Server, IIS (SQL Server Spatial, Universal Server), and Microsoft Access.
However, to save a table with a spatial geometry/object, (including saving a point-only table)
SpatialWare is required for SQL Server, in addition to the spatial option for Oracle. The XY schema
is not supported in this statement.

Example

The following example opens the table STATES, then uses the Commit Table statement to make a
copy of the states table under a new name (ALBERS). The optional CoordSys clause causes the
ALBERS table to be saved using the Albers equal-area projection.

Open Table "STATES"
Commit Table STATES

As "ALBERS"
CoordSys Earth
Projection 9,7, "m", -96.0, 23.0, 20.0, 60.0, 0.0, 0.0

The following example illustrates an ODBC connection:

dim hodbc as integer
hodbc = server_connect("ODBC", "dlg=1")
Open table "C:\MapInfo\USA"
Commit Table USA
as "c:\temp\as\USA"

Type ODBC Connection hodbc Table "USA"

See Also:

Rollback statement

ConnectObjects() function

Purpose

Returns an object representing the shortest or longest distance between two objects. You can call
this function from the MapBasic Window in MapInfo Professional.
MapBasic 11.0 129 Reference

Chapter 3: A – Z MapBasic Language Reference
Continue statement
Syntax

ConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Return Value

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there
are multiple instances where the minimum or maximum distance exists (e.g., the two points returned
are not uniquely the shortest distance and there are other points representing “ties”) then these
functions return one of the instances. There is no way to determine if the object returned is uniquely
the shortest distance.

ConnectObjects() returns a Polyline object connecting object1 and object2 in the shortest (min ==
TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation
cannot be done using a spherical distance method (e.g., if the MapBasic coordinate system is
NonEarth), then a Cartesian method will be used.

Continue statement

Purpose

Resumes the execution of a MapBasic program (following a Stop statement). You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Continue

Restrictions

The Continue statement may only be issued from the MapBasic window; it may not be included as
part of a compiled program.

Description

The Continue statement resumes the execution of a MapBasic application which was suspended
because of a Stop statement.
MapBasic 11.0 130 Reference

Chapter 3: A – Z MapBasic Language Reference
Continue statement
You can include Stop statements in a program for debugging purposes. When a MapBasic
program encounters a Stop statement, the program is suspended, and the File menu automatically
changes to include a Continue Program option instead of a Run option. You can resume the
suspended application by choosing File > Continue Program. Typing the Continue statement into
the MapBasic window has the same effect as choosing Continue Program.
MapBasic 11.0 131 Reference

Chapter 4:
Control Button / OKButton / CancelButton clause
Control Button / OKButton / CancelButton clause

Purpose

Part of a Dialog statement; adds a push-button control to a dialog box.

Syntax

Control { Button | OKButton | CancelButton }
[Position x, y] [Width w] [Height h]
[ID control_ID]
[Calling handler]
[Title title_string]
[Disable] [Hide]

x, y specifies the button's position in dialog box units.

w specifies the width of the button in dialog box units; default width is 40.

h specifies the height of the button in dialog box units; default height is 18.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

handler is the name of a procedure to call if the user clicks on the button.

title_string is a text string to appear on the button.

Description

If a Dialog statement includes a Control Button clause, the dialog box includes a push-button
control. If the OKButton keyword appears in place of the Button keyword, the control is a special
type of button; the user chooses an OKButton control to “choose OK” and dismiss the dialog box.
Similarly, the user chooses a CancelButton control to “choose Cancel” and dismiss the dialog box.
Each dialog box should have no more than one OKButton control, and have no more than one
CancelButton control. Disable makes the control disabled (grayed out) initially. Hide makes the
control hidden initially.

Use the Alter Control statement to change a control's status (e.g., whether the control is enabled
or hidden).

Example

Control Button
Title "&Reset"
Calling reset_sub
Position 10, 190

See Also:

Alter Control statement, Dialog statement
MapBasic 11.0 132 Reference

Chapter 4:
Control CheckBox clause
Control CheckBox clause

Purpose

Part of a Dialog statement; adds a check box control to a dialog box

Syntax

Control CheckBox
[Position x, y] [Width w]
[ID control_ID]
[Calling handler]
[Title title_string]
[Value log_value]
[Into log_variable]
[Disable] [Hide]

x, y specifies the control's position in dialog box units.

w specifies the width of the control in dialog box units.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

handler is the name of a procedure to call if the user clicks on the control.

title_string is a text string to appear in the label to the right of the check-box.

log_value is a logical value: FALSE sets the control to appear un-checked initially.

log_variable is the name of a logical variable.

Description

If a Dialog statement includes a Control CheckBox clause, the dialog box includes a check-box
control.

The Value clause controls the initial appearance. If the Value clause is omitted, or if it specifies a
value of TRUE, the check-box is checked initially. If the Value clause specifies a FALSE value,
check-box is clear initially. Disable makes the control disabled (grayed out) initially. Hide makes the
control hidden initially.

Example

Control CheckBox
Title "Include &Legend"
Into showlegend
ID 6
Position 115, 155

See Also:

Alter Control statement, Dialog statement, ReadControlValue() function
MapBasic 11.0 133 Reference

Chapter 4:
Control DocumentWindow clause
Control DocumentWindow clause

Purpose

Part of a Dialog statement; adds a document window control to a dialog box which can be
re-parented for integrated mapping.

Syntax

Control DocumentWindow
[Position x, y]
[Width w] [Height h]
[ID control_ID]
[Disable] [Hide]

x, y specifies the control's position in dialog box units.

w specifies the width of the control in dialog units; default width is 100.

h specifies the height of the control in dialog units; default height is 100.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

Disable grays out the control initially.

Hide initially hides the control.

Description

If a Dialog statement includes a Control DocumentWindow clause, the dialog box includes a
document window control that can be re-parented using the Set Next Document statement.

Example

The following example draws a legend in a dialog box:

Control DocumentWindow
ID ID_LEGENDWINDOW

Position 160, 20
Width 120 Height 150

The dialog box handler will need to re-parent the window as in the following example:

Sub DialogHandler
OnError Goto HandleError
Dim iHwnd As Integer
Alter Control ID_LEGENDWINDOW Enable Show
' draw the legend
iHwnd = ReadControlValue(ID_LEGENDWINDOW)
Set Next Document Parent iHwnd Style WIN_STYLE_CHILD
Create Legend

Exit Sub
HandleError:
MapBasic 11.0 134 Reference

Chapter 4:
Control EditText clause
Note "DialogHandler: " + Error$()
End Sub

See Also:

Dialog statement

Control EditText clause

Purpose

Part of a Dialog statement; adds an EditText control box (input text) to a dialog box.

Syntax

Control EditText
[Position x, y] [Width w] [Height h]
[ID control_ID]
[Value initial_value]
[Into variable]
[Disable] [Hide] [Password]

x, y specifies the control's position in dialog box units.

w specifies the width of the control in dialog box units.

h specifies the height of the control in dialog box units; if the height is greater than 20, the control
becomes a multiple-line control, and text wraps down onto successive lines.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

initial_value is a string or a numeric expression that initially appears in the dialog box.

variable is the name of a string variable or a numeric variable; MapInfo Professional stores the final
value of the field in the variable if the user clicks OK.

The Disable keyword makes the control disabled (grayed out) initially.

The Hide keyword makes the control hidden initially.

The Password keyword creates a password field, which displays asterisks as the user types.

Description

If the user types more text than can fit in the box at one time, MapInfo Professional automatically
scrolls the text to make room. An EditText control can hold up to 32,767 characters.

If the height is large enough to fit two or more lines of text (for example, if the height is larger than
20), MapInfo Professional automatically wraps text down to successive lines as the user types. If the
user enters a line-feed into the EditText box (for example, on Windows, if the user presses Ctrl-
Enter while in the EditText box), the string associated with the EditText control will contain a
Chr$(10) value at the location of each line-feed. If the initial_value expression contains embedded
Chr$(10) values, the text appears formatted when the dialog box appears.

To make an EditText control the active control, use an Alter Control…Active statement.
MapBasic 11.0 135 Reference

Chapter 4:
Control GroupBox clause
Example

Control EditText
Value "Franchise Locations"
Position 65, 8 Width 90
ID 1
Into s_map_title

See Also:

Alter Control statement, Dialog statement, ReadControlValue() function

Control GroupBox clause

Purpose

Part of a Dialog statement; adds a rectangle with a label to a dialog box.

Syntax

Control GroupBox
[Position x, y] [Width w] [Height h]
[ID control_ID]
[Title title_string]
[Hide]

x, y specifies the control's position in dialog box units.

w specifies the width of the control in dialog box units.

h specifies the height of the control in dialog box units.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

title_string is a text string to appear at the upper-left corner of the box

The Hide keyword makes the control hidden initially.

Example

Control GroupBox
Title "Level of Detail"
Position 5, 30
Height 40 Width 70

See Also:

Alter Control statement, Dialog statement
MapBasic 11.0 136 Reference

Chapter 4:
Control ListBox / MultiListBox clause
Control ListBox / MultiListBox clause

Purpose

Part of a Dialog statement; adds a list to a dialog box

Syntax

Control { ListBox | MultiListBox }
[Position x, y] [Width w] [Height h]
[ID control_ID]
[Calling handler]
[Title { str_expr | From Variable str_array_var }]
[Value i_selected]
[Into i_variable]
[Disable] [Hide]

x, y specifies the control's position in dialog box units.

w specifies the width of the control in dialog box units; default width is 80.

h specifies the height of the control in dialog box units; default height is 70.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

handler is the name of a procedure to call if the user clicks or double-clicks on the list.

str_expr is a string expression, containing a semicolon-delimited list of items to appear in the control.

str_array_var is the name of an array of string variables.

i_selected is a SmallInt value indicating which list item should appear selected when the dialog box
first appears: a value of one selects the first list item; if the clause is omitted, no items are selected
initially.

i_variable is the name of a SmallInt variable which stores the user's final selection.

The Disable keyword makes the control disabled (grayed out) initially.

The Hide keyword makes the control hidden initially.

Description

If a Dialog statement includes a Control ListBox clause, the dialog box includes a listbox control.
If the list contains more items than can be shown in the control at one time, MapBasic automatically
adds a scroll-bar at the right side of the control.

A MultiListBox control is identical to a ListBox control, except that the user can shift-click to select
multiple items from a MultiListBox control.

The Title clause specifies the contents of the list. If the Title clause specifies a string expression
containing a semicolon-delimited list of items, each item appears as one item in the list. The
following sample Title clause demonstrates this syntax:

Title "1st Quarter;2nd Quarter;3rd Quarter;4th Quarter"
MapBasic 11.0 137 Reference

Chapter 4:
Control ListBox / MultiListBox clause
Alternately, if the Title clause specifies an array of string variables, each entry in the array appears
as one item in the list. The following sample Title clause demonstrates this syntax:

Title From Variable s_optionlist

Processing a MultiListBox control

To read what items the user selected from a MultiListBox control, assign a handler procedure that is
called when the user dismisses the dialog box (for example, assign a handler to the OKButton
control). Within the handler procedure, set up a loop to call the ReadControlValue() function
repeatedly.

The first call to the ReadControlValue() function returns the number of the first selected item; the
second call to the ReadControlValue() function returns the number of the second selected item;
etc. When the ReadControlValue() function returns zero, you have exhausted the list of selected
items. If the first call to the ReadControlValue() function returns zero, there are no list items
selected.

Processing Double-click events

If you assign a handler procedure to a list control, MapBasic calls the procedure every time the user
clicks or double-clicks an item in the list. In some cases, you may want to provide special handling
for double-click events. For example, when the user double-clicks a list item, you may want to
dismiss the dialog box as if the user had clicked on a list item and then clicked OK.

To see an example, refer to the sample application NVIEWS.MB in <Your MapBasic Installation
Directory>\SAMPLES\MAPBASIC\SNIPPETS.

To determine whether the user clicked or double-clicked, call the CommandInfo() function within
the list control's handler procedure, as shown in the following sample handler procedure:

Sub lb_handler
Dim i As SmallInt
If CommandInfo(CMD_INFO_DLG_DBL) Then
' ... then the user double-clicked.

i = ReadControlValue(TriggerControl())
Dialog Remove
' at this point, the variable i represents
' the selected list item...

End If
End Sub

Example

Control ListBox
Title "1st Quarter;2nd Quarter;3rd Quarter;4th Quarter"
ID 3
Value 1
Into i_quarter
Position 10, 92 Height 40
MapBasic 11.0 138 Reference

Chapter 4:
Control ListBox / MultiListBox clause
The NVIEWS.MB sample program demonstrates how to create a dialog box which provides special
handling for when the user double-clicks. The NVIEWS program displays a dialog box with a ListBox
control. To complete the dialog box, the user can click on a list item and then choose OK, or the user
can double-click an item in the list.

The following Control ListBox clause adds a list to the Named Views dialog box. Note that the
ListBox control has a handler routine, “listbox_handler.”

Control ListBox
Title desc_list
ID 1
Position 10, 20 Width 245 Height 64
Calling listbox_handler

If the user clicks or double-clicks on the ListBox control, MapBasic calls the sub procedure
“listbox_handler.” The procedure calls the CommandInfo() function to determine whether the user
clicked or double-clicked. If the user double-clicked, the procedure issues a Dialog Remove
statement to dismiss the dialog box. If not for the Dialog Remove statement, the dialog box would
remain on the screen until the user clicked OK or Cancel.

Sub listbox_handler
Dim i As SmallInt
' First, since user clicked on the name of a view,
' we can enable the OK button and the Delete button.
Alter Control 2 Enable
Alter Control 3 Enable
If CommandInfo(CMD_INFO_DLG_DBL) = TRUE Then
' ...then the user DOUBLE-clicked.
' see which list item the user clicked on.

i = ReadControlValue(1) ' read user's choice.
Dialog Remove
Call go_to_view(i) ' act on user's choice.

End If
End Sub

MapBasic calls the handler procedure whether the user clicks or double-clicks. The handler
procedure must check to determine whether the event was a single- or double-click.

See Also:

Alter Control statement, Dialog statement, ReadControlValue() function, CommandInfo()
function
MapBasic 11.0 139 Reference

Chapter 4:
Control PenPicker/BrushPicker/SymbolPicker/FontPicker clause
Control PenPicker/BrushPicker/SymbolPicker/FontPicker clause

Purpose

Part of a Dialog statement; adds a button showing a pen (line), brush (fill), symbol (point), or font
(text) style.

Syntax

Control { PenPicker | BrushPicker | SymbolPicker | FontPicker }
[Position x, y] [Width w] [Height h]
[ID control_ID]
[Calling handler]
[Value style_expr]
[Into style_var]
[Disable] [Hide]

x, y specifies the control's position, in dialog box units.

w specifies the control's width, in dialog box units; default width is 20.

h specifies the control's height, in dialog box units; default height is 20.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

handler is the name of a handler procedure; if the user clicks on the Picker control, and then clicks
OK on the style dialog box which appears, MapBasic calls the handler procedure.

style_expr is a Pen, Brush, Symbol, or Font expression, specifying what style will appear initially in
the control; this expression type must match the type of control (for example, must be a Pen
expression if the control is a PenPicker).

style_var is the name of a Pen, Brush, Symbol, or Font variable; this variable type must match the
type of control (for example, must be a Pen variable if the control is a PenPicker control).

The Disable keyword makes the control disabled (grayed out) initially.

The Hide keyword makes the control hidden initially.

Description

A Picker control (PenPicker, BrushPicker, SymbolPicker, or FontPicker) is a button showing a pen,
brush, symbol, or font style. If the user clicks on the button, a dialog box appears to allow the user to
change the style.

Example

Control SymbolPicker
Position 140,42
Into sym_storemarker

See Also:

Alter Control statement, Dialog statement, ReadControlValue() function
MapBasic 11.0 140 Reference

Chapter 4:
ControlPointInfo() function
ControlPointInfo() function

Purpose:

Returns raster and geographic control point coordinates for an image table. The geographic
coordinates will be in the current MapBasic coordinate system.

Syntax:

ControlPointInfo(table_id, attribute, controlpoint_num)

table_id is a string representing a table name, a positive integer table number, or 0 (zero). The table
must be a raster, grid or WMS table.

attribute is an integer code indicating which aspect of the control point to return.

controlpoint_num is the integer number of which control point to return. Control point numbers start
at 1. The maximum control point number can be found by calling

RasterTableInfo(table_id, RASTER_TAB_INFO_NUM_CONTROL_POINTS)

Return Value

The X or Y raster coordinate is returned as an Integer. The X or Y geographic coordinate is returned
as a Float. The return type depends upon the attribute flag, for the control point specified by
controlpoint_num.

The attribute parameter can be any value from the table below. Codes in the left column (for
example, RASTER_CONTROL_POINT_X) are defined in MAPBASIC.DEF.

attribute code ID ControlPointInfo() returns:

RASTER_CONTROL_POINT_X 1 Integer result, representing the X coordinate of the
control point number specified by controlpoint_num

RASTER_CONTROL_POINT_Y 2 Integer result, representing the Y coordinate of the
control point number specified by controlpoint_num

GEO_CONTROL_POINT_X 3 Float result, representing the X coordinate of the
control point number specified by controlpoint_num

GEO_CONTROL_POINT_Y 4 Float result, representing the Y coordinate of the
control point number specified by controlpoint_num

TAB_GEO_CONTROL_POINT_X 5 Float result, representing the X coordinate of the
control point number specified by controlpoint_num
stored in the raster image TAB file

TAB_GEO_CONTROL_POINT_Y 6 Float result, representing the Y coordinate of the
control point number specified by controlpoint_num
stored in the raster image TAB file
MapBasic 11.0 141 Reference

Chapter 4:
Control PopupMenu clause
Control PopupMenu clause

Purpose

Part of a Dialog statement; adds a popup menu control to the dialog box.

Syntax

Control PopupMenu
[Position x, y]
[Width w]
[ID control_ID]
[Calling handler]
[Title { str_expr | From Variable str_array_var }]
[Value i_selected]
[Into i_variable]
[Disable]

x, y specifies the control's position in dialog box units.

w specifies the control's width, in dialog box units; default width is 80.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

handler is the name of a procedure to call when the user chooses an item from the menu.

str_expr is a string expression, containing a semicolon-delimited list of items to appear in the control.

str_array_var is the name of an array of string variables.

i_selected is a SmallInt value indicating which item should appear selected when the dialog box first
appears: a value of one selects the first item; if the clause is omitted, the first item appears selected.

i_variable is the name of a SmallInt variable which stores the user's final selection (one, if the first
item selected, etc.).

The Disable keyword makes the control disabled (grayed out) initially.

Description

If a Dialog statement includes a Control PopupMenu clause, the dialog box includes a pop-up
menu. A pop-up menu is a list of items, one of which is selected at one time. Initially, only the
selected item appears on the dialog box.

If the user clicks on the control, the entire menu appears, and the user can choose a different item
from the menu.

The Title clause specifies the list of items that appear in the menu. If the Title clause specifies a
string expression containing a semicolon-delimited list of items, each item appears as one item in
the menu. The following sample Title clause demonstrates this syntax:

Title "Town;County;Territory;Region;Entire state"

Alternately, the Title clause can specify an array of string variables, in which case each entry in the
array appears as one item in the popup menu.
MapBasic 11.0 142 Reference

Chapter 4:
Control RadioGroup clause
The following sample Title clause demonstrates this syntax:

Title From Variable s_optionlist

Example

Control PopupMenu
Title "Town;County;Territory;Region;Entire state"
Value 2
ID 5
Into i_map_scope
Position 10, 150

See Also:

Alter Control statement, Dialog statement, ReadControlValue() function

Control RadioGroup clause

Purpose

Part of a Dialog statement; adds a list of radio buttons to the dialog box.

Syntax

Control RadioGroup
[Position x, y]
[ID control_ID]
[Calling handler]
[Title { str_expr | From Variable str_array_var }]
[Value i_selected]
[Into i_variable]
[Disable] [Hide]

x, y specifies the control's position in dialog box units.

control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

handler is the name of a procedure to call if the user clicks or double-clicks on any of the radio
buttons.

str_expr is a string expression, containing a semicolon-delimited list of items to appear in the control.

str_array_var is the name of an array of string variables.

i_selected is a SmallInt value indicating which item should appear selected when the dialog box first
appears: a value of one selects the first item; if the clause is omitted, the first item appears selected.

i_variable is the name of a SmallInt variable which stores the user's final selection (one, if the first
item selected, etc.).

The Disable keyword makes the control disabled (grayed out) initially.

The Hide keyword makes the control hidden initially.
MapBasic 11.0 143 Reference

Chapter 4:
Control StaticText clause
Description

If a Dialog statement includes a Control RadioGroup clause, the dialog box includes a group of
radio buttons. Each radio button is a label to the right of a hollow or filled circle. The currently-
selected item is indicated by a filled circle. Only one of the radio buttons may be selected at one
time.

The Title clause specifies the list of labels that appear in the dialog box. If the Title clause specifies
a string expression containing a semicolon-delimited list of items, each item appears as one item in
the list.

The following sample Title clause demonstrates this syntax:

Title "&Full Details;&Partial Details"

Alternately, the Title clause can specify an array of string variables, in which case each entry in the
array appears as one item in the list. The following sample Title clause demonstrates this syntax:

Title From Variable s_optionlist

Example

Control RadioGroup
Title "&Full Details;&Partial Details"
Value 2
ID 2
Into i_details
Calling rg_handler
Position 15, 42

See Also:

Alter Control statement, Dialog statement, ReadControlValue() function

Control StaticText clause

Purpose

Part of a Dialog statement; adds a label to a dialog box.

Syntax

Control StaticText
[Position x, y]
[Width w] [Height h]
[ID control_ID]
[Title title_string]
[Hide]

x, y specifies the control's position, in dialog box units.

w specifies the control's width, in dialog box units.

h specifies the control's height, in dialog box units.
MapBasic 11.0 144 Reference

Chapter 4:
ConvertToPline() function
control_ID is an integer; cannot be the same as the ID of another control in the dialog box.

title_string is a text string to appear in the dialog box as a label.

The Hide keyword makes the control hidden initially.

Description

If you want the text string to wrap down onto multiple lines, include the optional Width and Height
clauses. If you omit the Width and Height clauses, the static text control shows only one line of text.

Example

Control StaticText
Title "Enter map title:"
Position 5, 10

See Also:

Alter Control statement, Dialog statement

ConvertToPline() function

Purpose

Returns a polyline object that approximates the shape of another object. You can call this function
from the MapBasic window in MapInfo Professional.

Syntax

ConvertToPline(object)

object is the object to convert; may not be a point object or a text object.

Return Value

A polyline object

Description

The ConvertToPline() function returns a polyline object which approximates the object parameter.
Thus, if the object parameter represents a region object, ConvertToPline() returns a polyline that
has the same shape and same number of nodes as the region.

The results obtained by calling ConvertToPline() are similar to the results obtained by choosing
MapInfo Professional's Objects > Convert To Polyline command. However, the function
ConvertToPline() does not alter the original object.

See Also:

Objects Enclose statement
MapBasic 11.0 145 Reference

Chapter 4:
ConvertToRegion() function
ConvertToRegion() function

Purpose

Returns a region object that approximates the shape of another object. You can call this function
from the MapBasic window in MapInfo Professional.

Syntax

ConvertToRegion(object)

object is the object to convert; may not be a point, line, or text object.

Return Value

A region object

Description

Retains most style attributes. Other attributes are determined by the current pens or brushes. A
polyline whose first and last nodes are identical will not have the last node duplicated. Otherwise,
MapInfo Professional adds a last node whose vertices are the same as the first node.

The ConvertToRegion() function returns a region object which approximates the object parameter.
Thus, if the object parameter represents a rectangle, ConvertToRegion() returns a region that
looks like a rectangle.

The results obtained by calling ConvertToRegion() are similar to the results obtained by choosing
MapInfo Professional's Objects > Convert To Region command. However, the
ConvertToRegion() function does not alter the original object.

See Also:

Objects Enclose statement

ConvexHull() function

Purpose

Returns a region object that represents the convex hull polygon based on the nodes from the input
object. The convex hull polygon can be thought of as an operator that places a rubber band around
all of the points. It will consist of the minimal set of points such that all other points lie on or inside the
polygon. The polygon will be convex—no interior angle can be greater than 180 degrees. You can
call this function from the MapBasic window in MapInfo Professional.

Syntax

ConvexHull(inputobject)

inputobject is an object expression.
MapBasic 11.0 146 Reference

Chapter 4:
CoordSys clause
Return Value

Returns a region object.

Description

The ConvexHull() function returns a region representing the convex hull of the set of points
comprising the input object. The ConvexHull() function operates on one single object at a time. To
create a convex hull around a set of objects, use the Create Object As ConvexHull statement.

Example

The following program selects New York from the States file, then creates a ConvexHull surrounding
the selection.

Dim Resulting_object as object
select * from States
where State_Name = "New York"
Resulting_object = ConvexHull(selection.obj)
Insert Into States(obj) Values (Resulting_object)

See Also:

Create Object statement

CoordSys clause

Purpose

Specifies a coordinate system. You can use this clause in the MapBasic Window in MapInfo
Professional (see CoordSys Earth and NonEarth Projection, CoordSys Layout Units,
CoordSys Table, and CoordSys Window).

CoordSys Earth and NonEarth Projection

Syntax 1 (Earth Projection)

CoordSys Earth
[Projection type, datum, unitname

[, origin_longitude] [, origin_latitude]
[, standard_parallel_1 [, standard_parallel_2]]
[, azimuth] [, scale_factor]
[, false_easting] [, false_northing]
[, range]]

[Affine Units unitname, A, B, C, D, E, F]
[Bounds (minx, miny) (maxx, maxy)]

Syntax 2 (NonEarth Projection)

CoordSys Nonearth
[Affine Units unitname, A, B, C, D, E, F]
MapBasic 11.0 147 Reference

Chapter 4:
CoordSys clause
Units unitname
[Bounds (minx, miny) (maxx, maxy)]

type is a positive integer value representing which coordinate system to use.

datum is a positive integer value identifying which datum to reference.

unitname is a string representing a distance unit of measure (for example, “m” for meters); for a list
of unit names, see Set Distance Units statement.

origin_longitude is a float longitude value, in degrees.

origin_latitude is a float latitude value, in degrees.

standard_parallel_1 and standard_parallel_2 are float latitude values, in degrees.

azimuth is a float angle measurement, in degrees.

scale_factor is a float scale factor.

range is a float value from 1 to 180, dictating how much of the Earth will be seen.

minx is a float specifying the minimum x value.

miny is a float specifying the minimum y value.

maxx is a float specifying the maximum x value.

maxy is a float specifying the maximum y value.

A performs scaling or stretching along the X axis.

B performs rotation or skewing along the X axis.

C performs shifting along the X axis.

D performs scaling or stretching along the Y axis.

E performs rotation or skewing along the Y axis.

F performs shifting along the Y axis.

Description

The CoordSys clause specifies a coordinate system, and, optionally, specifies a map projection to
use in conjunction with the coordinate system. Note that CoordSys is a clause, not a complete
MapBasic statement. Various statements may include the CoordSys clause; for example, a Set
Map statement can include a CoordSys clause, in which case the Set Map statement will reset the
map projection used by the corresponding Map window.

Use CoordSys Earth (syntax 1) to explicitly define a coordinate system for an Earth map (a map
having coordinates which are specified with respect to a location on the surface of the Earth). The
optional Projection parameters dictate what map projection, if any, should be used in conjunction
with the coordinate system. If the Projection clause is omitted, MapBasic uses datum 0. The Affine
clause describes the affine transformation for producing the derived coordinate system. If the
Projection clause is omitted, the base coordinate system is Longitude/Latitude. Since the derived
coordinates may be in different units than the base coordinates, the Affine clause requires you to
specify the derived coordinate units.
MapBasic 11.0 148 Reference

Chapter 4:
CoordSys clause
Use CoordSys Nonearth (syntax 2) to explicitly define a non-Earth coordinate system, such as the
coordinate system used in a floor plan or other CAD drawing. In the CoordSys Non-Earth case, the
base coordinate system is an arbitrary Cartesian grid. The Units clause specifies the base
coordinate units, and the Affine clause specifies the derived coordinate units.

When a CoordSys clause appears as part of a Set Map statement or Set Digitizer statement, the
Bounds subclause is ignored. The Bounds subclause is required for non-Earth maps when the
CoordSys clause appears in any other statement, but only for non-Earth maps.

The Bounds clause defines the map's limits; objects may not be created outside of those limits.
When specifying an Earth coordinate system, you may omit the Bounds clause, in which case
MapInfo Professional uses default bounds that encompass the entire Earth.

In a Create Map statement, you can increase the precision of the coordinates in the map by
specifying narrower Bounds.

Every map projection is defined as an equation; and since the different projection equations have
different sets of parameters, different CoordSys clauses may have varying numbers of parameters
in the optional Projection clause. For example, the formula for a Robinson projection uses the
datum, unitname, and origin_latitude parameters, while the formula for a Transverse Mercator
projection uses the datum, unitname, origin_longitude, origin_latitude, scale_factor, false_easting,
and false_northing parameters.

For more information on projections and coordinate systems, see the MapInfo Professional
documentation.

Each MapBasic application has its own CoordSys setting that specifies the coordinate system used
by the application. If a MapBasic application issues a Set CoordSys statement, other MapBasic
applications which are also in use will not be affected.

Examples

The Set Map statement controls the settings of an existing Map window. The Set Map statement
below tells MapInfo Professional to display the Map window using the Robinson projection:

Set Map CoordSys Earth Projection 12, 12, "m", 0.

The first 12 specifies the Robinson projection; the second 12 specifies the Sphere datum; the “m”
specifies that the coordinate system should use meters; and the final zero specifies that the origin of
the map should be at zero degrees longitude.

The following statement tells MapInfo Professional to display the Map window without any
projection.

Set Map CoordSys Earth

The following example opens the table World, then uses a Commit Table statement to save a copy
of World under the name RWorld. The new RWorld table will be saved with the Robinson projection.

Open Table "world" As World
 Table world As "RWORLD.TAB"

CoordSys Earth Projection 12, 12, "m", 0.
MapBasic 11.0 149 Reference

Chapter 4:
CoordSys clause
The following example defines a coordinate system called DCS that is derived from UTM Zone 10
coordinate system using the affine transformation.

x1 = 1.57x - 0.21y + 84120.5
y1 = 0.19x + 2.81y - 20318.0

In this transformation, (x1, y1) represents the DCS derived coordinates, and (x, y) represents the
UTM Zone 10 base coordinates. If the DCS coordinates are measured in feet, the CoordSys clause
for DCS would be as follows:

CoordSys Earth
Projection 8, 74, "m", -123, 0, 0.9996, 500000, 0
Affine Units "ft", 1.57, -0.21, 84120.5, 0.19, 2.81, -20318.0

CoordSys Layout Units

Syntax

CoordSys Layout Units paperunitname

paperunitname is a string representing a paper unit of measure (for example, “in” for inches); for a
list of unit names, see Set Paper Units statement.

Description

Use CoordSys Layout to define a coordinate system which represents a MapInfo Professional
Layout window. A MapBasic program must issue a Set CoordSys Layout statement before querying,
creating or otherwise manipulating Layout objects. The unitname parameter is the name of a paper
unit, such as “in” for inches or “cm” for centimeters.

Examples

The following Set CoordSys statement assigns a Layout window's coordinate system, using inches
as the unit of measure:

Set CoordSys Layout Units "in"

CoordSys Table

Syntax

CoordSys Table tablename

tablename is the name of an open table.

Description

Use CoordSys Table to refer to the coordinate system in which a table has been saved.
MapBasic 11.0 150 Reference

Chapter 4:
CoordSysName$() function
CoordSys Window

Syntax

CoordSys Window window_id

window_id is an integer window identifier corresponding to a Map or Layout window.

Description

Use CoordSys Window to refer to the coordinate system already in use in a window.

Examples

The following example sets one Map window's projection to match the projection of another Map
window. This example assumes that two integer variables (first_map_id and second_map_id)
already contain the window IDs of the two Map windows.

Set Map
Window second_map_winid
CoordSys Window first_map_winid

See Also:

Commit Table statement, Set CoordSys statement, Set Map statement

CoordSysName$() function

Purpose

Returns coordinate system name string from MapBasic Coordinate system clause. You can call this
function from the MapBasic window in MapInfo Professional.

Syntax

CoordSysName$ (string)

Return Value

String

Example

Note CoordSysName$("Coordsys Earth Projection 1, 62")

Returns this string in the MapInfo dialog box:

Longitude / Latitude (NAD 27 for Continental US)

If a coordinate system name does not exist in the MapInfow.prj file, such as when the map is
in NonEarth system in Survey Feet, then function will return an empty string.
MapBasic 11.0 151 Reference

Chapter 4:
CoordSysStringToEPSG() function
Note CoordSysName$("CoordSys NonEarth Units " + """survey ft""" +
"Bounds (0, 0) (10, 10)")

If an invalid CoordSys clause is passed such as this (using invalid units):

Note CoordSysName$("CoordSys Earth Projection 3, 74, " + """foo""" +
"-90, 42, 42.7333333333, 44.0666666667, 1968500, 0")

Then an Error regarding the Invalid Coordinate System should be returned (Error #727).

Invalid Coordinate System: CoordSys Earth Projection <content>

CoordSysStringToEPSG() function

Purpose

Converts a MapBasic Coordinate System clause into an EPSG integer value for use with any
MapBasic function or statement. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

CoordSysStringToEPSG (epsg_string)

epsg_string is a MapBasic CoordSys clause. EPSG (European Petroleum Survey Group) value is
an integer value; for example, CoordSys Clause of "Earth Projection 1, 104" will return an EPSG
code of 4326. For a complete list of EPSG codes used with MapInfo Professional see the
MAPINFOW.PRJ file in your MapInfo Professional installation. The EPSG codes are identified by a
"\p" followed by a number.

Return Value

Integer. If no EPSG value is found, it returns -1.

Description

The CoordSysStringToEPSG() function is used to convert a MapBasic CoordSys clause into an
integer EPSG value.

Example

The following example displays EPSG code Earth Projection 1, 104 Coordinate System.

print CoordSysStringToEPSG("Earth Projection 1, 104"))

See Also:

CoordSys clause
MapBasic 11.0 152 Reference

Chapter 4:
CoordSysStringToPRJ$() function
CoordSysStringToPRJ$() function

Purpose

Converts MapBasic Coordinate System clause into an PRJ string. PRJ string format is used to
describe MapInfo Coordinate Systems in mapinfow.prj file. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

CoordSysStringToPRJ$(prj_string)

prj_string is a MapBasic CoordSys clause. PRJ string is an alternative definition of Coordinate
System used in the mapinfow.prj file; for example, CoordSys Clause of "Earth Projection 1, 104" will
return a PRJ string of "1,104".

Return Value

string

Description

The CoordSysStringToPRJ$() function is used to convert a MapBasic CoordSys clause into an
integer EPSG value.

Example

The following example displays PRJ string for Earth Projection 1, 104 Coordinate System.

print CoordSysStringToPRJ$("Earth Projection 1, 104")

See Also:

CoordSys clause

CoordSysStringToWKT$() function

Purpose

Converts a MapBasic Coordinate System clause into a WKT string. You can call this function from
the MapBasic Window in MapInfo Professional.

Syntax

CoordSysStringToWKT$(wkt_string)

wkt_string is a MapBasic CoordSys clause. WKT (Well-Known Text) value is a string value; for
example, CoordSysStringToWKT$(“Coordsys Earth Projection 1, 62”) will produce following string:

GEOGCS["NAD27 Latitude/Longitude,
Degrees",DATUM["North_American_Datum_1927",SPHEROID["Clarke -
MapBasic 11.0 153 Reference

Chapter 4:
Cos() function
1866",6378206.4,294.9786982139006],AUTHORITY["EPSG","6267"]],PRIMEM["Gree
nwich",0],UNIT["degree",0.0174532925199433]]

Return Value

WKT string. If no WKT string value is found, it returns an empty string.

Description

The CoordSysStringToWKT$() function is used to convert a MapBasic CoordSys clause into an
WKT string value.

Example

The following example:

Print coordsysstringtowkt$("CoordSys Earth Projection 8, 74, " + """m""" +
", -123, 0, 0.9996, 500000, 0 Affine Units " + """ft""" + ", 1.57, -0.21,
84120.5, 0.19, 2.81, -20318.0")

produces a WKT string:

PROJCS["_MI_0",GEOGCS[,DATUM["North_American_Datum_1983",SPHEROID["Geodet
ic Reference System of
1980",6378137,298.2572221009113],AUTHORITY["EPSG","6269"]],PRIMEM["Greenw
ich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Transverse_Mercato
r"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-
123],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],P
ARAMETER["false_northing",0],UNIT["METER",1]]

See Also:

CoordSys clause

Cos() function

Purpose

Returns the cosine of a number. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

Cos(num_expr)

num_expr is a numeric expression representing an angle in radians.

Return Value

Float
MapBasic 11.0 154 Reference

Chapter 4:
Create Adornment statement
Description

The Cos() function returns the cosine of the numeric num_expr value, which represents an angle in
radians. The result returned from Cos() is between one (1) and negative one (-1).

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG.

Your program must Include “MAPBASIC.DEF” to reference DEG_2_RAD or RAD_2_DEG.

Example

Include "MAPBASIC.DEF"
Dim x, y As Float
x = 60 * DEG_2_RAD
y = Cos(x)

' y will now be equal to 0.5
' since the cosine of 60 degrees is 0.5

See Also:

Acos() function, Asin() function, Atn() function, Sin() function, Tan() function

Create Adornment statement

Purpose

Creates and displays Adornments, such as a scale bar, on mapper window. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

create adornment
From Window map_window_id
Type adornment_type
[Position {

[Fixed [(x, y) [Units paper_units]]] |
[win_position [Offset (x, y)] [Units paper_units]]

}]
[Layout Fixed Position { Frame | Geographic }]
[Size [Width win_width] [Height win_height] [Units paper_units]]
[Background [Brush ...] [Pen ...]]
[< SCALEBAR CLAUSE >]

Where SCALEBAR CLAUSE is:

[BarType type]
[Ground Units distance_units]
[Display Units paper_units]
[BarLength paper_length]
MapBasic 11.0 155 Reference

Chapter 4:
Create Adornment statement
[BarHeight paper_height]
[BarStyle [Pen] [Brush ...] [Font ...]]
[Scale [{ On | Off }]]

adornment_type can be scalebar.

Position can be Fixed relative to the mapper upper left regardless of the size of the mapper, or
relative to some anchor point on the mapper specified by win_position.

(x, y) in the Fixed clause is position measured from the upper left of the mapper window, which is (0,
0). Using this version of adornment placement, the adornment will be at that position in the mapper
as the mapper resizes. For example, a position of (3, 3) inches would be toward the bottom right of a
small sized mapper but in the middle of a large sized mapper. As the mapper changes size, the
adornment will try to remain completely within the displayed mapper.

paper_units defaults to the MapBasic Paper Unit (see Set Paper Units statement).

win_position specify one of the following codes; codes are defined in MAPBASIC.DEF.

ADORNMENT_INFO_MAP_POS_TL (0)
ADORNMENT_INFO_MAP_POS_TC (1)
ADORNMENT_INFO_MAP_POS_TR (2)
ADORNMENT_INFO_MAP_POS_CL (3)
ADORNMENT_INFO_MAP_POS_CC (4)
ADORNMENT_INFO_MAP_POS_CR (5)
ADORNMENT_INFO_MAP_POS_BL (6)
ADORNMENT_INFO_MAP_POS_BC (7)
ADORNMENT_INFO_MAP_POS_BR (8)

Offset is the amount the adornment will be offset from the mapper when using one of the docked
win_positions.

(x, y) in the Offset clause is measured from the anchor position. For example, if the win_position is
ADORNMENT_INFO_MAP_POS_TL (top left), then the x is to the right and the y is down. If the
win_position is ADORNMENT_INFO_MAP_POS_BR, then the x position is left and the y position is
up. In the center left (ADORNMENT_INFO_MAP_POS_CL) and center right
(ADORNMENT_INFO_MAP_POS_CR), the y offset is ignored. In the center position
(ADORNMENT_INFO_MAP_POS_CC), the offset is ignored completely (both x and y). In the top
center (ADORNMENT_INFO_MAP_POS_TC) and bottom center
(ADORNMENT_INFO_MAP_POS_BC) positions, the x offset is ignored. For
ADORNMENT_INFO_MAP_POS_ defines, see win_position.

Layout Fixed Position determines how an adornment is positioned in a layout when the adornment
is using Fixed positioning. If this is set to Geographic, then the adornment is placed on the same
geographic place on the map frame in the layout as it is in the mapper. If the layout frame changes
size, then the adornment will move relative to the frame to match the geographic position. If this is
set to Frame, then the adornment will remain at a fixed position relative to the frame, as designated
in the Position clause. If the Position clause positions the adornment at (1.0, 1.0) inches, then the
adornment will be placed 1 inch to the left and one inch down from the upper left corner of the frame.
Changing the size of the frame will not change the position of the adornment. The default is
Geographic.
MapBasic 11.0 156 Reference

Chapter 4:
Create Adornment statement
win_width and win_height define the size of the adornment. MapInfo Professional ignores these
parameters if this is a scale bar adornment, because scale bar adornment size is determined by
scale bar specific items, such as BarLength.

Brush is a valid Brush clause. Only Solid brushes are allowed. While values other than solid are
allowed as input without error, the type is always forced to solid. This clause is used only to provide
the background color for the adornment.

Pen is a valid Pen clause. Due to window clipping (the adornment is a window within the mapper),
Pen widths other than 1 may not display correctly. Also, Pen styles other than solid may not display
correctly. This clause is designed to turn on (solid) or off (hollow) and set the color of the border of
the adornment.

type specify one of the following codes; codes are defined in MAPBASIC.DEF.

SCALEBAR_INFO_BARTYPE_CHECKEDBAR (0)
SCALEBAR_INFO_BARTYPE_SOLIDBAR (1)
SCALEBAR_INFO_BARTYPE_LINEBAR (2)
SCALEBAR_INFO_BARTYPE_TICKBAR (3)

0 Check Bar, 1 Solid Bar, 2 Line Bar, or 3 Tick Bar

distance_units a unit of measure that the scale bar is to represent:

0 1 2 3

distance value Unit Represented

“ch” chains

“cm” centimeters

“ft” feet (also called International Feet; one International Foot equals exactly
30.48 cm)

“in” inches

“km” kilometers

“li” links

“m” meters

“mi” miles

“mm” millimeters

“nmi” nautical miles (1 nautical mile represents 1852 meters)

“rd” rods
MapBasic 11.0 157 Reference

Chapter 4:
Create Adornment statement
paper_units defaults to the MapBasic Paper Unit (see Set Paper Units statement).

paper_length a value in paper_units to specify how long the scale bar will be displayed. Specify the
length of the scale bar to a maximum of 34 inches or 86.3 cm on the printed map.

paper_height a value in paper_units to specify how tall the scale bar will be displayed. Specify height
of the adornment to a maximum of 44 inches or 111.76cm on the printed map.

Scale set to On to include a representative fraction (RF) with the scale bar. (In MapInfo
Professional, a map scale that does not include distance units, such as 1:63,360 or 1:1,000,000, is
called a cartographic scale.)

Font is a valid Font clause.

Description

The scale bar displays as a paper_length bar in the paper_units.

Example

If the paper_length is 1 and the paper_unit is inches, then the scale bar displays as 1 inch. It is
labeled in the distance_unit for the current amount that paper_unit spans, and it dynamically
updates as the map changes (e.g., zoom and pan). The default distance_unit is the current distance
unit in the mapper. The paper_height determines how tall the scale bar displays. The Pen and
Brush define the style to draw the scale bar with and Font defines the text style for scale bar
labeling and annotation. The Scale parameter displays a cartographic scale.

The following example shows default settings:

create adornment
from window 261763624
type scalebar
position 6 offset (0.000000, 0.000000) units "in"
background Brush (2,16777215,16777215) Pen (1,2,0)
bartype 0 ground units "mi" display units "in"
barlength 1.574803 barheight 0.078740
barstyle Pen (1,2,0) Brush (2,0,16777215) Font ("Arial",0,8,0)
scale on

See Also:

Set Adornment statement

“survey ft” U.S. survey feet (used for 1927 State Plane coordinates; one U.S. Survey
Foot equals exactly 12/39.37 meters, or approximately 30.48006 cm)

“yd” yards

distance value Unit Represented
MapBasic 11.0 158 Reference

Chapter 4:
Create Arc statement
Create Arc statement

Purpose

Creates an arc object. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create Arc
[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2)
start_angle end_angle
[Pen...]

window_id is a window identifier.

var_name is the name of an existing object variable.

x1, y1 specifies one corner of the minimum bounding rectangle (MBR) of an ellipse; the arc
produced will be a section of this ellipse.

x2, y2 specifies the opposite corner of the ellipse's MBR.

start_angle specifies the arc's starting angle, in degrees.

end_angle specifies the arc's ending angle, in degrees.

The Pen clause specifies a line style.

Description

The Create Arc statement creates an arc object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into
clause is not provided, MapBasic will attempt to store the object in the topmost window; if objects
may not be stored in the topmost window (for example, if the topmost window is a grapher) no object
will be created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a Longitude/Latitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system. Note that MapBasic's coordinate
system is independent of the coordinate system of any Map window. Objects created on a Layout
window, however, are specified in paper units: each x-coordinate represents a distance from the left
edge of the page, while each y-coordinate represents the distance from the top edge of the page. By
default, MapBasic uses inches as the default paper unit. To use a different paper unit, use the Set
Paper Units statement. Before creating objects on a Layout window, you must issue a Set
CoordSys Layout statement.
MapBasic 11.0 159 Reference

Chapter 4:
Create ButtonPad statement
The optional Pen clause specifies a line style. If no Pen clause is specified, the Create Arc
statement uses the current MapInfo Professional line style (the style which appears in the Options >
Line Style dialog box).

See Also:

Insert statement, Pen clause, Update statement, Set CoordSys statement

Create ButtonPad statement

Purpose

Creates a ButtonPad (toolbar). You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create ButtonPad { title_string | ID pad_num } As
button_definition [button_definition ...]

[Title title_string]
[Width w]
[Position (x, y) [Units unit_name]]
[ToolbarPosition (row, column)]
[{ Show | Hide }]
[{ Fixed | Float | Top | Left | Right | Bottom }]

title_string is the ButtonPad title (for example, “Drawing”).

pad_num is the ID number for the standard toolbar you want to re-define:

• 1 for Main
• 2 for Drawing
• 3 for Tools
• 4 for Standard
• 5 for Database Management System (DBMS)
• 6 Web Services
• 7 Reserved

w is the pad width, in terms of the number of buttons across.

x, y specify the pad's position when it is floating; specified in paper units (for example, inches).

unit_name is a string representing paper units name (for example, “in” for inches, “cm” for
centimeters).

row, column specify the pad's position when it is docked as a toolbar (for example, 0, 0 places the
pad at the left edge of the top row of toolbars, and 0, 1 represents the second pad on the top row).

• row position starts at the top and increases in value going to the bottom. It is a relative value
to the rows existing in the same position (top or bottom). When there is a menu bar in the
same position, then the numbers become relative to the menu bar. When a toolbar is just
MapBasic 11.0 160 Reference

Chapter 4:
Create ButtonPad statement
below the menu bar, its row value is 0. If it is directly above the menu bar, then its row value
is -1.

• column position starts at the left and increases in value going to the right. It is a relative value
to the columns existing in the same position (left or right). For example, if a toolbar is docked
to the left and the menu bar is docked to the left position, then the column number for the
column left of the menu bar is -1. The column number for the column to the right of the menu
bar is 0.

Each button_definition clause can consist of the keyword Separator, or it can have the following
syntax:

{ PushButton | ToggleButton | ToolButton }
Calling { procedure | menu_code | OLE methodname | DDE server, topic }
[ID button_id]
[Icon n [File file_spec]]
[Cursor n [File file_spec]]
[DrawMode dm_code]
[HelpMsg msg]
[ModifierKeys { On | Off }]
[Enable] [Disable]
[Check] [Uncheck]

procedure is the handler procedure to call when a button is used.

menu_code is a standard MapInfo Professional menu code from MENU.DEF (for example,
M_FILE_OPEN); MapInfo Professional runs the menu command when the user uses the button.

methodname is a string specifying an OLE method name.

server, topic are strings specifying a DDE server and topic name.

ID button_id specifies a unique button number. This number can be used as a parameter to allow a
handler to determine which button is in use (in situations where different buttons call the same
handler) or as a parameter to be used with the Alter Button statement.

Icon n specifies the icon to appear on the button; n can be one of the standard MapInfo icon codes
listed in ICONS.DEF (for example, MI_ICON_RULER). If the File sub-clause specifies the name of a
file containing icon resources, n is an integer resource ID identifying a resource in the file. The size
of the button can be defined with resource file id of n for small and n+1 for large sized buttons, with
resource file ids of n and n+1 respectively.

Cursor n specifies the shape the mouse cursor should adopt whenever the user chooses a
ToolButton tool; n is a cursor code (for example, MI_CURSOR_ARROW) from ICONS.DEF. This
clause applies only to ToolButtons. If the File sub-clause specifies the name of a file containing icon
resources, n is an integer resource ID identifying a resource in the file.

DrawMode dm_code specifies whether the user can click and drag, or only click with the tool;
dm_code is a code (for example, DM_CUSTOM_LINE) from ICONS.DEF. The DrawMode clause
applies only to ToolButtons.

HelpMsg msg specifies the button's status bar help and, optionally, ToolTip help. The first part of the
msg string is the status bar help message. If the msg string includes the letters \n then the text
following the \n is used as the button's ToolTip help.
MapBasic 11.0 161 Reference

Chapter 4:
Create ButtonPad statement
ModifierKeys clause controls whether the shift and control keys affect “rubber-band” drawing if the
user drags the mouse while using a ToolButton. Default is Off, meaning that the shift and control
keys have no effect.

Description

Use the Create ButtonPad statement to create a custom ButtonPad. Once you have created a
custom ButtonPad, you can modify it using Alter Button statement and Alter ButtonPad
statement.

Each toolbar can be hidden. To create a toolbar in the hidden state, include the Hide keyword.

To set whether the pad is fixed to the top of the screen (“docked”) or floating like a window, include
the Fixed or the Float keyword. The user can also control whether the pad is docked or not by
dragging the pad to or from the top of the screen. For more control over the location on the screen
that the pad is docked to, use the Top (which is the same as using Fixed), Left, Right, or Bottom
keywords.

When a toolbar is floating, its position is controlled by the Position clause; when it is docked, its
position is controlled by the ToolbarPosition clause.

For more information on ButtonPads, see the MapBasic User Guide. For additional information
about the capabilities of ToolButtons, see Alter ButtonPad statement.

About Icon Size

Before MapInfo Professional 10.0, custom icons were rectangular in size: 18x16 for small icons and
26x24 for large icons. Toolbar and menu features introduced in MapInfo Professional 10.0 require
square icons: 16x16 for small icons and 24x24 for large icons. MapInfo Professional 10.0 and later
display custom icons in the square size distorting how they display. To correct the distortion MapInfo
Professional removes the first and last column of pixels to not display them (cropping the image). As
a result, there may be some loss of information in the icon image.

For best results, create your icons to 16x16 for small icons and 24x24 for large icons. Icons at these
sizes are not compatible with versions before 10.0.1 and generate an error message in these
versions.

For compatibility with versions before 10.0.1, use 18x16 for small icons and 26x24 for large icons.
These icons appear distorted in version 10.0 and appear cropped in versions after 10.0.

About Icons for Menu Items

The following describe how MapInfo Professional 10.0 handles icons for menu items:

• Icons for menu items are dynamic based on icons in toolbars.
MapBasic 11.0 162 Reference

Chapter 4:
Create ButtonPad statement
• If a toolbar button has an icon it may be used for a menu item if it meets one of the following
requirements:
• Toolbar button and menu item must be within the same MBX file.
• The same handler/userId combination; any menu item that calls the same handler/userid

from the same MBX file is assigned that icon).
• The same userId calling different handlers.
• The same handler, no userID.
• ID must be <= 32767.

• For built in handlers, priority is given to find an icon from a built in toolbar. If none is found, then
there is a search through the toolbar icons from the MBX files for a match.

• Small icons are shown next to menu items.
• When an MBX unloads, any of its associated icons are unloaded and are no longer in use for

menu items.

The following describe how MapInfo Professional 10.0.1 and later handles icons for menu items:

• There is no icon for the Table > Drive Regions menu option, because there is no corresponding
toolbar button for this option. There is an icon and toolbar button for the Objects > Driving
Regions menu option.

• Other menu items can now show an icon if a MapBasic application creates a toolbar button and
menu item that meet the previously listed requirements for menu item icons.

Calling Clause Options

The Calling clause specifies what should happen when the user acts on the custom button. The
following table describes the available syntax.

In the last two cases, the string sent to OLE or DDE starts with the three letters “MI:” so that the
server can detect that the message came from MapInfo. The remainder of the string contains a
comma-separated list of the values returned from the function calls CommandInfo(1) through
CommandInfo(8). For complete details on the string syntax, see the MapBasic User Guide.

Calling clause example Description

Calling M_FILE_NEW If Calling is followed by a numeric code from
MENU.DEF, the event runs a standard MapInfo
Professional menu command (the File > New command,
in this example).

Calling my_procedure If you specify a procedure name, the event calls the
procedure. The procedure must be part of the same
MapBasic program.

Calling OLE "methodname" Makes a method call to the OLE Automation object set
by MapInfo Professional's SetCallback method. See the
MapBasic User Guide.

Calling DDE "server","topic" Connects through DDE to “server|topic” and sending an
Execute message to the DDE server.
MapBasic 11.0 163 Reference

Chapter 4:
Create ButtonPad As Default statement
Examples

Create a button pad of utilities:

Create ButtonPad "Utils" As
PushButton

HelpMsg "Choose this button to display query dialog"
Calling button_sub_proc
Icon MI_ICON_ZOOM_QUESTION

ToolButton
HelpMsg "Use this tool to draw a new route"
Calling tool_sub_proc
Icon MI_ICON_CROSSHAIR
DrawMode DM_CUSTOM_LINE

ToggleButton
HelpMsg "Turn proximity checking on/off"
Calling toggle_prox_check
Icon MI_ICON_RULER
Check

Title "Utilities"
Width 3
Show

Create a toolbar button that launches the Browser Preferences dialog, which has a menu command
ID of 222:

Create ButtonPad "Prefs" As
PushButton

HelpMsg "Browser Preferences.\nBrowser Prefs"
Calling 222
Icon 99

See Also:

Alter Button statement, Alter ButtonPad statement, ButtonPadInfo() function

Create ButtonPad As Default statement

Purpose

Restores one standard ButtonPad (for example, the Main ButtonPad) to its default state. You can
issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Create ButtonPad { title_string | ID pad_num } As Default

title_string is the ButtonPad title (for example, "Main", "Standard", or "Custom Tools").

pad_num is the ID number for the standard ButtonPad (toolbar) you want to re-define:

• 1 for Main
• 2 for Drawing
MapBasic 11.0 164 Reference

Chapter 4:
Create ButtonPads As Default statement
• 3 for Tools
• 4 for Standard
• 5 for Database Management System (DBMS)
• 6 Web Services
• 7 Reserved

Custom ButtonPads use only the title_string.

Description

This statement restores MapInfo Professional's standard ButtonPads (such as Main, Drawing, and
Tools) to their default states. Custom ButtonPads will be destroyed.

See Also:

Alter Button statement,Alter ButtonPad statement, Create ButtonPad statement, Create
ButtonPads As Default statement

Create ButtonPads As Default statement

Purpose

Restores all standard ButtonPads (for example, the Main ButtonPad) to their default state. You can
issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Create ButtonPads As Default

Description

This statement restores MapInfo Professional's standard ButtonPads (such as Main, Drawing, and
Tools) to their default states. Custom ButtonPads will be destroyed.

Use this statement with caution. The Create ButtonPads As Default statement destroys all custom
buttons, even buttons defined by other MapBasic applications.

See Also:

Alter Button statement,Alter ButtonPad statement, Create ButtonPad statement, Create
ButtonPad As Default statement

Create Cartographic Legend statement

Purpose

Creates and displays cartographic style legends as well as theme legends for an active map
window. You can issue this statement from the MapBasic Window in MapInfo Professional.
MapBasic 11.0 165 Reference

Chapter 4:
Create Cartographic Legend statement
Syntax

Create Cartographic Legend
[From Window map_window_id]
[Behind]
[Position (x, y) [Units paper_units]]
[Width win_width [Units paper_units]]
[Height win_height [Units paper_units]]
[Window Title { legend_window_title }
[ScrollBars { On | Off }]
[Portrait | Landscape | Custom]
[Style Size { Small | Large }
[Default Frame Title { def_frame_title } [Font...] }]
[Default Frame Subtitle { def_frame_subtitle } [Font...] }]
[Default Frame Style { def_frame_style } [Font...] }]
[Default Frame Border Pen [[pen_expr]
Frame From Layer { map_layer_id | map_layer_name

[Using
[Column { column | Object } [FromMapCatalog { On | Off }]]
[Label { expression | Default }]

[Position (x, y) [Units paper_units]]
[Title { frame_title [Font...] }
[SubTitle { frame_subtitle [Font...] }]
[Border Pen pen_expr]
[Style [Font...] [Norefresh] [Text { style_name }

{ Line Pen... | Region Pen... Brush...| Symbol Symbol... } |
Collection [Symbol ...]

[Line Pen...] [Region Pen... Brush ...] }]
[, ...]

map_window_id is an integer window identifier which you can obtain by calling the FrontWindow()
function and WindowID() function.

x states the desired distance from the top of the workspace to the top edge of the window.

y states the desired distance from the left of the workspace to the left edge of the window.

Here workspace means the client area (which excludes the title bar, tool bar, and the status
bar).

paper_units is a string representing a paper unit name (for example, “cm” for centimeters).

win_width is the desired width of the window.

win_height is the desired height of the window.

legend_window_title is a string expression representing a title for the window, defaults to “Legend of
xxx” where xxx is the map window title.

def_frame_title is a string which defines a default frame title. It can include the special character “#”
which will be replaced by the current layer name.

def_frame_subtitle is a string which defines a default frame subtitle. It can include the special
character “#” which will be replaced by the current layer name.
MapBasic 11.0 166 Reference

Chapter 4:
Create Cartographic Legend statement
def_frame_style is a string that displays next to each symbol in each frame. The “#” character will be
replaced with the layer name. The % character will be replaced by the text “Line”, “Point, “Region”, as
appropriate for the symbol. For example, “% of #” will expand to “Region of States” for the
STATES.TAB layer.

pen_expr is a Pen expression, for example, MakePen(width, pattern, color). If a default border pen
is defined, then it will be become the default for the frame. If a border pen clause exists at the frame
level, then it is used instead of the default.

map_layer_id or map_layer_name identifies a map layer; can be a SmallInt (for example, use 1 to
specify the top map layer other than Cosmetic) or a string representing the name of a table
displayed in the map. For a theme layer you must specify the map_layer_id.

frame_title is a string which defines a frame title. If a Title clause is defined here for a frame, then it
will be used instead of the def_frame_title.

frame_subtitle is a string which defines a frame subtitle. If a Subtitle clause is defined here for a
frame, then it will be used instead of the def_frame_subtitle.

column is an attribute column name from the frame layer's table.

style_name is a string which displays next to a symbol, line, or region in a custom frame.

Description

The Create Cartographic Legend statement allows you to create and display cartographic style
legends as well as theme legends for an active map window. Each cartographic and thematic styles
legend will be connected to one, and only one, Map window so that there can be more than one
Legend window open at a time.

You can create a frame for each cartographic or thematic map layer you want to include on the
legend. The cartographic and thematic frames will include a legend title and subtitle. Cartographic
frames display a map layer's styles; legend frames display the colors, symbols, and sizes
represented by the theme. You can create frames that have styles based on the Map window's style
or you can create your own custom frames.

At least one Frame clause is required.

All clauses pertaining to the entire legend (scrollbars, width, etc.) must proceed the first Frame
clause.

The From Layer clause must be the first clause after the Frame clause.

The optional Behind clause places the legend behind the Thematic Map window.

The optional Position clause controls the window's position on MapInfo Professional's workspace.
The upper left corner of MapInfo Professional's workspace has the position 0, 0. The optional Width
and Height clauses control the window's size. Window position and size values use paper units
settings, such as “in” (inches) or “cm” (centimeters). MapBasic has a current paper units setting,
which defaults to inches; a MapBasic program can change this setting through the Set Paper Units
statement. A Create Cartographic Legend statement can override the current paper units by
including the optional Units subclause within the Position, Width, and/or Height clauses.

Use the ScrollBars clause to show or hide scroll-bars on a Map window.
MapBasic 11.0 167 Reference

Chapter 4:
Create Cartographic Legend statement
Portrait or Landscape describes the orientation of the legend frames in the window. Portrait
results in an orientation that is down and across. Landscape results in an orientation that is across
and down.

If Custom is specified, you can specify a custom Position clause for a frame.

The Position clause at the frame level specifies the position of a frame if Custom is specified.The x
coordinate measures from the left of the legend window, and the y coordinate measures from the
bottom of the legend window (the origin (0,0) is in the bottom-left of the legend window).

The optional Style Size clause controls the size of the samples that appear in legend windows. If
you specify Style Size Small, small-sized legend samples are used in Legend windows. If you
specify Style Size Large, larger-sized legend samples are used.

The Position, Title, SubTitle, Border Pen, and Style clauses at the frame level are used only for
map layers. They are not used for thematic layers. For a thematic layer, this information is gotten
automatically from the theme.

The Font clause specifies a text style. If a default frame title, subtitle, or style name font is defined,
then it will become the default for the frame. If a frame level Title, Subtitle, or Style clause exists
and includes a Font clause, then the frame level font is used. If no font is specified at any level, then
the current text style is used and the point sizes are 10, 9, and 8 for title, subtitle and style name.

The Style clause and the NoRefresh keyword allow you to create custom frames that are not
overwritten when the legend is refreshed. If the NoRefresh keyword is used in the Style clause,
then the table is not scanned for styles. Instead, the Style clause must contain your custom list of
definitions for the styles displayed in the frame. This is done with the Text clause and appropriate
Line, Region, or Symbol clause. Multipoint objects are treated as Point objects.

Collection objects are treated separately. When MapInfo Professional creates a Legend based on
object types, it draws Point symbols first, then Lines, then Regions. Collection objects are drawn
last. Inside collection objects the order of drawing is point, line, and then region samples.

If Column is defined, column is the name of an attribute column in the frame layer's table, or Object
denotes the object column (meaning that legend styles are based on the unique styles in the map
file). The default is Object.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not
a live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (for
example, map styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table
must be a live access table that supports per record styles for this to occur. If the live table does not
support per record styles than the behavior is to revert to the default behavior for live tables, which is
to get the default styles from the MapCatalog (FromMapCatalog ON).

If a Label is defined, specify expression as a valid expression, or Default (meaning that the default
frame style pattern is used when creating each style's text, unless the style clause contains text).
The default is Default.
MapBasic 11.0 168 Reference

Chapter 4:
CreateCircle() function
Initially, each frame layer's TAB file is searched for metadata values for the title, subtitle, column and
label. If no metadata value exists for the column, the default is Object. If no metadata value exists
for Label, the default is the default frame style pattern. If legend metadata keys exist and you want to
override them, you must use the corresponding MapBasic syntax.

Example

The following example shows how to create a frame for a Map window's cartographic legend.
Legend windows are a special case: To create a frame for a Legend window, you must use the Title
clause instead of the From Window clause.

Dim i_layout_id, i_map_id As Integer
Dim s_title As String
' here, you would store the Map window's ID in i_map_id,
' and store the Layout window's ID in i_layout_id.
' To obtain an ID, call FrontWindow() or WindowID().
s_title = "Legend of " + WindowInfo(i_map_id, WIN_INFO_NAME)
Set CoordSys Layout Units "in"
Create Frame

Into Window i_layout_id
(1,2) (4, 5)
Title s_title

This creates a frame for a Cartographic Legend window. To create a frame for a Thematic Legend
window, change the title to the following.

S_title="Theme Legend of " + WindowInfo (I_map_id, WW_INFO_NAME)

See Also:

Set Cartographic Legend statement, Alter Cartographic Frame statement, Add Cartographic
Frame statement, Remove Cartographic Frame statement, Create Legend statement, Set
Window statement, WindowInfo() function

CreateCircle() function

Purpose

Returns an Object value representing a circle. You can call this function from the MapBasic window
in MapInfo Professional.

Syntax

CreateCircle(x, y, radius)

x is a float value, indicating the x-position (for example, Longitude) of the circle's center.

y is a float value, indicating the y-position (for example, Latitude) of the circle's center.

radius is a float value, indicating the circle radius.
MapBasic 11.0 169 Reference

Chapter 4:
CreateCircle() function
Return Value

Object

Description

The CreateCircle() function returns an Object value representing a circle.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a Longitude/Latitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system.

MapBasic's coordinate system is independent of the coordinate system of any Map window.

The radius parameter specifies the circle radius, in whatever distance unit MapBasic is currently
using. By default, MapBasic uses miles as the distance unit, although the Set Distance Units
statement can re-configure MapBasic to use a different distance unit.

The circle uses whatever Brush style is currently selected. To create a circle object with a specific
Brush, you can issue a Set Style statement before calling CreateCircle(). Alternately, instead of
calling CreateCircle(), you can issue a Create Ellipse statement, which has optional Pen clause
and Brush clause.

The circle object created through the CreateCircle() function could be assigned to an Object
variable, stored in an existing row of a table (through the Update statement), or inserted into a new
row of a table (using an Insert statement).

Before creating objects on a Layout window, you must issue a Set CoordSys Layout
statement.

Error Conditions

ERR_FCN_ARG_RANGE (644) is generated if an argument is outside of the valid range.

Examples

The following example uses the Insert statement to insert a new row into the table Sites. The
CreateCircle() function is used within the body of the Insert statement to specify the graphic object
that is attached to the new row.

Open Table "sites"
Insert Into sites (obj)

Values (CreateCircle(-72.5, 42.4, 20))

The following example assumes that the table Towers has three columns: Xcoord, Ycoord, and
Radius. The Xcoord column contains longitude values, the Ycoord column contains latitude values,
and the Radius column contains radius values. Each row in the table describes a radio broadcast
tower, and the Radius column indicates each tower's broadcast area.
MapBasic 11.0 170 Reference

Chapter 4:
Create Collection statement
The Update statement uses the CreateCircle() function to build a circle object for each row in the
table. Following this Update statement, each row in the Towers table will have a circle object
attached. Each circle object will have a radius derived from the Radius column, and each circle will
be centered at the position indicated by the Xcoord and Ycoord columns.

Open Table "towers"
Update towers

Set obj = CreateCircle(xcoord, ycoord, radius)

See Also:

Create Ellipse statement, Insert statement, Update statement

Create Collection statement

Purpose

Combines points, linear objects, and closed objects into a single object. The collection object
displays in the Browser as a single record. You can issue this statement from the MapBasic Window
in MapInfo Professional.

Syntax

Create Collection [num_parts]
[Into { Window window_id | Variable var_name }]
Multipoint

[num_points]
(x1, y1) (x2, y2) [...]
[Symbol...]

Region
num_polygons
[num_points1 (x1, y1) (x2, y2) [...]]
[num_points2 (x1, y1) (x2, y2) [...] ...]
[Pen...]
[Brush...]
[Center (center_x, center_y)]

Pline
[Multiple num_sections]
num_points
(x1, y1) (x2, y2) [...]
[Pen...]
[Smooth...]

num_parts is the number of non-empty parts inside a collection. This number is from 0 to 3 and is
optional for MapBasic code (it is mandatory for MIF files).

num_polygons is the number of polygons inside the Collection object.

num_sections specifies how many sections the multi-section polyline will contain.

Pen is a valid Pen clause to specify a line style.

Brush is a valid Brush clause to specify fill style.
MapBasic 11.0 171 Reference

Chapter 4:
Create Cutter statement
Example

create collection multipoint 2 (0,0) (1,1) region 3 3 (1,1) (2,2) (3,4) 4
(11,11) (12,12) (13,14) (19,20) 3 (21,21) (22,22) (23,24) pline 3 (-1,1)
(3,-2) (4,3)
dim a as object
create collection into variable a multipoint 2 (0,0) (1,1) region 1 3
(1,1) (2,2) (3,4) pline 3 (-1,1) (3,-2) (4,3)
insert into test (obj) values (a)
create collection region 2 4 (-5,-5) (5,-5) (5,5) (-5,5) 4 (-3,-3) (3,-3)
(3,3) (-3,3) pline multiple 2 2 (-6,-6) (6,6) 2 (-6,6) (6,-6) multipoint 6
(2,2) (-2,-2) (2,-2) (-2,2) (4,1) (-1,-4)

See Also:

Create MultiPoint statement

Create Cutter statement

Purpose

Produces a Region object that can be used as a cutter for an Object Split operation, as well as a
new set of Target objects which may be a subset of the original set of Target objects. You need to
provide a set of Target objects, and a set of polylines as a selection object. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Create Cutter Into Target

Description

Before using Create Cutter, one or more Polyline objects must be selected, and an editable target
must exist. This is set by choosing Objects > Set Target, or using the Set Target statement. The
Polyline objects contained in the selection must represent a single, contiguous section. The Polyline
selection must contain no breaks or self intersections.

The Polyline must intersect the Minimum Bounding Rectangle (MBR) of the Target in order for the
Target to be a valid object to split. The Polyline, however, does not have to intersect the Target
object itself. For example, the Target object could be a series of islands (for example, Hawaii), and
the Polyline could be used to divide the islands into two sets without actually intersecting any of the
islands. If the MBR of a Target does not intersect the Polyline, then that Target will be removed from
the Target list.

Given this revised set of Target objects, a cumulative MBR of all of these objects is calculated and
represents the overall space to be split. The polyline is then extended, if necessary, so that it covers
the MBR. This is done by taking the direction of the last two points on each end of the polyline and
extending the polyline in that Cartesian direction until it intersects with the MBR. The extended
Polyline should divide the Target space into two portions. One Region object will be created and
returned which represents one of these two portions.
MapBasic 11.0 172 Reference

Chapter 4:
Create Ellipse statement
This statement returns the revised set of Target objects (still set as the Target), as well as this new
Region cutter object. This Region object will be inserted into the Target table (which must be an
editable table). The original Polyline object(s) will remain, but will no longer be selected. The new
Region object will now be the selected object. If the resulting Region object is suitable, then this
operation can be immediately followed by an Object Split operation, as appropriate Target objects
are set, and a suitable Region cutter object is selected.

The cutter object still remains in the target layer. You will have to delete the cutter object
manually from your editable layer.

Example

Open Table "C:\MapInfo_data\TUT_USA\USA\STATES.TAB"
Open Table "C:\MapInfo_data\TUT_USA\USA\US_HIWAY.TAB"
Map from States, Us_hiway
select * from States where state = "NY"
Set target On
select * from Us_hiway where highway = "I 90"
Create Cutter Into Target
Objects Split Into Target

See Also:

Set Target statement

Create Ellipse statement

Purpose

Creates an ellipse or circle object. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Create Ellipse
[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2)
[Pen...]
[Brush...]

window_id is a window identifier.

var_name is the name of an existing object variable.

x1, y1 specifies one corner of the rectangle which the ellipse will fill.

x2, y2 specifies the opposite corner of the rectangle.

Pen is a valid Pen clause to specify a line style.

Brush is a valid Brush clause to specify fill style.
MapBasic 11.0 173 Reference

Chapter 4:
Create Frame statement
Description

The Create Ellipse statement creates an ellipse or circle object. If the object's Minimum Bounding
Rectangle (MBR) is defined in such a way that the x-radius equals the y-radius, the object will be a
circle; otherwise, the object will be an ellipse.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into
clause is not provided, MapBasic attempts to store the object in the topmost window; if objects may
not be stored in the topmost window (for example, if the topmost window is a grapher) no object will
be created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a Latitude/Longitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system. Note that MapBasic's coordinate
system is independent of the coordinate system of any Map window. Objects created on a Layout
window, however, are specified in paper units: each x-coordinate represents a distance from the left
edge of the page, while each y-coordinate represents the distance from the top edge of the page. By
default, MapBasic uses inches as the default paper unit. To use a different paper unit, use the Set
Paper Units statement. Before creating objects on a Layout window, you must issue a Set
CoordSys Layout statement.

The optional Pen clause specifies a line style. If no Pen clause is specified, the Create Ellipse
statement uses the current MapInfo Professional line style (the style which appears in the Options >
Line Style dialog box). Similarly, the optional Brush clause specifies a fill style.

See Also:

Brush clause, CreateCircle() function, Insert statement, Pen clause, Update statement

Create Frame statement

Purpose

Creates a new frame in a Layout window. You can issue this statement from the MapBasic Window
in MapInfo Professional.

Syntax

Create Frame
[Into { Window layout_win_id | Variable var_name }]
(x1, y1) (x2, y2)
[Pen...]
[Brush...]
[Title title]
[From Window contents_win_id]
[FillFrame { On | Off }]

x1, y1 specifies one corner of the new frame to create.

x2, y2 specifies the other corner.
MapBasic 11.0 174 Reference

Chapter 4:
Create Frame statement
layout_win_id is a Layout window's integer window identifier.

var_name is the name of an Object variable.

Pen is a valid Pen clause to specify a line style.

Brush is a valid Brush clause to specify fill style.

title is a string identifying the frame contents (for example, “WORLD Map”); not needed if the From
Window clause is used.

contents_win_id is an integer window ID indicating which window will appear in the frame.

Description

The Create Frame statement creates a new frame within an existing Layout window. If no
layout_win_id is specified, the new frame is added to the topmost Layout window. Before creating
objects on a Layout window, you must issue a Set CoordSys Layout statement.

Between sessions, MapInfo Professional preserves Layout window settings by storing Create
Frame statements in the workspace file. To see an example of the Create Frame statement, create
a Layout, save the workspace, and examine the workspace file in a text editor.

The Pen clause dictates what line style will be used to display the frame, and the Brush clause
dictates the fill style used to fill the frame window.

Use the From Window clause to specify which window should appear inside the frame. For
example, to make a Map window appear inside the frame, specify From Window i_map (where
i_map is an integer variable containing the Map's window identifier). A window must already be open
before you can create a frame containing the window.

The Title clause provides an alternate syntax for specifying which window appears in the frame. For
example, to identify a Map window which displays the table WORLD, the Title clause should read
Title "WORLD Map". If the title string does not refer to an existing window, or if title is an empty
string (""), the frame will be empty. If you specify both the Title clause and the From Window
clause, the latter clause takes effect.

The FillFrame clause controls how the window fills the frame. If you specify FillFrame On, the
entire frame is filled with an image of the window. (This is analogous to checking the Fill Frame
With Contents check box in MapInfo Professional's Frame Object dialog box, which appears if you
double-click a frame.) If you specify FillFrame Off (or if you omit the FillFrame clause entirely), the
aspect ratio of the window affects the appearance of the frame; in other words, re-sizing a Map
window to be tall and thin causes the frame to appear tall and thin.

Example

The following examples show how to create a frame for a Map window's thematic legend, or
Cartographic Legend window.

Theme Legend windows are a special case. To create a frame for a Theme Legend window, you
must use the Title clause instead of the From Window clause.

Dim i_layout_id, i_map_id As Integer
Dim s_title As String
MapBasic 11.0 175 Reference

Chapter 4:
Create Grid statement
' here, you would store the Map window's ID in i_map_id,
' and store the Layout window's ID in i_layout_id.
' To obtain an ID, call FrontWindow() or WindowID().

s_title = "Theme Legend of " + WindowInfo(i_map_id, WIN_INFO_NAME)
Set CoordSys Layout Units "in"
Create Frame

Into Window i_layout_id
(1,2) (4, 5)
Title s_title

To create a frame for a Map window's cartographic legend, you should use the From Window
clause since there may be more than one cartographic legend window per map.

Dim i_cartlgnd_id As Integer

' here, you would store the Cartographic Legend window's ID
' in i_cartlgnd _id,
' To obtain an ID, call FrontWindow() or WindowID().

Create Frame
Into Window i_layout_id
(1,2) (4, 5)
From Window i_cartlgnd_id

See Also:

Brush clause, Insert statement, Layout statement, Pen clause, Set CoordSys statement, Set
Layout statement, Update statement

Create Grid statement

Purpose

Produces a raster grid file, which MapBasic displays as a raster table in a Map window. You can
issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Create Grid
From tablename
With expression [Ignore value_to_ignore]
Into filespec [Type grid_type]

[Coordsys...]
[Clipping { Object obj } | { Table tablename }]
Inflect num_inflections By Percent at

color : inflection_value [color : inflection_value ...]
[Round rounding_factor]
{[Cell Size cell_size [Units distance_unit]] | [Cell Min n_cells]}

 [Border numcells]
Interpolate With interpolator_name Version version_string
MapBasic 11.0 176 Reference

Chapter 4:
Create Grid statement
Using num_parameters parameter_name : parameter_value
[parameter_name : parameter_value ...]

tablename is the “alias” name of an open table from which to get data points.

expression is the expression by which the table will be shaded, such as a column name.

value_to_ignore is a value to be ignored; this is usually zero. No grid theme will be created for a row
if the row's value matches the value to be ignored.

filespec specifies the fully qualified path and name of the new grid file. It will have a .MIG extension.

grid_type is a string expression that specifies the type of grid file to create. By default, .MIG files are
created.

Coordsys is an optional CoordSys clause which is the coordinate system that the grid will be created
in. If not provided, the grid will be created in the same coordinate system as the source table. Refer
to CoordSys clause for more information.

obj is an object to clip grid cells to. Only the portion of the grid theme within the object will display. If
a grid cell is not within the object, that cell value will not be written out and a null cell is written in its
place.

tablename is the name of a table of region objects which will be combined into a single region object
and then used for clipping grid cells.

num_inflections is a numeric expression, specifying the number of color:inflection_value pairs.

color is a color expression of, part of a color:value inflection pair.

inflection_value is a numeric expression, specifying the value of a color:inflection_value pair.

cell_size is a numeric expression, specifying the size of a grid cell in distance units.

n_cells is a numeric expression that specifies the height or width of the grid in cells.

numcells defines the number of cells to be added around the edge of the original grid bounds.
numcells will be added to the left, right, top, and bottom of the original grid dimensions.

distance_unit is a string expression, specifying the units for the preceding cell size. This is an
optional parameter. If not present, the distance units from the table's coordinate system are used.

interpolator_name is a string expression, specifying the name of the interpolator to use to create the
grid.

version_string is a string expression, specifying the version of the interpolator that the parameters
are meant for.

num_parameters is a numeric expression, specifying the number of interpolator parameter
name:value pairs.

parameter_name is a string expression, specifying the name part of a
parameter_name:parameter_value pair.

parameter_value is a numeric expression, specifying the value part of a
parameter_name:parameter_value pair.
MapBasic 11.0 177 Reference

Chapter 4:
Create Grid statement
By Percent at specifies that the subsequent color:Inflection_value pairs represent a color value and
percentage value.

Round is a numeric expression, specifying the rounding factor applied to the inflection values.

Description

A grid surface theme is a continuous raster grid produced by an interpolation of point data. The
Create Grid statement takes a data column from a table of points, and passes those points and their
data values to an interpolator. The interpolator produces a raster grid file, which MapBasic displays
as a raster table in a Map window.

The Create Grid statement reads (x, y, z) values from the table specified in the From clause. It gets
the z values by evaluating the expression specified in the With clause with respect to the table.

The dimensions of the grid can be specified in two ways. One is by specifying the size of a grid cell
in distance units, such as miles. The other is by specifying a minimum height or width of the grid in
terms of grid cells. For example, if you wanted the grid to be at least 200 cells wide by 200 cells high,
you would specify “cell min 200". Depending on the aspect ratio of the area covered by the grid, the
actual grid dimensions would not be 200 by 200, but it would be at least that wide and high.

Example

Open Table "C:\States.tab" Interactive
Map From States
Open Table "C:\Us_elev.tab" Interactive
Add Map Auto Layer Us_elev
set map redraw off
Set Map Layer 1 Display Off
set map redraw on

create grid
from Us_elev
with Elevation_FT
into "C:\Us_elev_grid"
clipping table States
inflect 5 at

RGB(0, 0, 255) : 13
RGB(0, 255, 255) : 3632.5
RGB(0, 255, 0) : 7252
RGB(255, 255, 0) : 10871.5
RGB(255, 0, 0) : 14491

cell min 200
interpolate

with "IDW" version "100"
using 4

"EXPONENT": "2"
"MAX POINTS": "25"
"MIN POINTS": "1"
"SEARCH RADIUS": "100"
MapBasic 11.0 178 Reference

Chapter 4:
Create Index statement
See Also:

Set Map statement

Create Index statement

Purpose

Creates an index for a column in an open table. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Create Index On table (column)

table is the name of an open table.

column is the name of a column in the open table.

Description

The Create Index statement creates an index on the specified column. MapInfo Professional uses
Indexes in operations such as Query > Find. Indexes also improve the performance of queries in
general.

MapInfo Professional cannot create an index if the table has unsaved edits. Use the Commit
Table statement to save edits.

Example

The following example creates an index for the “Capital” field of the World table.

Open Table "world" Interactive
Create Index on World(Capital)

See Also:

Alter Table statement, Create Table statement, Drop Index statement, Commit Table statement

Create Legend statement

Purpose

Creates a new Theme Legend window tied to the specified Map window. You can issue this
statement from the MapBasic Window in MapInfo Professional.

For MapInfo Professional versions 5.0 and later, the Create Cartographic Legend statement allows
you to create and display cartographic style legends. Refer to the Create Cartographic Legend
statement for more information.
MapBasic 11.0 179 Reference

Chapter 4:
CreateLine() function
Syntax

Create Legend
[From Window window_ID]
[{ Show | Hide }]

window_ID is an integer, representing a MapInfo Professional window ID for a Map window.

Description

This statement creates a special floating, Thematic Legend window, in addition to the standard
MapInfo Professional Legend window. (To open MapInfo Professional's standard Legend window,
use the Open Window Legend statement.)

The Create Legend statement is useful if you want the Legend of a Map window to always be
visible, even when the Map window is not active. Also, this statement is useful in “Integrated
Mapping” applications, where MapInfo Professional windows are integrated into another application,
such as a Visual Basic application. For information about Integrated Mapping, see the MapBasic
User Guide.

If you include the From Window clause, the new Theme Legend window is tied to the window that
you specify; otherwise, the new window is tied to the most recently used Map.

If you include the optional Hide keyword, the window is created in a hidden state. You can then
show the hidden window by using the Set Window…Show statement.

After you issue the Create Legend statement, determine the new window's integer ID by calling
WindowID(0). Use that window ID in subsequent statements (such as the Set Window
statement).

The new Theme Legend window is created according to the parent and style settings that you
specify through the Set Next Document statement.

See Also:

Create Cartographic Legend statement, Open Window statement, Set Next Document
statement, Set Window statement

CreateLine() function

Purpose

Returns an Object value representing a line. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

CreateLine(x1, y1, x2, y2)

x1 is a float value, indicating the x-position (for example,) of the line's starting point.

y1 is a float value, indicating the y-position (for example, Latitude) of the line's starting point.

x2 is a float value, indicating the x-position of the line's ending point.
MapBasic 11.0 180 Reference

Chapter 4:
Create Line statement
y2 is a float value, indicating the y-position of the line's ending point.

Return Value

Object

Description

The CreateLine() function returns an Object value representing a line. The x and y parameters use
the current coordinate system. By default, MapBasic uses a Longitude/Latitude coordinate system.
Use the Set CoordSys statement to choose a new system.

The line object will use whatever Pen style is currently selected. To create a line object with a
specific Pen style, you could issue the Set Style statement before calling CreateLine() or you
could issue a Create Line statement, with an optional Pen clause.

The line object created through the CreateLine() function could be assigned to an Object variable,
stored in an existing row of a table (through the Update statement), or inserted into a new row of a
table (through an Insert statement). If you need to create objects on a Layout window, you must
first issue a Set CoordSys Layout statement.

Example

The following example uses the Insert statement to insert a new row into the table Routes. The
CreateLine() function is used within the body of the Insert statement.

Open Table "Routes"
Insert Into routes (obj)

Values (CreateLine(-72.55, 42.431, -72.568, 42.435))

See Also:

Create Line statement, Insert statement, Update statement

Create Line statement

Purpose

Creates a line object. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create Line
[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2)
[Pen...]

window_id is a window identifier.

var_name is the name of an existing object variable.

x1, y1 specifies the starting point of a line.
MapBasic 11.0 181 Reference

Chapter 4:
Create Map statement
x2, y2 specifies the ending point of the line.

The Pen clause specifies a line style.

Description

The Create Line statement creates a line object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into
clause is not provided, MapBasic will attempt to store the object in the topmost window; if objects
may not be stored in the topmost window (for example, if the topmost window is a grapher) no object
will be created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a Longitude/Latitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system. Note that MapBasic's coordinate
system is independent of the coordinate system of any Map window. Objects created on a Layout
window, however, are specified in paper units: each x-coordinate represents a distance from the left
edge of the page, while each y-coordinate represents the distance from the top edge of the page. By
default, MapBasic uses inches as the default paper unit. To use a different paper unit, use the Set
Paper Units statement.

If you need to create objects on a Layout window, you must first issue a Set CoordSys
Layout statement.

The optional Pen clause specifies a line style; see Pen clause for more details. If no Pen clause is
specified, the Create Line statement will use the current MapInfo Professional line style.

See Also:

CreateLine() function, Insert statement, Pen clause, Update statement

Create Map statement

Purpose

Modifies the structure of a table, making the table mappable. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Create Map
For table
[CoordSys...] Using from_table]

table is the name of an open table.

from_table is the name of an open table from where to copy a coordinate system.
MapBasic 11.0 182 Reference

Chapter 4:
Create Map3D statement
Description

The Create Map statement makes an open table mappable, so that it can be displayed in a Map
window. This statement does not open a new Map window. To open a new Map window, use the
Map statement.

You should not perform a Create Map statement on a table that is already mappable; doing so will
delete all map objects from the table. If a table already has a map attached, and you wish to
permanently change the projection of the map, use a Table As statement. Alternately, if you wish to
temporarily change the projection in which a map is displayed, issue a Set Map statement with a
CoordSys clause. The Create Map statement does not work on linked tables. To make a linked
table mappable, use the Server Create Map statement.

Specifying the Coordinate System

Use one of the following two methods to specify a coordinate system:

• Provide the name of an already open mappable table as the from_table portion of the Using
clause. In this case, the coordinate system used will be identical to that used in the from_table.
The from_table must be a currently open table, and must be mappable or an error will occur.

• Explicitly supply the coordinate system information through a CoordSys clause (set in
preferences). If you omit both the CoordSys clause and the Using clause, the table will use the
current MapBasic coordinate system.

Note that the CoordSys clause affects the precision of the map. The CoordSys clause includes a
Bounds clause, which sets limits on the minimum and maximum coordinates that can be stored in
the map. If you omit the Bounds clause, MapInfo Professional uses default bounds that encompass
the entire Earth (in which case, coordinates are precise to one millionth of a degree, or
approximately 4 inches). If you know in advance that the map you are creating is limited to a finite
area (for example, a specific metropolitan area), you can increase the precision of the map's
coordinates by specifying bounds that confine the map to that area. For a complete listing of the
CoordSys syntax, see CoordSys clause.

See Also:

Commit Table statement, CoordSys clause, Create Table statement, Drop Map statement, Map
statement, Server Create Map statement, Set Map statement

Create Map3D statement

Purpose

Creates a 3DMap with the desired parameters. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Create Map3D
[From Window window_id | MapString mapper_creation_string]
[Camera [Pitch angle | Roll angle | Yaw angle | Elevation angle] |
[Position (x, y, z) | FocalPoint (x, y, z)] |
[Orientation (vu_1, vu_2, vu_3, vpn_1, vpn_2, vpn_3,
MapBasic 11.0 183 Reference

Chapter 4:
Create Map3D statement
clip_near, clip_far)]]
[Light [Position (x, y, z) | Color lightcolor]]
[Resolution (res_x, res_y)]
[Scale grid_scale]
[Background backgroundcolor]
[Units unit_name]

window_id is a window identifier a for a Map window which contains a Grid layer. An error message
is displayed if a Grid layer is not found.

mapper_creation_string specifies a command string that creates the mapper textured on the grid.

Camera specifies the camera position and orientation.

angle is an angle measurement in degrees. The horizontal angle in the dialog box ranges from 0-
360 degrees and rotates the maps around the center point of the grid. The vertical angle in the
dialog box ranges from 0-90 and measures the rotation in elevation from the start point directly over
the map.

Pitch adjusts the camera's current rotation about the x axis centered at the camera's origin.

Roll adjusts the camera's current rotation about the z axis centered at the camera's origin.

Yaw adjusts the camera's current rotation about the y axis centered at the camera's origin.

Elevation adjusts the current camera's rotation about the x axis centered at the camera's focal
point.

Position indicates the camera/light position.

FocalPoint indicates the camera/light focal point.

Orientation specifies the cameras ViewUp (vu_1, vu_2, vu_3), ViewPlane Normal (vpn_1, vpn_2,
vpn_3), and Clipping Range (clip_near, clip_far) (used specifically for persistence of view).

Resolution is the number of samples to take in the x and y directions. These values can increase to
a maximum of the grid resolution. The resolution values can increase to a maximum of the grid x, y
dimension. If the grid is 200x200 then the resolution values will be clamped to a maximum of
200x200. You cannot increase the grid resolution, only specify a subsample value.

grid_scale is the amount to scale the grid in the z direction. A value >1 will exaggerate the topology
in the z direction, a value <1 will scale down the topological features in the z direction.

backgroundcolor is a color to be used to set the background and is specified using the RGB()
function.

unit_name specifies the units the grid values are in. Do not specify this for unit-less grids (for
example, grids generated using temperature or density). This option needs to be specified at
creation time. You cannot change them later with the Set Map3D statement or the Properties dialog
box.
MapBasic 11.0 184 Reference

Chapter 4:
Create Menu statement
Description

Once it is created, the 3DMap window is a standalone window. Since it is based on the same tables
as the original Map window, if these tables are changed and the 3DMap window is manually
“refreshed” or re-created from a workspace, these changes are displayed on the grid. The creation
fails if the window_id is not a Map window or if the Map window does not contain a Grid layer. If
there are multiple grids in the Map window, each will be represented in the 3DMap window.

A 3DMap keeps a Mapper creation string as its texture generator. This string will also be prevalent in
the workspace when the 3DMap window is persisted. The initialization will read in the grid layer to
create 3D geometry and topology objects.

Example

Create Map3D Resolution(75,75)

Creates a 3DMap window of the most recent Map window. It will fail if the window does not contain
any Continuous Grid layers. Another example is:

Create Map3D From Window FrontWindow() Resolution(100,100) Scale 2
Background RGB(255,0,0) Units "ft".

Creates a 3DMap window with a Red background, the z units set to feet, a Z scale factor of 2, and
the grid resolution set to 100x100.

See Also:

Set Map3D statement

Create Menu statement

Purpose

Creates a new menu, or redefines an existing menu. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax 1

Create Menu newmenuname [ID menu_id] [Context] As
menuitem [ID menu_item_id] [HelpMsg help]
{ Calling handler | As menuname }
[, menuitem ...]

Syntax 2

Create Menu newmenuname As Default

newmenuname is a string representing the name of the menu to define or redefine.

menuitem is a string representing the name of an item to include on the new menu.

Context is reserved for internal use only; not usable in MapBasic programs.

menu_id is a SmallInt ID number from one to fifteen, identifying a standard menu.
MapBasic 11.0 185 Reference

Chapter 4:
Create Menu statement
menu_item_id is an integer ID number that identifies a custom menu item.

help is a string that appears on the status bar whenever the menu item is highlighted.

handler is the name of a procedure, or a code for a standard menu command, or a special syntax for
handling the menu event by calling OLE or DDE; see Calling Clause Options. If you specify a
command code for a standard MapInfo Professional Show/Hide command (such as
M_WINDOW_STATISTICS), the menuitem string must start with an exclamation point and include a
caret (^), to preserve the item's Show/Hide behavior.

menuname is the name of an existing menu to include as a hierarchical submenu.

Description

If the newmenuname parameter matches the name of an existing MapInfo Professional menu (such
as File), the statement re-defines that menu. If the newmenuname parameter does not match the
name of an existing menu, the Create Menu statement defines an entirely new menu. For a list of
the standard MapInfo Professional menu names, see Alter Menu statement.

The Create Menu statement does not automatically display a newly-created menu; a new menu will
only display as a result of a subsequent Alter Menu Bar statement or Create Menu Bar
statement. However, if a Create Menu statement modifies an existing menu, and if that existing
menu is already part of the menu bar, the change will be visible immediately.

MapInfo Professional can maintain no more than 96 menu definitions at one time, including
the menus defined automatically by MapInfo Professional (File, etc.). This limit is
independent of the number of menus displayed on the menu bar at one time.

The menuitem parameter identifies the name of the menu item. The item's name can contain special
control characters to define menu item attributes (for example, whether a menu item is checkable).
See tables below for details.

The following characters require special handling: slash (/), back slash(\), and less than (<). If you
want to display any of these special characters in the menu or the status bar help, you must include
an extra back slash in the menuitem string or the help string. For example, the following statement
creates a menu item that reads, “Client/Server.”

Create Menu "Data" As
"Client\/Server" Calling cs_proc

If a menuitem parameter begins with the character @, the custom menu breaks into two columns.
The item whose name starts with @ is the first item in the second column.

Assigning Handlers to Custom Menu Items

Most menu items include the Calling handler clause; where handler is either the name of a
MapBasic procedure or a numeric code identifying an MapInfo Professional operation (such as
M_FILE_SAVE to specify the File > Save command). If the user chooses a menu item which has a
handler, MapBasic automatically calls the handler (whether the handler is a sub procedure or a
command code). Your program must Include the file MENU.DEF if you plan to refer to menu codes
such as M_FILE_SAVE.
MapBasic 11.0 186 Reference

Chapter 4:
Create Menu statement
The optional ID clause lets you assign a unique integer ID to each custom menu item. Menu item
IDs are useful if you want to allow multiple menu items to call the same handler procedure. Within
the handler procedure, you can determine which menu item the user chose by calling
CommandInfo(CMD_INFO_MENUITEM). Menu item IDs can also be used by other statements,
such as the Alter Menu Item statement. If a menu item has neither a handler nor a menuname
associated with it, that menu item is inert. Inert menu items are used for cosmetic purposes, such as
displaying horizontal lines which break up a menu.

Creating Hierarchical Menus

To include a hierarchical menu on the new menu, use the As sub-clause instead of the Calling sub-
clause. The As sub-clause must specify the name of the existing menu which should be attached to
the new menu. The following example creates a custom menu containing one conventional menu
item and one hierarchical menu.

Create Menu "Special" As
"Configure" Calling config_sub_proc,
"Objects" As "Objects"

When you add a hierarchical menu to the menu, the name of the hierarchical menu appears on the
parent menu instead of the menuitem string.

Properties of a Menu Item

Menu items can be enabled or disabled; disabled items appear grayed out. Some menu items are
checkable, meaning that the menu can display a check mark next to the item. At any given time, a
checkable menu item is either checked or unchecked.

To set the properties of a menu item, include control codes (from the table below) at the start of the
menuitem parameter.

Control code Effect

(The menu item is initially disabled. Example: (Close

(- The menu item is a horizontal separator line; such a menu item cannot have a
handler. Example: (-

($ This special code represents the File menu's most-recently-used (MRU) list. It
may only appear once in the menu system, and it may not be used on a shortcut
menu. To eliminate the MRU list from the File menu, either delete this code from
MAPINFOW.MNU or re-create the File menu by issuing a Create Menu
statement.

(> This special code represents the Window menu's list of open windows. It may
only appear once in the menu system.

! Menu item is checkable, but it is initially unchecked.

Example: !Confirm Deletion
MapBasic 11.0 187 Reference

Chapter 4:
Create Menu statement
Defining Keyboard Shortcuts

Menu items can have two different types of keyboard shortcuts, which let the user choose menu
items through the keyboard rather than by clicking with the mouse.

One type of keyboard shortcut lets the user drop down a menu or choose a menu item by pressing
keys. For example, on MapInfo Professional, the user can press Alt-W to show the Window menu,
then press M (or Alt-M) to choose New Map Window. To create this type of keyboard shortcut,
include the ampersand character (&) in the newmenuname or menuitem string (for example, specify
“&Map” as the menuitem parameter in the Create Menu statement). Place the ampersand
immediately before the character to be used as the shortcut.

The other type of keyboard shortcut allows the user to activate an option without going through the
menu at all. If a menu item has a shortcut key sequence of Alt-F5, the user can activate the menu
item by pressing Alt-F5. To create this type of shortcut, use the following key sequences.

The codes in the following tables must appear at the end of a menu item name.

! … ^ … If a caret (^) appears within the text string of a checkable menu item, the item
toggles between alternate text (for example, Show… vs. Hide…) instead of
toggling between checked and unchecked. The text before the caret appears
when the item is “checked.” Example: !Hide Status Bar^Show Status
Bar

!+ Menu item is checkable, and it is initially checked.

Example: !+Confirm Deletions

Control code Effect

Windows Accelerator Code Effect

/W {letter | %number} Defines a Windows shortcut key which can be activated by
pressing the appropriate key.

Examples: Zap /WZ or Zap /W%120

/W# {letter | %number} Defines a Windows shortcut key which also requires the shift
key.

Examples: Zap /W#Z or Zap /W#%120

/W@ {letter | %number} Defines a Windows shortcut key which also requires the Alt key.

Examples: Zap /W@Z or Zap /W@%120

/W^ {letter | %number} Defines a Windows shortcut key which also requires the Ctrl key.

Examples: Zap /W^Z or Zap /W^%120
MapBasic 11.0 188 Reference

Chapter 4:
Create Menu statement
To specify a function key as a Windows accelerator, the accelerator code must include a percent
sign (%) followed by a number. The number 112 corresponds to F1, 113 corresponds to F2, etc.

The Create Menu Bar As Default statement removes and un-defines all custom menus
created through the Create Menu statement. Alternately, if you need to un-define one, but
not all, of the custom menus that your application has added, you can issue a statement of
the form Create Menu menuname As Default.

After altering a standard MapInfo Professional menu (for example, “File”), you can restore the menu
to its original state by issuing a Create Menu menuname As Default statement.

Calling Clause Options

The Calling clause specifies what should happen when the user chooses the custom menu
command. The following table describes the available syntax.

In the last two cases, the string sent to OLE or DDE starts with the three letters “MI:” (so that the
server can detect that the message came from MapInfo Professional). The remainder of the string
contains a comma-separated list of the values returned from relevant CommandInfo() function
calls. For complete details on the string syntax, see the MapBasic User Guide.

Examples

The following example uses the Create Menu statement to create a custom menu, then adds the
custom menu to MapInfo Professional's menu bar. This example removes the Window menu (ID 6)
and the Help menu (ID 7), and then adds the custom menu, the Window menu, and the Help menu
back to the menu bar. This technique guarantees that the last two menus will always be Window,
and Help.

Declare Sub Main
Declare Sub addsub

Calling clause example Description

Calling M_FILE_NEW If Calling is followed by a numeric code from MENU.DEF,
MapInfo Professional handles the event by running a standard
MapInfo Professional menu command (the File > New
command, in this example).

Calling my_procedure If you specify a procedure name, MapInfo Professional handles
the event by calling the procedure.

Calling OLE
"methodname"

MapInfo Professional handles the event by making a method
call to the OLE Automation object set by the SetCallback
method.

Calling DDE
"server","topic"

Windows only. MapInfo Professional handles the event by
connecting through DDE to “server|topic” and sending an
Execute message to the DDE server.
MapBasic 11.0 189 Reference

Chapter 4:
Create Menu Bar statement
Declare Sub editsub
Declare Sub delsub
Sub Main

Create Menu "DataEntry" As
"Add" Calling addsub,
"Edit" Calling editsub,
"Delete" Calling delsub

Alter Menu Bar Remove ID 6, ID 7
Alter Menu Bar Add "DataEntry", ID 6, ID 7

End Sub

The following example creates an abbreviated version of the File menu. The “(” control character
specifies that the Close, Save, and Print options will be disabled initially. The Open and Save
options have Windows accelerator key sequences (Ctrl+O and Ctrl+S, respectively). Note that both
the Open and Save options use the Chr$(9) function to insert a Tab character into the menu item
name, so that the remaining text is shifted to the right.

Include "MENU.DEF"

Create Menu "File" As
"New" Calling M_FILE_NEW,
"Open" +Chr$(9)+"Ctrl+O/W^O" Calling M_FILE_OPEN,
"(-",
"(Close" Calling M_FILE_CLOSE,
"(Save" +Chr$(9)+"Ctrl+S /W^S" Calling M_FILE_SAVE,
"(-",
"(Print" Calling M_FILE_PRINT,
"(-",
"Exit" Calling M_FILE_EXIT

If you want to prevent the user from having access to MapInfo Professional's shortcut menus, use a
Create Menu statement to re-create the appropriate menu, and define the menu as just a separator
control code: “(-”. The following example uses this technique to disable the Map window's shortcut
menu.

Create Menu "MapperShortcut" As "(-"

See Also:

Alter Menu Item statement, Create Menu Bar statement

Create Menu Bar statement

Purpose

Rebuilds the entire menu bar, using the available menus. You can issue this statement from the
MapBasic Window in MapInfo Professional.
MapBasic 11.0 190 Reference

Chapter 4:
Create Menu Bar statement
Syntax 1

Create Menu Bar As
{ menu_name | ID menu_number }
[, { menu_name | ID menu_number } ...]

Syntax 2

Create Menu Bar As Default

menu_name is the name of a standard MapInfo Professional menu, or the name of a custom menu
created through a Create Menu statement.

menu_number is the number associated with a standard MapInfo Professional menu (for example, 1
for the File menu).

Description

A Create Menu Bar statement tells MapInfo Professional which menus should appear on the menu
bar, and in what order. If the statement omits one or more of the standard menu names, the
resultant menu may be shorter than the standard MapInfo Professional menu. Conversely, if the
statement includes the names of one or more custom menus (which were created through the
Create Menu statement), the Create Menu Bar statement can create a menu bar that is longer
than the standard MapInfo Professional menu.

Any menu can be identified by its name (for example, “File”), regardless of whether it is a standard
menu or a custom menu. Each of MapInfo Professional's standard menus can also be referred to by
its menu ID; for example, the File menu has an ID of 1.

See Alter Menu Item statement for a listing of the names and ID numbers of MapInfo
Professional's menus.

After the menu bar has been customized, the following statement:

Create Menu Bar As Default

restores the standard MapInfo Professional menu bar. Note that the Create Menu Bar As Default
statement removes any custom menu items that may have been added by other MapBasic
applications that may be running at the same time. For the sake of not accidentally disabling other
MapBasic applications, you should exercise caution when using the Create Menu Bar As Default
statement.

Examples

The following example shortens the menu bar so that it includes only the File, Edit, Query, and
window-specific (for example, Map, Browse, etc.) menus.

Create Menu Bar As
"File", "Edit", "Query", "WinSpecific"

Ordinarily, the MapInfo Professional menu bar only displays a Map menu when a Map window is the
active window. Similarly, MapInfo Professional only displays a Browse menu when a Browse
window is the active window. The following example redefines the menu bar so that it always
includes both the Map and Browse menus, even when no windows are on the screen. However, all
MapBasic 11.0 191 Reference

Chapter 4:
Create MultiPoint statement
items on the Map menu will be disabled (grayed out) whenever the current window is not a Map
window, and all items on the Browse menu will be disabled whenever the current window is not a
Browse window.

Create Menu Bar As
"File", "Edit", "Query", "Map", "Browse"

The following example creates a custom menu, called DataEntry, and then redefines the menu bar
so that it includes only the File, Edit, and DataEntry menus.

Declare Sub AddSub
Declare Sub EditSub
Declare Sub DelSub

Create Menu "DataEntry" As
"Add" calling AddSub,
"Edit" calling EditSub,
"Delete" calling DelSub

Create Menu Bar As
"File", "Edit", "DataEntry"

See Also:

Alter Menu Bar statement, Create Menu statement, Menu Bar statement

Create MultiPoint statement

Purpose

Combines a number of points into a single object. All points have the same symbol. The Multipoint
object displays in the Browser as a single record. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Create Multipoint
[Into { Window window_id | Variable var_name }]
[num_points]
(x1, y1) (x2, y2) [...]
[Symbol...]

window_id is a window identifier.

var_name is the name of an existing object variable.

num_points is the number of points inside Multipoint object.

x y specifies the location of the point.
MapBasic 11.0 192 Reference

Chapter 4:
Create MultiPoint statement
The Symbol clause specifies a symbol style.

One symbol is used for all points contained in a Multipoint object.

Currently MapInfo Professional uses the following four different syntaxes to define a symbol used for
points:

Syntax 2 (MapInfo Professional’s 3.0 Symbol Syntax)

Symbol (shape, color, size)

shape is an integer, 31 or larger, specifying which character to use from MapInfo Professional's
standard symbol set. MapInfo 3.0 symbols refers to the symbol set that was originally published with
MapInfo for Windows 3.0 and has been maintained in subsequent versions of MapInfo Professional.
To create an invisible symbol, use 31. The standard set of symbols includes symbols 31 through 67,
but the user can customize the symbol set by using the Symbol application.

color is an integer RGB color value; see RGB() function.

size is an integer point size, from 1 to 48.

Syntax 3 (TrueType Font Syntax)

Symbol (shape, color, size, fontname, fontstyle, rotation)

shape is an integer, 31 or larger, specifying which character to use from a TrueType font. To create
an invisible symbol, use 31.

color is an integer RGB color value; see RGB() function.

size is an integer point size, from 1 to 48.

fontname is a string representing a TrueType font name (for example, “Wingdings”).

fontstyle is an integer code controlling attributes such as bold.

rotation is a floating-point number representing a rotation angle, in degrees.

Syntax 4 (Custom Bitmap File Syntax)

Symbol (filename, color, size, customstyle)

filename is a string up to 31 characters long, representing the name of a bitmap file. The file must be
in the CUSTSYMB directory (unless a Reload Symbols statement has been used to specify a
different directory).

color is an integer RGB color value; see RGB() function.

size is an integer point size, from 1 to 48.

customstyle is an integer code controlling color and background attributes. See table below.

Syntax 5

Symbol symbol_expr
MapBasic 11.0 193 Reference

Chapter 4:
Create Object statement
symbol_expr is a Symbol expression, which can either be the name of a Symbol variable, or a
function call that returns a Symbol value, for example, the MakeSymbol() function.

Example

Create Multipoint 7 (0,0) (1,1) (2,2) (3,4) (-1,1) (3,-2) (4,3)

Create Object statement

Purpose

Creates one or more regions by performing a Buffer, Merge, Intersect, Union, Voronoi, or Isogram
operation. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Create Object As { Buffer | Isogram | Union | Intersect | Merge |
ConvexHull | Voronoi }

From fromtable
[Into { Table intotable | Variable varname }]
[Data column = expression [, column = expression...]]
[Group By { column | RowID }]

fromtable is the name of an open table, containing one or more graphic objects.

intotable is the name of an open table where the new object(s) will be stored.

varname is the name of an Object variable where a new object will be stored.

column is the name of a column in the table.

expression is an expression used to populate column.

Description

The Create Object statement creates one or more new region objects, by performing a geographic
operation (Buffer, Merge, Intersect, Union, ConvexHull, Voronoi, or Isogram) on one or more
existing objects.

The Into clause specifies where results are stored. To store the results in a table, specify Into
Table. To store the results in an Object variable, specify Into Variable. If you omit the Into clause,
results are stored in the source table.

If you specify a Group By clause to perform data aggregation, you must store the results in a
table rather than a variable.

The keyword which follows the As keyword dictates what type of objects are created. Buffer and
Isogram are discussed in sections: Create Object As Buffer and Create Object As Isogram.
MapBasic 11.0 194 Reference

Chapter 4:
Create Object statement
Union

Specify Union to perform a combine operation, which eliminates any areas of overlap. If you
perform the union operation on two overlapping regions (each of which contains one polygon), the
end result may be a region object that contains one polygon.

The union and merge operations are similar, but they behave very differently in cases where objects
are completely contained within other objects. In this case, the merge operation removes the area of
the smaller object from the larger object, leaving a hole where the smaller object was. The union
operation does not remove the area of the smaller object.

Create Objects As Union is similar to the Objects Combine statement. The Objects Combine
statement deletes the input and inserts a new combined object. Create Objects As Union only
inserts the new combined object, it does not delete the input objects. Combining using a Target and
potentially different tables is only available with the Objects Combine statement. The Combine
Objects using Column functionality is only available using Create Objects As Union using the
Group By clause.

If a Create Object As Union statement does not include a Group By clause, MapInfo Professional
creates one combined object for all objects in the table. If the statement includes a Group By
clause, it must name a column in the table to allow MapInfo Professional to group the source objects
according to the contents of the column and produce a combined object for each group of objects.

If you specify a Group By clause, MapInfo Professional groups all records sharing the same value,
and performs an operation (for example, Merge) on the group.

If you specify a Data clause, MapInfo Professional performs data aggregation. For example, if you
perform merge or union operations, you may want to use the Data clause to assign data values
based on the Sum() or Avg() aggregate functions.

Intersect

Specify Intersect to create an object representing the intersection of other objects (for example, if
two regions overlap, the intersection is the area covered by both objects).

Merge

Specify Merge to create an object representing the combined area of the source objects. The Merge
operation produces a results object that contains all of the polygons that belonged to the original
objects. If the original objects overlap, the merge operation does not eliminate the overlap. Thus, if
you merge two overlapping regions (each of which contains one polygon), the end result may be a
region object that contains two overlapping polygons. In general, Union should be used instead.

Convex Hull

The ConvexHull operator creates a polygon representing a convex hull around a set of points. The
convex hull polygon can be thought of as an operator that places a rubber band around all of the
points. It consists of the minimal set of points such that all other points lie on or inside the polygon.
The polygon is convex—no interior angle can be greater than 180 degrees.

The points used to construct the convex hull are any nodes from Regions, Polylines, or Points in the
fromtable. If a Create Object As ConvexHull statement does not include a Group By clause,
MapInfo Professional creates one convex hull polygon. If the statement includes a Group By clause
MapBasic 11.0 195 Reference

Chapter 4:
Create Object statement
that names a column in the table, MapInfo Professional groups the source objects according to the
contents of the column, then creates one convex hull polygon for each group of objects. If the
statement includes a Group By RowID clause, MapInfo Professional creates one convex hull
polygon for each object in the source table.

Voronoi

Specify Voronoi to create regions that represent the Voronoi solutions of the input points. The data
values from the original input points can be assigned to the resultant polygon for that point by
specifying data clauses.

Example

The following example merges region objects from the Parcels table, and stores the resultant
regions in the table Zones. Since the Create Object statement includes a Group By clause,
MapBasic groups the Parcel regions, then performs one merge operation for each group. Thus, the
Zones table ends up with one region object for each group of objects in the Parcels table. Each
group consists of all parcels having the same value in the zone_id column.

Following the Create Object statement, the parcelcount column in the Zones table indicates how
many parcels were merged to produce that zone. The zonevalue column in the Zones table
indicates the sum of the values from the parcels that comprised that zone.

Open Table "PARCELS"
Open Table "ZONES"
Create Object As Merge

From PARCELS Into Table ZONES Data
parcelcount=Count(*),zonevalue=Sum(parcelvalue)
Group By zone_id

The next example shows a multi-object convex hull using the Create Object As statement.

Create Object As ConvexHull from state_caps into Table dump_table

Create Object As Buffer

Syntax

Create Object As Buffer
From fromtable
[Into { Table intotable | Variable varname }]
[Width bufferwidth [Units unitname]]]
[Type { Spherical | Cartesian }]]
[Resolution smoothness]
[Data column = expression [, column = expression...]]
[Group By { column | RowID }]

bufferwidth is a number indicating the displacement used in a Buffer operation; if this number is
negative, and if the source object is a closed object, the resulting buffer is smaller than the source
object. If the width is negative, and the object is a linear object (line, polyline, arc) or a point, then the
absolute value of width is used to produce a positive buffer.

unitname
MapBasic 11.0 196 Reference

Chapter 4:
Create Object statement
smoothness is an integer from 2 to 100, indicating the number of segments per circle in a Buffer
operation.

Description

If the Create Object statement performs a Buffer operation, the statement can include Width and
Resolution clauses. The Width clause specifies the width of the buffer. The optional Units sub-
clause lets you specify a distance unit name (such as “km” for kilometers) to apply to the Width
clause. If the Width clause does not include the Units sub-clause, the buffer width is interpreted in
MapBasic's current distance unit. By default, MapBasic uses miles as the distance unit; to change
this unit, use the Set Distance Units statement.

Type is the method used to calculate the buffer width around the object. It can either be Spherical
or Cartesian. Note that if the coordinate system of the intotable is NonEarth, then the calculations
are performed using Cartesian methods regardless of the option chosen, and if the coordinate
system of the intotable is Latitude/Longitude, then calculations are performed using Spherical
methods regardless of the option chosen.

The optional Type sub-clause lets you specify the type of distance calculation used to create the
buffer. If the Spherical type is used, then the calculation is done by mapping the data into a
Latitude/Longitude On Earth projection and using widths measured using Spherical distance
calculations. If the Cartesian type is used, then the calculation is done by considering the data to be
projected to a flat surface and widths are measured using Cartesian distance calculations. If the
Width clause does not include the Type sub-clause, then the default distance calculation type
Spherical is used. If the data is in a Latitude/Longitude projection, then Spherical calculations are
used regardless of the Type setting. If the data is in a NonEarth projection, the Cartesian
calculations are used regardless of the Type setting.

The Resolution keyword lets you specify the number of segments comprising each circle of the
buffer region. By default, a buffer object has a smoothness value of twelve (12), meaning that there
are twelve segments in a simple ring-shaped buffer region. By specifying a larger smoothness value,
you can produce smoother buffer regions. Note, however, that the larger the smoothness value, the
longer the Create Object statement takes, and the more disk space the resultant object occupies.

If a Create Object As Buffer statement does not include a Group By clause, MapInfo Professional
creates one buffer region. If the statement includes a Group By clause which names a column in the
table, MapInfo Professional groups the source objects according to the contents of the column, then
creates one buffer region for each group of objects. If the statement includes a Group By RowID
clause, MapInfo Professional creates one buffer region for each object in the source table.

Example

The next example creates a region object, representing a quarter-mile buffer around whatever
objects are currently selected. The buffer object is stored in the Object variable, corridor. A
subsequent Update statement or Insert statement could then copy the object to a table.

Dim corridor As Object
Create Object As Buffer

From Selection
Into Variable corridor
Width 0.25 Units "mi"
Resolution 60
MapBasic 11.0 197 Reference

Chapter 4:
Create Object statement
Create Object As Isogram

Syntax

Create Object As Isogram
From fromtable
[Into { Table intotable }]
[Data column = expression [, column = expression...]]
Connection connection_handle
[Distance dist1 [[Brush ...] [Pen ...]]

[, dist2 [Brush ...] [Pen ...]]
[, distN [Brush ...] [Pen ...] [,...]
Units dist_unit]

[Time time1 [[Brush ...] [Pen ...]]
[, time2 [Brush ...] [Pen ...]]
[, timeN [Brush ...] [Pen ...]] [,...]
Units time_unit]

connection_handle is a number expression returned from the Open Connection statement
referencing the connection to be used.

dist1, dist2, distN are numeric expressions representing distances for the Isograms expressed in
dist_units.

Brush is a valid Brush clause to specify fill style.

Pen is a valid Pen clause to specify a line style.

dist_unit is a valid unit of distance (for example, “km” for kilometers). See Set Distance Units
statement for a complete list of possible values.

time1, time2, timeN are numeric values representing times for Isograms expressed in time_units.

time_unit is a string representing valid unit of time. Valid choices are: “hr”, “min”, or “sec”.

Description

If the Create Object statement performs an Isogram operation, you must pass a connection_handle
that corresponds to an open connection created with an Open Connection statement. You must
specify a Distance clause or a Time clause to create the size of the Isogram desired. The Distance
clause can contain one or more distance expressions with an optional brush and/or pen for each
one. If you do not specify a Brush clause or Pen clause the current brush and pen is used. No
matter how many Distance instances you specify a single Units string must be provided to indicate
the units in which the distances are expressed.

By specifying a Time clause, you can create regions based on time, with each one having an
optional Brush clause and/or Pen clause. If you do not specify a Brush clause or Pen clause the
current brush and pen is used. No matter how many Time instances you specify a single Units string
must be provided to indicate the units in which the times are expressed. The maximum amount of
values allowed is 50. Each value creates a separate band that can be either specific times or
specific distances. Larger values take substantially longer to create. Many items factor into the
equation, but in general, using the Set Connection Isogram statement with MajorRoadsOnly
specified, results in a much quicker response compared to using the entire road network. MapBasic
MapBasic 11.0 198 Reference

Chapter 4:
Create Pline statement
only allows distances of 35 miles with MajorRoadsOnly Off and 280 miles with MajorRoadsOnly
On. similarly, the maximum time is 0.5 hours with MajorRoadsOnly Off and 4 hours with
MajorRoadsOnly On.

See Also:

Buffer() function, ConvexHull() function, Objects Combine statement, Objects Erase
statement, Objects Intersect statement, Open Connection statement

Create Pline statement

Purpose

Creates a polyline object. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create Pline
[Into { Window window_id | Variable var_name }]
[Multiple num_sections]
num_points (x1, y1) (x2, y2) [...]
[Pen...]
[Smooth]

window_id is a window identifier.

var_name is the name of an existing object variable.

num_points specifies how many nodes the polyline will contain.

num_sections specifies how many sections the multi-section polyline will contain.

each x, y pair defines a node of the polyline.

The Pen clause specifies a line style.

Description

The Create Pline statement creates a polyline object. If you need to create a polyline object, but do
not know until run-time how many nodes the object should contain, create the object in two steps:
First, use Create Pline to create an object with no nodes, and then use the Alter Object statement
to add detail to the polyline object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a Window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If you omit the
Into clause, MapInfo Professional attempts to store the object in the topmost window; if objects
cannot be stored in the topmost window; no object is created.
MapBasic 11.0 199 Reference

Chapter 4:
CreatePoint() function
The x and y parameters use whatever coordinate system MapBasic is currently using
(Longitude/Latitude by default). Objects created on a Layout window, however, are specified in
paper units. By default, MapBasic uses inches as the paper unit. To use a different paper unit, use
the Set Layout statement. If you need to create objects on a Layout window, you must first issue a
Set CoordSys Layout statement.

The optional Pen clause specifies a line style. If no Pen clause is specified, the Create Pline
statement will use the current line style (the style which appears in the MapInfo Professional
Options > Line Style dialog box). Smooth will smooth the line so that it appears to be one
continuous line with curves instead of angles.

A single-section polyline can contain up to 32,763 nodes. For a multiple-section polyline, the limit is
smaller: for each additional section, reduce the number of nodes by three.

See Also:

Alter Object statement, Insert statement, Pen clause, Set CoordSys statement, Update
statement

CreatePoint() function

Purpose

Returns an Object value representing a point. You can call this function from the MapBasic window
in MapInfo Professional.

Syntax

CreatePoint(x, y)

x is a float value, representing an x-position (for example, Longitude).

y is a float value, representing a y-position (for example, Latitude).

Return Value

Object

Description

The CreatePoint() function returns an Object value representing a point.

The x and y parameters should use whatever coordinate system MapBasic is currently using. By
default, MapBasic uses a Longitude/Latitude coordinate system, although the Set CoordSys
statement can re-configure MapBasic to use a different coordinate system. Note that MapBasic's
coordinate system is independent of the coordinate system of any Map window.

The point object will use whatever Symbol style is currently selected. To create a point object with a
specific Symbol style, you could issue the Set Style statement before calling CreatePoint().
Alternately, instead of calling CreatePoint(), you could issue a Create Point statement, which has
an optional Symbol clause.
MapBasic 11.0 200 Reference

Chapter 4:
Create Point statement
The point object created through the CreatePoint() function could be assigned to an Object
variable, stored in an existing row of a table (through the Update statement), or inserted into a new
row of a table (through an Insert statement).

If you need to create objects on a Layout window, you must first issue a Set CoordSys
statement.

Examples

The following example uses the Insert statement to insert a new row into the table Sites. The
CreatePoint() function is used within the body of the Insert statement to specify the graphic object
that will be attached to the new row.

Open Table "sites"
Insert Into sites (obj)

Values (CreatePoint(-72.5, 42.4))

The following example assumes that the table Sites has Xcoord and Ycoord columns, which indicate
the longitude and latitude positions of the data. The Update statement uses the CreatePoint()
function to build a point object for each row in the table. Following the Update operation, each row in
the Sites table will have a point object attached. Each point object will be located at the position
indicated by the Xcoord, Ycoord columns.

Open Table "sites"
Update sites

Set obj = CreatePoint(xcoord, ycoord)

The above example assumes that the Xcoord, Ycoord columns contain actual longitude and latitude
degree values.

See Also:

Create Point statement, Insert statement, Update statement

Create Point statement

Purpose

Creates a point object. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create Point
[Into { Window window_id | Variable var_name }]
(x, y)
[Symbol...]

window_id is a window identifier.

var_name is the name of an existing object variable.
MapBasic 11.0 201 Reference

Chapter 4:
Create PrismMap statement
x, y specifies the location of the point.

The Symbol clause specifies a symbol style.

Description

The Create Point statement creates a point object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into
clause is not provided, MapBasic will attempt to store the object in the topmost window; if objects
may not be stored in the topmost window (for example, if the topmost window is a grapher) no object
will be created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system. Note that MapBasic's coordinate
system is independent of the coordinate system of any Map window. Objects created on a Layout
window, however, are specified in paper units: each x-coordinate represents a distance from the left
edge of the page, while each y-coordinate represents the distance from the top edge of the page. By
default, MapBasic uses inches as the default paper unit. To use a different paper unit, use the Set
Paper Units statement.

If you need to create objects on a Layout window, you must first issue a Set CoordSys
Layout statement.

The optional Symbol clause specifies a symbol style; see Symbol clause for more details. If no
Symbol clause is specified, the Create Point statement uses the current symbol style (the style
which appears in the Options > Symbol Style dialog box).

See Also:

CreatePoint() function, Insert statement, Symbol clause, Update statement

Create PrismMap statement

Purpose

Creates a Prism map. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create PrismMap
[From Window window_ID | MapString mapper_creation_string]

{ layer_id | layer_name }
With expr
[Camera [Pitch angle | Roll angle | Yaw angle | Elevation angle] |

[Position (x, y, z) | FocalPoint (x, y, z)] |
[Orientation(vu_1, vu_2, vu_3, vpn_1, vpn_2, vpn_3,
MapBasic 11.0 202 Reference

Chapter 4:
Create PrismMap statement
clip_near, clip_far)]]
[Light Color lightcolor]]
[Scale grid_scale]
[Background backgroundcolor]

window_id is a window identifier a for a Map window which contains a region layer. An error
message is displayed if a layer with regions is not found.

mapper_creation_string specifies a command string that creates the mapper textured on the Prism
map.

layer_id is the layer identifier of a layer in the map (one or larger).

layer_name is the name of a layer in the map.

expr is an expression that is evaluated for each row in the table.

Camera specifies the camera position and orientation.

angle is an angle measurement in degrees. The horizontal angle in the dialog box ranges from 0-
360 degrees and rotates the maps around the center point of the grid. The vertical angle in the
dialog box ranges from 0-90 and measures the rotation in elevation from the start point directly over
the map.

Pitch adjusts the camera's current rotation about the x-axis centered at the camera's origin.

Roll adjusts the camera's current rotation about the z-axis centered at the camera's origin.

Yaw adjusts the camera's current rotation about the y-axis centered at the camera's origin.

Elevation adjusts the current camera's rotation about the x-axis centered at the camera's focal
point.

Position indicates the camera and/or light position.

FocalPoint indicates the camera and/or light focal point.

Orientation specifies the camera's ViewUp (vu_1, vu_2, vu_3), ViewPlane Normal (vpn_1, vpn_2,
vpn_3) and Clipping Range (clip_near and clip_far), used specifically for persistence of view).

grid_scale is the amount to scale the grid in the z direction. A value >1 will exaggerate the topology
in the z direction, a value <1 will scale down the topological features in the z direction.

backgroundcolor is a color to be used to set the background and is specified using the RGB()
function.

Description

The Create PrismMap statement creates a Prism Map window. The Prism Map is a way to
associate multiple variables for a single object in one visual. For example, the color associated with
a region may be the result of thematic shading while the height the object is extruded through may
represent a different value. The Create PrismMap statement corresponds to MapInfo Professional's
Map > Create Prism Map menu item.

Between sessions, MapInfo Professional preserves Prism Maps settings by storing a Create
PrismMap statement in the workspace file. Thus, to see an example of the Create PrismMap
statement, you could create a map, choose the Map > Create Thematic Map command, save the
MapBasic 11.0 203 Reference

Chapter 4:
Create Ranges statement
workspace (for example, PRISM.WOR), and examine the workspace in a MapBasic text edit
window. You could then copy the Create PrismMap statement in your MapBasic program. Similarly,
you can see examples of the Create PrismMap statement by opening the MapBasic Window before
you choose Map > Create Thematic Map.

Each Create PrismMap statement must specify an expr expression clause. MapInfo Professional
evaluates this expression for each object in the layer; following the Create PrismMap statement,
MapInfo Professional chooses each object's display style based on that record's expr value. The
expression typically includes the names of one or more columns from the table being shaded.

The optional window_id clause identifies which map layer to use in the prism map; if no window_id is
provided, MapBasic uses the topmost Map window. The Create PrismMap statement must specify
which layer to use, even if the Map window has only one layer. The layer may be identified by
number (layer_id), where the topmost map layer has a layer_id value of one, the next layer has a
layer_id value of two, etc. Alternately, the Create PrismMap statement can identify the map layer by
name (for example, “world”).

Example

Open Table "STATES.TAB" Interactive
Map From STATES
Create PrismMap From Window FrontWindow() STATES With Pop_1980 Background
RGB(192,192,192)

See Also:

Set PrismMap statement, PrismMapInfo() function

Create Ranges statement

Purpose

Calculates thematic ranges and stores the ranges in an array, which can then be used in a Shade
statement. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Create Ranges
From table
With expr
[Use {"Equal Ranges" | "Equal Count" | "Natural Break" | "StdDev" }]
[Quantile Using q_expr]
[Number num_ranges]
[Round rounding_factor]
Into Variable array_variable

table is the name of the table to be shaded thematically.

expr is an expression that is evaluated for each row in the table.

q_expr is the expression used to perform quantiling.
MapBasic 11.0 204 Reference

Chapter 4:
Create Ranges statement
num_ranges specifies the number of ranges (default is 4).

rounding_factor is factor by which the range break numbers should be rounded (for example, 10 to
round off values to the nearest ten).

array_variable is the float array variable in which the range information will be stored.

Description

The Create Ranges statement calculates a set of range values which can then be used in a Shade
statement (which creates a thematic map layer). For an introduction to thematic maps, see the
MapInfo Professional documentation.

The optional Use clause specifies how to break the data into ranges. If you specify “Equal Ranges”
each range covers an equal portion of the spectrum of values (for example, 0-25, 25-50, 50-75, 75-
100). If you specify “Equal Count” the ranges are constructed so that there are approximately the
same number of rows in each range. If you specify “Natural Break” the ranges are dictated by
natural breaks in the set of data values. If you specify “StdDev” the middle range breaks at the mean
of your data values, and the ranges above and below the middle range are one standard deviation
above or below the mean. MapInfo Professional uses the population standard deviation (N - 1).

The Into Variable clause specifies the name of the float array variable that will hold the range
information. You do not need to pre-size the array; MapInfo Professional automatically enlarges the
array, if necessary, to make room for the range information. The final size of the array is twice the
number of ranges, because MapInfo Professional calculates a high value and a low value for each
range.

After calling Create Ranges, call the Shade statement to create the thematic map, and use the
Shade statement's optional From Variable clause to read the array of ranges. The Shade statement
usually specifies the same table name and column expression as the Create Ranges statement.

Quantiled Ranges

If the optional Quantile Using clause is present, the Use clause is ignored and range limits are
defined according to the q_expr.

Quantiled ranges are best illustrated by example. The following statement creates ranges of buying
power index (BPI) values, and uses state population statistics to perform quantiling to set the range
limits.

Create Ranges From states
With BPI_1990 Quantile Using Pop_1990
Number 5
Into Variable f_ranges

Because of the Number 5 clause, this example creates a set of five ranges.

Because of the With BPI_1990 clause, states with the highest BPI values will be placed in the
highest range (the deepest color), and states with the lowest BPI values will be placed in the lowest
range (the palest color).

Because of the Quantile Using Pop_1990 clause, the range limits for the intermediate ranges
are calculated by quantiling, using a method that takes state population (Pop_1990) into account.
Since the Quantile Using clause specifies the Pop_1990 column, MapInfo Professional calculates
MapBasic 11.0 205 Reference

Chapter 4:
Create Ranges statement
the total 1990 population for the table (which, for the United States, is roughly 250 million). MapInfo
Professional divides that total by the number of ranges (in this case, five ranges), producing a result
of fifty million. MapInfo Professional then tries to define the ranges in such a way that the total
population for each range approximates, but does not exceed, fifty million.

MapInfo Professional retrieves rows from the States table in order of BPI values, starting with the
states having low BPI values. MapInfo Professional assigns rows to the first range until adding
another row would cause the cumulative population to match or exceed fifty million. At that time,
MapInfo Professional considers the first range “full” and then assigns rows to the second range.
MapInfo Professional places rows in the second range until adding another row would cause the
cumulative total to match or exceed 100 million; at that point, the second range is full, etc.

Example

Include "mapbasic.def"

Dim range_limits() As Float, brush_styles() As Brush
Dim col_name As Alias

Open Table "states" Interactive

Create Styles
From Brush(2, CYAN, 0) 'style for LOW range
To Brush (2, BLUE, 0) 'style for HIGH range
Vary Color By "RGB"
Number 5
Into Variable brush_styles

' Store a column name in the Alias variable:
col_name = "Pop_1990"

Create Ranges From states
With col_name
Use "Natural Break"
Number 5
Into Variable range_limits

Map From states

Shade states
With col_name
Ranges

From Variable range_limits
Style Variable brush_styles

' Show the theme legend window:
Open Window Legend

See Also:

Create Styles statement, Set Shade statement, Shade statement
MapBasic 11.0 206 Reference

Chapter 4:
Create Rect statement
Create Rect statement

Purpose

Creates a rectangle or square object. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Create Rect
[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2)
[Pen ...]
[Brush ...]

window_id is a window identifier.

var_name is the name of an existing object variable.

x1, y1 specifies the starting corner of the rectangle.

x2, y2 specifies the opposite corner of the rectangle.

Pen is a valid Pen clause to specify a line style.

Brush is a valid Brush clause to specify fill style.

Description

If the Create Rect statement includes the optional Into Variable clause, the object will be stored in
the specified object variable. If the Into clause specifies a Window identifier, the object will be
stored in the appropriate place in the window (for example, in the editable layer of a Map window). If
the Into clause is not provided, MapBasic will attempt to store the object in the topmost window; if
objects may not be stored in the topmost window (for example, if the topmost window is a grapher)
no object will be created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a Longitude/Latitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system. Note that MapBasic's coordinate
system is independent of the coordinate system of any Map window. Objects created on a Layout
window, however, are specified in paper units: each x-coordinate represents a distance from the left
edge of the page, while each y-coordinate represents the distance from the top edge of the page. By
default, MapBasic uses inches as the default paper unit. To use a different paper unit, call the Set
Paper Units statement.

If you need to create objects on a Layout window, you must first issue a Set CoordSys
Layout statement.
MapBasic 11.0 207 Reference

Chapter 4:
Create Redistricter statement
The optional Pen clause specifies a line style; see Pen clause for more details. If no Pen clause is
specified, the Create Rect statement uses the current line style (the style which appears in the
Options > Line Style dialog box). Similarly, the optional Brush clause specifies a fill style; see
Brush clause for more details.

See Also:

Brush clause, Create RoundRect statement, Insert statement, Pen clause, Update statement

Create Redistricter statement

Purpose

Begins a redistricting session. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create Redistricter source_table By district_column
With
[Layer <layer_number>]
[Count]
[, Brush] [, Symbol] [, Pen]
[, { Sum | Percent } (expr)] [, { Sum | Percent } (expr) ...]
[Percentage From expr]
[Percentage from { column | row }]
[Order { "MRU" | "Alpha" | "Unordered" }]

source_table is the name of the table containing objects to be grouped into districts.

district_column is the name of a column; the initial set of districts is built from the original contents of
this column, and as objects are assigned to different districts, MapInfo Professional stores the
object's new district name in this column.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer);
to determine the number of layers in a Map window, call the MapperInfo() function.

Count keyword specifies that the Districts Browser will show a count of the objects belonging to
each district.

Brush keyword specifies that the Districts Browser will show each district's fill style.

Symbol keyword specifies that the Districts Browser will show each district's symbol style.

Pen keyword specifies that the Districts Browser will show each district's line style.

expr is a numeric column expression.

Percentage From clause specifies in-row calculation.

Order clause specifies the order of rows in the Districts Browser (alphabetical, unsorted, or based
on most-recently-used); default is MRU.
MapBasic 11.0 208 Reference

Chapter 4:
Create Region statement
Description

The Create Redistricter statement begins a redistricting session. This statement corresponds to
choosing MapInfo Professional's Window > New Redistrict Window command. For an introduction
to redistricting, see the MapInfo Professional documentation.

To control the set of districts, use the Set Redistricter statement. To end the redistricting session,
use the Close Window statement to close the Districts Browser window.

If you include the Brush keyword, the Districts Browser includes a sample of each district's fill style.
Note that this is not a complete Brush clause; the keyword Brush appears by itself. Similarly, the
Symbol and Pen keywords are individual keywords, not a complete Symbol clause or Pen clause.
If the Districts Browser includes brush, symbol, and/or pen styles, the user can change a district's
style by clicking on the style sample that appears in the Districts Browser.

The Percentage From clause allows you to specify the in-row mode of percentage calculation. If the
Percentage From clause is not specified, the in-column method of calculation is used.

See Also:

Set Redistricter statement

Create Region statement

Purpose

Creates a region object. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create Region
[Into { Window window_id | Variable var_name }]

num_polygons
[num_points1 (x1, y1) (x2, y2) [...]]
[num_points2 (x1, y1) (x2, y2) [...] ...]
[Pen ...]
[Brush ...]
[Center (center_x, center_y)]

window_id is a window identifier.

var_name is the name of an existing object variable.

num_polygons specifies the number of polygons that will make up the region (zero or more).

num_points1 specifies the number of nodes in the region's first polygon.

num_points2 specifies the number of nodes in the region's second polygon, etc.

Each x, y pair specifies one node of a polygon.

Pen is a valid Pen clause to specify a line style.

Brush is a valid Brush clause to specify fill style.
MapBasic 11.0 209 Reference

Chapter 4:
Create Region statement
center_x is the x-coordinate of the object centroid.

center_y is the y-coordinate of the object centroid.

Description

The Create Region statement creates a region object.

The num_polygons parameter specifies the number of polygons which comprise the region object. If
you specify a num_polygons parameter with a value of zero, the object will be created as an empty
region (a region with no polygons). You can then use the Alter Object statement to add details to
the region.

Depending on your application, you may need to create a region object in two steps, first using
Create Region to create an object with no polygons, and then using the Alter Object statement to
add details to the region object. If your application needs to create region objects, but it will not be
known until run-time how many nodes or how many polygons the regions will contain, you must use
the Alter Object statement to add the variable numbers of nodes. See Alter Object statement for
more information.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into
clause is not provided, MapBasic will attempt to store the object in the topmost window; if objects
may not be stored in the topmost window (for example, if the topmost window is a grapher) no object
will be created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a Longitude/Latitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system. Note that MapBasic's coordinate
system is independent of the coordinate system of any Map window. Objects created on a Layout
window, however, are specified in paper units: each x-coordinate represents a distance from the left
edge of the page, while each y-coordinate represents the distance from the top edge of the page. By
default, MapBasic uses inches as the default paper unit. To use a different paper unit, To use a
different paper unit, call the Set Paper Units statement.

If you need to create objects on a Layout window, you must first issue a Set CoordSys
Layout statement.

The optional Pen clause specifies a line style used to draw the outline of the object; see Pen clause
for more details. If no Pen clause is specified, the Create Region statement uses the current line
style (the style which appears in the Options > Line Style dialog box). Similarly, the optional Brush
clause specifies a fill style; see Brush clause for more details.

A single-polygon region can contain up to 1,048,572 nodes. For a multiple-polygon region, the limit
is smaller: for each additional polygon, reduce the number of nodes by three. There can be a
maximum of 32,000 polygons per region (multipolygon region).
MapBasic 11.0 210 Reference

Chapter 4:
Create Report From Table statement
Example

Dim obj_region As Object
Dim x(100), y(100) As Float
Dim i, node_count As Integer

' If you store a set of coordinates in the
' x() and y() arrays, the following statements
' will create a region object that has a node
' at each x,y location:

' First, create an empty region object
Create Region Into Variable obj_region 0

' Now add nodes to populate the object:
For i = 1 to node_count

Alter Object obj_region Node Add (x(i), y(i))
Next

' Now store the object in the Sites table:
Insert Into Sites (Object) Values (obj_region)

See Also:

Alter Object statement, Brush clause, Insert statement, Pen clause, Update statement

Create Report From Table statement

Purpose

Creates a report file for Crystal Reports from an open MapInfo Professional table. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Create Report From Table tablename [Into reportfilespec][Interactive]

tablename is an open table in MapInfo Professional.

reportfilespec is a full path and filename for the new report file.

The Interactive keyword signifies that the new report should immediately be loaded into the Crystal
Report Designer module. Interactive mode is implied if the Into clause is missing. You cannot create
a report from a grid or raster table; you will get an error.

See Also:

Open Report statement
MapBasic 11.0 211 Reference

Chapter 4:
Create RoundRect statement
Create RoundRect statement

Purpose

Creates a rounded rectangle object. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Create RoundRect
[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2) rounding
[Pen ...]
[Brush ...]

window_id is a window identifier.

var_name is the name of an existing object variable.

x1, y1 specifies one corner of the rounded rectangle.

x2, y2 specifies the opposite corner of the rectangle.

rounding is a float value, in coordinate units (for example, inches on a Layout or degrees on a Map),
specifying the diameter of the circle which fills the rounded rectangle's corner.

Pen is a valid Pen clause to specify a line style.

Brush is a valid Brush clause to specify fill style.

Description

The Create RoundRect statement creates a rounded rectangle object (a rectangle with rounded
corners).

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a Longitude/Latitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system. Note that MapBasic's coordinate
system is independent of the coordinate system of any Map window. Objects created on a Layout
window, however, are specified in paper units: each x-coordinate represents a distance from the left
edge of the page, while each y-coordinate represents the distance from the top edge of the page. By
default, MapBasic uses inches as the default paper unit. To use a different paper unit, call the Set
Paper Units statement.

If you need to create objects on a Layout window, you must first issue a Set CoordSys
Layout statement.

The optional Pen clause specifies a line style used to draw the outline of the object; see Pen clause
for more details. If no Pen clause is specified, the Create RoundRect statement uses the current
line style (the style which appears in the Options > Line Style dialog box). Similarly, the optional
Brush clause specifies a fill style; see Brush clause for more details.
MapBasic 11.0 212 Reference

Chapter 4:
Create Styles statement
See Also:

Brush clause, Create Rect statement, Insert statement, Pen clause, Update statement

Create Styles statement

Purpose

Builds a set of Pen, Brush or Symbol styles, and stores the styles in an array. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Create Styles
From { Pen ... | Brush ... | Symbol ... }
To { Pen ... | Brush ... | Symbol ... }
Vary { Color By { "RGB" | "HSV" } | Background By { "RGB" | "HSV" } |

Size By { "Log" | "Sqrt" | "Constant" }}
[Number num_styles]
[Inflect At range_number With { Pen ... | Brush ... | Symbol ...}]

Into Variable array_variable

num_styles is the number of drawing styles (for example, the number of fill styles) to create. The
default number is four.

range_number is a SmallInt range number; the inflection attribute is placed after this range.

array_variable is an array variable that will store the range of pens, brushes, or symbols.

Pen is a valid Pen clause to specify a line style.

Brush is a valid Brush clause to specify fill style.

Symbol is a valid Symbol clause to specify a point style.

Description

The Create Styles statement defines a set of Pen, Brush, or Symbol styles, and stores the styles in
an array variable. The array can then be used in a Shade statement (which creates a thematic map
layer). For an introduction to thematic mapping, see the MapInfo Professional documentation.

The From clause specifies a Pen, Brush, or Symbol style. If the array of styles is later used in a
thematic map, the From style is the style assigned to the “low” range. The To clause specifies a style
that corresponds to the “high” range of a thematic map.

The Create Styles statement builds a set of styles which are interpolated between the From style
and the To style. For example, the From style could be a Brush clause representing a deep,
saturated shade of blue, and the To style could be a Brush clause representing a pale, faint shade of
blue. In this case, MapInfo Professional builds a set of Brush styles that vary from pale blue to
saturated blue.

The optional Number clause specifies the total number of drawing styles needed; this number
includes the two styles specified in the To and From clauses. Usually, this corresponds to the
number of ranges specified in a subsequent Shade statement.
MapBasic 11.0 213 Reference

Chapter 4:
Create Table statement
The Vary clause specifies how to spread an attribute among the styles. To spread the foreground
color, use the Color sub-clause. To spread the background color, use the Background sub-clause.
In either case, color can be spread by interpolating the RGB or HSV components of the From and To
colors. If you are creating an array of Symbol styles, you can use the Size sub-clause to vary the
symbols' point sizes. Similarly, if you are creating an array of Pen styles, you can use the Size sub-
clause to vary line width.

The optional Inflect At clause specifies an inflection attribute that goes between the From and To
styles. If you specify an Inflect At clause, MapInfo Professional creates two sets of styles: one set of
styles interpolated between the From style and the Inflect style, and another set of styles
interpolated between the Inflect style and the To style. For example, using an inflection style, you
could create a thematic map of profits and losses, where map regions that have shown a profit
appear in various shades of green, while regions that have shown a loss appear in various shades of
red. Inflection only works when varying the color attribute.

The Into Variable clause specifies the name of the array variable that will hold the styles. You do
not need to pre-size the array; MapInfo Professional automatically enlarges the array, if necessary,
to make room for the set of styles. The array_variable (Pen, Brush, or Symbol) must match the style
type specified in the From and To clauses.

Example

The following example demonstrates the syntax of the Create Styles statement.

Dim brush_styles() As Brush

Create Styles
From Brush(2, CYAN, 0) 'style for LOW range
To Brush (2, BLUE, 0) 'style for HIGH range
Vary Color By "RGB"
Number 5
Into Variable brush_styles

This Create Styles statement defines a set of five Brush styles, and stores the styles in the
b_ranges array. A subsequent Shade statement could create a thematic map which reads the
Brush styles from the b_ranges array. For an example, see Create Ranges statement.

See Also:

Create Ranges statement, Set Shade statement, Shade statement

Create Table statement

Purpose

Creates a new table. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create Table table [(column columntype [, ...]) | Using from_table]
[File filespec]
MapBasic 11.0 214 Reference

Chapter 4:
Create Table statement
[{
Type NATIVE |
Type DBF [CharSet char_set] |
Type { Access | ODBC } Database database_filespec [Version version]

Table tablename [Password pwd] [CharSet char_set] |
Type TILESERVER

TileType { LevelRowColumn | QuadKey }
URL url
[AttributionText "attributiontext"] [Font font_clause]
[StartTileNum { 0 | 1 }]
[Minlevel min_level]
MaxLevel max_level
Height height [Width width]
[ReadTimeout read_time_out]
[RequestTimeout request_time_out]
CoordSys coordsys

}]
[Version version_pro]

table is the name of the table as you want it to appear in MapInfo Professional.

column is the name of a column to create. Column names can be up to 31 characters long, and can
contain letters, numbers, and the underscore (_) character. Column names cannot begin with
numbers.

columntype is the data type associated with the column. Each columntype is defined as follows:

Char(width) | Float | Integer | SmallInt |
Decimal(width, decplaces) | Date | Logical

from_table is the name of a currently open table in which the column you want to place in a new
table is stored. The from_table must be a base table, and must contain column data. Query tables
and raster tables cannot be used and will produce an error. The column structure of the new table
will be identical to this table.

filespec specifies where to create the .TAB, .MAP, and .ID files (and in the case of Access, .AID
files). If you omit the File clause, files are created in the current directory.

version_pro is 100 (to create a table that can be read by versions of MapInfo Professional), or 300
for (MapInfo Professional 3.0 format). Does not apply when creating an Access table; the version of
the Access table is handled by DAO.

Type DBF:

char_set is the name of a character set; see CharSet clause.

Type { Access | ODBC }:

database_filespec is a string that identifies a valid Access database. If the specified database does
not exist, MapInfo Professional creates a new Access (.MDB or .ACCDB) file.

version is an expression that specifies the version of the Microsoft Jet database format to be used by
the new database. Acceptable values are 4.0 (for Access 2000) or 3.0 (for Access '95/'97). If
omitted, the default version is 12.0. If the database in which the table is being created already exists,
the specified database version is ignored.
MapBasic 11.0 215 Reference

Chapter 4:
Create Table statement
tablename is a string that indicates the name of the table as it will appear in Access.

pwd is the database-level password for the database, to be specified when database security is
turned on.

char_set is the name of a character set; see CharSet clause.

Type TILESERVER:

url is the fully qualified URL, either http://<server> or https://<server>, to request a tile from a tile
server. If the URL does not have the following replaceable tags, then the Create Table fails:

• If tile_type is QuadKey, then the URL must contain {QUADKEY}.
• If tile_type is LevelRowColumn, then the URL must contain {LEVEL}, {ROW}, and {COL}

tags that will be replaced at runtime. Servers support the {ROW} and {COL} tags differently;
sometimes these tags may need to be reversed for row and column (or X, Y).

attributiontext is the attribution text that will display as text in the map window when displaying tiles
from a tileserver. This text must be in quotes ("...").

font_clause is optional and specifies the font style to use on the attribution text. This is a Font
expression, for example, MakeFont(fontname, style, size, fgcolor, bgcolor).

Font ("Verdana", 1, 24, 0, 255)
Font MakeFont("Verdana", 1, 24, 0, 255)
For more details, see Font clause on page 298 or MakeFont() function on page 392.

min_level is the minimum level for a tile server. This must be either zero (0) or a positive value and
less than the max_level. The default is zero (0).

max_level is the max level the tile server supports. This must be a positive value.

height is the height in pixels of a single tile from the tile server. This must be a positive value.

width is the width in pixels of a single tile from the tile server. If specified, this must be a positive
value. If not specified, the height is used as the width.

read_time_out is the number in seconds until the read of tiles times out (the default is 300). This
must be a positive value.

request_time_out is a value in seconds until the request of the tiles times out (the default is 100).
This must be a positive value.

coordsys is the default coordinate system for the tile server. MapInfo Professional cannot reproject
the tile server image, so it reprojects the map to use this coordinate system. You are unable to
change the coordinate system for the map when it includes a tile server layer. The bounds of the
coordinate system also specify the bounds of the first tile (the one tile in the minimum level). This is
how MapInfo Professional knows how to calculate the extent of the tiles in the other levels.

Description

The Create Table statement creates a new empty table with up to 250 columns. Specify ODBC to
create new tables on a DBMS server.
MapBasic 11.0 216 Reference

Chapter 4:
Create Table statement
The Using clause allows you to create a new table as part of the “Combine Objects Using Column”
functionality. The from_table must be a base table, and must contain column data. Query tables and
raster tables cannot be used and will produce an error. The column structure of the new table being
created will be identical to this table.

The optional File clause specifies where to create the new table. If no File clause is used, the table
is created in the current directory or folder.

The optional Type clause specifies the table's data format. The default type is NATIVE, but can
alternately be DBF. The NATIVE format takes up less disk space than the DBF format, but the DBF
format produces base files that can be read in any dBASE-compatible database manager. Also,
create new tables on DBMS Servers from the ODBC Type clause in the Create Table statement.

The CharSet clause specifies a character set. The char_set parameter should be a string constant,
such as “WindowsLatin1”. If no CharSet clause is specified, MapBasic uses the default character
set for the hardware platform that is in use at runtime. For more details, see CharSet clause.

The SmallInt column type reserves two bytes for each value; thus, the column can contain values
from -32,767 to +32,767. The Integer column type reserves four bytes for each value; thus, the
column can contain values from -2,147,483,647 to +2,147,483,647.

The TileType clause specifies the type of the tile server this table will use, QuadKey or
LevelRowColumn. This represents the way that the tile server retrieves the tiles. You must set this
based on what the server supports and uses:

QuadKey – A server that uses a quad tree algorithm splits the world up into squares that are 256
pixels by 256 pixels. Each tile is referred to by a unique string of characters between 0 – 3
(QuadKey), which describes the position and zoom level at which to place the tile.
LevelRowColumn – A server that splits the world up into squares where each tile identifier is a
list containing the zoom level, row, and column number of the tile. The format of the tile identifier
may vary from server to server, so the {ROW} and {COL} tags may seem reversed for some
servers.

The StartTileNum clause is optional. It is the number of the starting tile, either zero (0) or one (1).
Zero (0) is the default start tile number.

The Version clause controls the table's format. If you specify Version 100, MapInfo Professional
creates a table in a format that can be read by versions of MapInfo Professional. If you specify
Version 300, MapInfo Professional creates a table in the format used by MapInfo Professional
3.0. Note that region and polyline objects having more than 8,000 nodes and multiple-segment
polyline objects require version 300. If you omit the Version clause, the table is created in the
version 300 format.

Messages when creating a Tile Server Table

If an error occurs while fetching tiles from the server, which can happen when drawing a tile server
layer in a map window, then check:

• The tile server URL is incorrect.
• The tile server is currently available.
• The amount of time the server takes to respond to the request does not exceed the specified

timeout value.
MapBasic 11.0 217 Reference

Chapter 4:
Create Table statement
• Improper authentication due to the tile server being on a secure server or is accessed through a
proxy server.

If an error occurs loading a tile server table, then check if:

• A required property in the configuration file is missing.
• The configuration file is missing.

If an error occurs creating the tile server configuration file, which is an XML file, then check that the
configuration file can be created in the path supplied.

Example

The following example shows how to create a table called Towns, containing 3 fields: a character
field called townname, an integer field called population, and a decimal field called median_income.
The file will be created in the subdirectory C:\MAPINFO\DATA. Since an optional Type clause is
used, the table will be built around a dBASE file.

Create Table Towns
(townname Char(30),

population SmallInt,
median_income Decimal(9,2))
File "C:\MAPINFO\TEMP\TOWNS"
Type DBF

Examples for TILESERVER

The following examples show how to create tile server tables for various tile servers. In the
examples, the table name and file name are determined by the users. The attribution text should be
the attribution legally required by the provider of the server.

The following example shows how to create a tile server table which uses a MapInfo Developer tile
server:

Create Table MIDev_TileServer
File "MIDev_TileServer"
Type TILESERVER
TileType "LevelRowColumn"
URL
"http://INSERT_SERVER_NAME_HERE/MapTilingService/MapName/{LEVEL}/{ROW}
:{COL}/tile.gif"
AttributionText "required attribution text"
Font("Verdena",255,16,0,255)
StartTileNum 1
MaxLevel 20
Height 256
CoordSys Earth Projection 10, 157, 7, 0 Bounds(-20037508.34,-
20037508.34) (20037508.34,20037508.34)

The following example shows how to create a tile server table which uses a MapXtreme.NET tile
server:

Create Table MXT_TileServer
File "MXT_TileServer"
Type TILESERVER
MapBasic 11.0 218 Reference

Chapter 4:
CreateText() function
TileType "LevelRowColumn"
URL
"http://INSERT_SERVER_NAME_HERE/TileServer/MapName/{LEVEL}/{ROW};{COL}
/tile.png"
AttributionText "required attribution text"
Font("Calibri",255,16,0,255)
MaxLevel 20
Height 256
RequestTimeout 90
ReadTimeout 60
CoordSys Earth Projection 10, 157, 7, 0 Bounds(-20037508.34,-
20037508.34) (20037508.34,20037508.34)

The following example shows how to create a tile server table which uses an OpenStreetMap tile
server:

Create Table OSM_TileServer
File "OSM_TileServer"
Type TILESERVER
TileType "LevelRowColumn"
URL
"http://INSERT_OPEN_STREET_MAP_SERVER_NAME_HERE/{LEVEL}/{ROW}/{COL}.pn
g"
AttributionText "required attribution text" Font("Arial",255,16,0,255)
MinLevel 0
MaxLevel 15
Height 256
CoordSys Earth Projection 10, 157, 7, 0 Bounds(-20037508.34,-
20037508.34) (20037508.34,20037508.34)

See Also:

Alter Table statement, Create Index statement, Create Map statement, Drop Table statement,
Export statement, Import statement, Open Table statement

CreateText() function

Purpose

Returns a text object created for a specific map window. You can call this function from the
MapBasic window in MapInfo Professional.

Syntax

CreateText(window_id, x, y, text, angle, anchor, offset)

window_id is an integer window identifier that represents a Map window.

x, y are float values, representing the x/y location where the text is anchored.

text is a string value, representing the text that will comprise the text object.
MapBasic 11.0 219 Reference

Chapter 4:
CreateText() function
angle is a float value, representing the angle of rotation; for horizontal text, specify zero.

anchor is an integer value from 0 to 8, controlling how the text is placed relative to the anchor
location. Specify one of the following codes; codes are defined in MAPBASIC.DEF.

LAYER_INFO_LBL_POS_CC (0)
LAYER_INFO_LBL_POS_TL (1)
LAYER_INFO_LBL_POS_TC (2)
LAYER_INFO_LBL_POS_TR (3)
LAYER_INFO_LBL_POS_CL (4)
LAYER_INFO_LBL_POS_CR (5)
LAYER_INFO_LBL_POS_BL (6)
LAYER_INFO_LBL_POS_BC (7)
LAYER_INFO_LBL_POS_BR (8)

The two-letter suffix indicates the label orientation: T=Top, B=Bottom, C=Center, R=Right, L=Left.
For example, to place the text below and to the right of the anchor location, specify the define code
LAYER_INFO_LBL_POS_BR, or specify the value 8.

offset is an integer from zero to 200, representing the distance (in points) the text is offset from the
anchor location; offset is ignored if anchor is zero (centered).

Return Value

Object

Description

The CreateText() function returns an Object value representing a text object.

The text object uses the current Font style. To create a text object with a specific Font style, issue
the Set Style statement before calling CreateText().

At the moment the text is created, the text height is controlled by the current Font. However, after the
text object is created, its height depends on the Map window's zoom; zooming in will make the text
appear larger.

The object returned could be assigned to an Object variable, stored in an existing row of a table
(through the Update statement), or inserted into a new row of a table (through an Insert
statement).

Example

The following example creates a text object and inserts it into the map's Cosmetic layer (given that
the variable i_map_id is an integer containing a Map window's ID).

Insert Into Cosmetic1 (Obj)
Values (CreateText(i_map_id, -80, 42.4, "Sales Map", 0,0,0))

See Also:

AutoLabel statement, Create Text statement, Font clause, Insert statement, Update statement
MapBasic 11.0 220 Reference

Chapter 4:
Create Text statement
Create Text statement

Purpose

Creates a text object, such as a title, for a Map or Layout window. You can use the pen clause to
persist the new label line styles in layouts. Changing layouts in this manner sets the version of the
workspace to 9.5. Any MIF file that contains text objects with a Label line and a pen clause will be
version 950 as a result. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Create Text
[Into { Window window_id | Variable var_name }]
 text_string
(x1, y1) (x2, y2)
[Font...]
[Label Line { Simple | Arrow } (label_x, label_y) Pen (pen_expr)]
[Spacing { 1.0 | 1.5 | 2.0 }]
[Justify { Left | Center | Right }]
[Angle text_angle]

window_id is an integer window ID number, identifying a Map or Layout window.

var_name is the name of an existing object variable.

text_string specifies the string, up to 255 characters long, that will constitute the text object; to create
a multiple-line text object, embed the function call Chr$(10) in the string.

x1, y1 are floating-point coordinates, specifying one corner of the rectangular area which the text will
fill.

x2, y2 specify the opposite corner of the rectangular area which the text will fill.

The Font clause specifies a text style. The point-size element of the Font is ignored if the text object
is created in a Map window; see below.

label_x, label_y specifies the position where the text object's label line is anchored.

Pen specifies the pen clause settings of callouts created in the Layout window.

text_angle is a float value indicating the angle of rotation for the text object (in degrees).

Example

When the user creates a label line in a Layout window, the Create Text Label Line Pen clause is
invoked and the workspace version is incremented to 950:

!Workspace
!Version 950
!Charset WindowsLatin1
Open Table "Data\Introductory_Data\World\WORLD" As WORLD Interactive
Map From WORLD
 Position (0.0520833,0.0520833) Units "in"
MapBasic 11.0 221 Reference

Chapter 4:
CurDate() function
 Width 6.625 Units "in" Height 4.34375 Units "in"
Set Window FrontWindow() ScrollBars Off Autoscroll On
Set Map
 CoordSys Earth Projection 1, 104
 Center (35.204159,-25.3575215)
 Zoom 18063.92971 Units "mi"
 Preserve Zoom Display Zoom
 Distance Units "mi" Area Units "sq mi" XY Units "degree"
Set Map
 Layer 1
 Display Graphic
 Global Pen (1,2,0) Brush (2,16777215,16777215) Symbol (35,0,12)
Line (1,2,0) Font ("Arial",0,9,0)
 Label Line None Position Center Font ("Arial",0,9,0) Pen (1,2,0)

Description

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a Longitude/Latitude coordinate system, although the Set CoordSys statement can
re-configure MapBasic to use a different coordinate system. If you need to create objects on a
Layout window, you must first issue a Set CoordSys Layout statement.

The x1, y1, x2, and y2 arguments define a rectangular area. When you create text in a Map window,
the text fills the rectangular area, which controls the text height; the point size specified in the Font
clause is ignored. In a Layout window, text is drawn at the point size specified in the Font clause,
with the upper-left corner of the text placed at the (x1, y1) location; the (x2, y2) arguments are
ignored.

See Also:

AutoLabel statement, CreateText() function, Font clause, Insert statement, Update statement

CurDate() function

Purpose

Returns the current date in YYYYMMDD format. You can call this function from the MapBasic
window in MapInfo Professional.

Syntax

CurDate()

Return Value

Date

Description

The Curdate() function returns a Date value representing the current date. The format will always
be YYYYMMDD. To change the value to a string in the local system format use the FormatDate$()
function or Str$() function.
MapBasic 11.0 222 Reference

Chapter 4:
CurDateTime() function
Example

Dim d_today As Date
d_today = CurDate()

See Also:

Day() function, Format$() function, Month() function, StringToDate() function, Timer()
function, Weekday() function, Year() function

CurDateTime() function

Purpose

Returns the current date and time. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

CurDateTime

Return Value

DateTime

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim X as datetime
X = CurDateTime()
Print X

CurrentBorderPen() function

Purpose

Returns the current border pen style currently in use. You can call this function from the MapBasic
window in MapInfo Professional.

Syntax

CurrentBorderPen()

Return Value

Pen
MapBasic 11.0 223 Reference

Chapter 4:
CurrentBrush() function
Description

The CurrentBorderPen() function returns the current border pen style. MapInfo Professional
assigns the current style to the border of any region objects drawn by the user. If a MapBasic
program creates an object through a statement such as Create Region statement, but the
statement does not include a Pen clause, the object uses the current BorderPen style.

The return value can be assigned to a Pen variable, or may be used as a parameter within a
statement that takes a Pen setting as a parameter (such as Set Map statement).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function. For
more information about Pen settings, see Pen clause.

Example

Dim p_user_pen As Pen p_user_pen = CurrentBorderPen()

See Also:

CurrentPen() function, Pen clause, Set Style statement, StyleAttr() function

CurrentBrush() function

Purpose

Returns the Brush (fill) style currently in use. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

CurrentBrush()

Return Value

Brush

Description

The CurrentBrush() function returns the current Brush style. This corresponds to the fill style
displayed in the Options > Region Style dialog box. MapInfo Professional assigns the current
Brush value to any filled objects (ellipses, rectangles, rounded rectangles, or regions) drawn by the
user. If a MapBasic program creates a filled object through a statement such as the Create Region
statement, but the statement does not include a Brush clause, the object will be assigned the
current Brush value.

The return value of the CurrentBrush() function can be assigned to a Brush variable, or may be
used as a parameter within a statement that takes a Brush setting as a parameter (such as Set Map
statement or Shade statement).

To extract specific Brush attributes (such as the color), call the StyleAttr() function.

For more information about Brush settings, see Brush clause.
MapBasic 11.0 224 Reference

Chapter 4:
CurrentFont() function
Example

Dim b_current_fill As Brush
b_current_fill = CurrentBrush()

See Also:

Brush clause, MakeBrush() function, Set Style statement, StyleAttr() function

CurrentFont() function

Purpose

Returns the Font style currently in use for Map and Layout windows. You can call this function from
the MapBasic window in MapInfo Professional.

Syntax

CurrentFont()

Return Value

Font

Description

The CurrentFont() function returns the current Font style. This corresponds to the text style
displayed in the Options > Text Style dialog box when a Map or Layout window is the active
window. MapInfo Professional will assign the current Font value to any text object drawn by the user.
If a MapBasic program creates a text object through the Create Text statement, but the statement
does not include a Font clause, the text object will be assigned the current Font value.

The return value of the CurrentFont() function can be assigned to a Font variable, or may be used
as a parameter within a statement that takes a Font setting as a parameter (such as Set Legend
statement).

To extract specific attributes of the Font style (such as the color), call the StyleAttr() function.

For more information about Font settings, see Font clause.

Example

Dim f_user_text As Font
f_user_text = CurrentFont()

See Also:

Font clause, MakeFont() function, Set Style statement, StyleAttr() function
MapBasic 11.0 225 Reference

Chapter 4:
CurrentLinePen() function
CurrentLinePen() function

Purpose

Returns the Pen (line) style currently in use. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

CurrentLinePen()

Return Value

Pen

Description

The CurrentLinePen() function returns the current Pen style. MapInfo Professional assigns the
current style to any line or polyline objects drawn by the user. If a MapBasic program creates an
object through a statement such as Create Line statement, but the statement does not include a
Pen clause, the object uses the current Pen style. The return value can be assigned to a Pen
variable, or may be used as a parameter within a statement that takes a Pen setting as a parameter
(such as Set Map statement).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function. For
more information about Pen settings, see Pen clause.

Example

Dim p_user_pen As Pen p_user_pen = CurrentPen()

See Also:

CurrentBorderPen() function, Pen clause, Set Style statement, StyleAttr() function

CurrentPen() function

Purpose

Returns the Pen (line) style currently in use and sets the border pen to the same style as the line
pen. You can call this function from the MapBasic window in MapInfo Professional.

Syntax

CurrentPen()

Return Value

Pen
MapBasic 11.0 226 Reference

Chapter 4:
CurrentSymbol() function
Description

The CurrentPen() function returns the current Pen style. MapInfo Professional assigns the current
style to any line or polyline objects drawn by the user. If a MapBasic program creates an object
through a statement such as the Create Line statement, but the statement does not include a Pen
clause, the object uses the current Pen style. If you want to use the current line pen without re-
setting the border pen, use the CurrentLinePen() function.

The return value can be assigned to a Pen variable, or may be used as a parameter within a
statement that takes a Pen setting as a parameter (such as the Set Map statement).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function. For
more information about Pen settings, see Pen clause.

Example

Dim p_user_pen As Pen
p_user_pen = CurrentPen()

See Also:

MakePen() function, Pen clause, Set Style statement, StyleAttr() function

CurrentSymbol() function

Purpose

Returns the Symbol style currently in use. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

CurrentSymbol()

Return Value

Symbol

Description

The CurrentSymbol() function returns the current symbol style. This is the style displayed in the
Options > Symbol Style dialog box. MapInfo Professional assigns the current Symbol style to any
point objects drawn by the user. If a MapBasic program creates a point object through a Create
Point statement, but the statement does not include a Symbol clause, the object will be assigned
the current Symbol value.

The return value of the CurrentSymbol() function can be assigned to a Symbol variable, or may be
used as a parameter within a statement that takes a Symbol clause as a parameter (such as Set
Map statement or Shade statement).

To extract specific attributes of the Symbol style (such as the color), call the StyleAttr() function.
For more information about Symbol settings, see Symbol clause.
MapBasic 11.0 227 Reference

Chapter 4:
CurTime() function
Example

Dim sym_user_symbol As Symbol
sym_user_symbol = CurrentSymbol()

See Also:

MakeSymbol() function, Set Style statement, StyleAttr() function, Symbol clause

CurTime() function

Purpose

Returns the current time. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

CurTime

Return Value

Time

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim Y as time
Y = CurTime()
Print Y
MapBasic 11.0 228 Reference

Chapter 5:
DateWindow() function
DateWindow() function

Purpose

Returns the current date window setting as an integer in the range 0 to 99, or (-1) if date windowing
is off. You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

DateWindow(context)

context is a SmallInt that can either be DATE_WIN_CURPROG (2) or DATE_WIN_SESSION (1).

Description

This depends on which context is passed. If context is DATE_WIN_SESSION (1), then the current
session setting in effect is returned. If context is DATE_WIN_CURPROG (2), then the current
MapBasic program's local setting is returned, if a program is not running the session setting is
returned.

Example

In the following example the variable Date1 = 19890120, Date2 = 20101203 and MyYear = 1990.

DIM Date1, Date2 as Date
DIM MyYear As Integer
Set Format Date "US"
Set Date Window 75

Date1 = StringToDate("1/20/89")
Date2 = StringToDate("12/3/10")
MyYear = Year("12/30/90")

See Also:

Set Date Window statement

Day() function

Purpose

Returns the day component from a Date expression. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

Day(date_expr)

date_expr is a Date expression.
MapBasic 11.0 229 Reference

Chapter 5:
DDEExecute statement
Return Value

SmallInt from 1 to 31

Description

The Day() function returns an integer value from one to thirty-one, representing the day-of-the-
month component of the specified date. For example, if the specified date is 12/17/93, the Day()
function returns a value of 17.

Example

Dim day_var As SmallInt, date_var As Date
date_var = StringToDate("05/23/1985")
day_var = Day(date_var)

See Also:

CurDate() function, Month() function, Timer() function, Year() function

DDEExecute statement

Purpose

Issues a command across an open DDE channel.

Syntax

DDEExecute channel, command

channel is an integer channel number returned by DDEInitiate().

command is a string representing a command for the DDE server to execute.

Description

The DDEExecute statement sends a command string to the server application in a DDE
conversation.

The channel parameter must correspond to the number of a channel opened through a
DDEInitiate() function call.

The command parameter string must represent a command which the DDE server (the passive
application) is able to carry out. Different applications have different requirements regarding what
constitutes a valid command; to learn about the command format for a particular application, see the
documentation for that application.

Error Conditions

ERR_CMD_NOT_SUPPORTED (642) error generated if not running on Windows.

ERR_NO_RESPONSE_FROM_APP (697) error if server application does not respond.
MapBasic 11.0 230 Reference

Chapter 5:
DDEInitiate() function
Example

Through MapBasic, you can open a DDE channel with Microsoft Excel as the server application. If
the conversation specifies the “System” topic, you can use the DDEExecute statement to send
Excel a command string. Provided that the command string is equivalent to an Excel macro function,
and provided that the command string is enclosed in square brackets, Excel can execute the
command. The example below instructs Excel to open the worksheet “TRIAL.XLS”.

Dim i_chan As Integer
i_chan = DDEInitiate("Excel", "System")
DDEExecute i_chan, "[OPEN(""C:\DATA\TRIAL.XLS"")]"

See Also:

DDEInitiate() function, DDEPoke statement, DDERequest$() function

DDEInitiate() function

Purpose

Initiates a new DDE conversation, and returns the associated channel number.

Syntax

DDEInitiate(appl_name, topic_name)

appl_name is a string representing an application name (for example, “MapInfo”).

topic_name is a string representing a topic name (for example, “System”).

Return Value

Integer

Description

The DDEInitiate() function initiates a DDE (Dynamic Data Exchange) conversation, and returns the
number that identifies that conversation's channel.

A DDE conversation allows two Microsoft Windows applications to exchange information. Once a
DDE conversation has been initiated, a MapBasic program can issue DDERequest$() function
calls (to read information from the other application) and DDEPoke statements (to write information
to the other application). Once a DDE conversation has served its purpose and is no longer needed,
the MapBasic program should terminate the conversation through the DDETerminate statement or
DDETerminateAll statement.

DDE conversations are a feature specific to Microsoft Windows; therefore, MapBasic
generates an error if a program issues DDE-related function calls when running on a non-
Windows platform. To determine the current hardware platform at run-time, call the
SystemInfo() function.
MapBasic 11.0 231 Reference

Chapter 5:
DDEInitiate() function
The appl_name parameter identifies a Windows application. For example, to initiate a conversation
with Microsoft Excel, you should specify the appl_name parameter “Excel.” The application named
by the appl_name parameter must already be running before you can initiate a DDE conversation;
note that the MapBasic Run Program statement allows you to run another Windows application.
Not all Windows applications support DDE conversations. To determine if an application supports
DDE conversations, see the documentation for that application.

The topic_name parameter is a string that identifies the topic for the conversation. Each application
has its own set of valid topic names; for a list of topics supported by a particular application, refer to
the documentation for that application. With many applications, the name of a file that is in use is a
valid topic name. Thus, if Excel is currently using the worksheet file “ORDERS.XLS”, you could issue
the following MapBasic statements:

Dim i_chan As Integer
i_chan = DDEInitiate("Excel", "C:\ORDERS.XLS")

to initiate a DDE conversation with that Excel worksheet.

Many applications support a special topic called “System”. If you initiate a conversation using the
“System” topic, you can then use the DDERequest$() function to obtain a list of the strings which
the application accepts as valid topic names (for example, a list of the files that are currently in use).
Knowing what topics are available, you can then initiate another DDE conversation with a specific
document. See the example below.

The following table lists some sample application and topic names which you could use with the
DDEInitiate() function.

DDEInitiate() call Nature of conversation

DDEInitiate("Excel", "System") DDERequest$() function calls can return Excel
system information, such as a list of the names of
the worksheets in use; DDEExecute statements
can send commands for Excel to execute.

DDEInitiate("Excel", wks) If wks is the name of an Excel document in use,
subsequent DDEPoke statements can store
values in the worksheet, and DDERequest$()
function calls can read information from the
worksheet.

DDEInitiate("MapInfo", "System") DDERequest$() function calls can provide
system information, such as a list of the MapBasic
applications currently in use by MapInfo
Professional.

DDEInitiate("MapInfo" mbx) If mbx is the name of a MapBasic application in
use, DDEPoke statements can assign values to
global variables in the specified application, and
DDERequest$() function calls can read the
current values of global variables.
MapBasic 11.0 232 Reference

Chapter 5:
DDEInitiate() function
When a MapBasic program issues a DDEInitiate() function call, the MapBasic program is known as
the “client” in the DDE conversation. The other Windows application is known as the “server.” Within
one particular conversation, the client is always the active party; the server merely responds to
actions taken by the client. A MapBasic program can carry on multiple conversations at the same
time, limited only by memory and system resources. A MapBasic application could act as the client
in one conversation (by issuing statements such as DDEInitiate(), etc.) while acting as the server in
another conversation (by defining a RemoteMsgHandler procedure).

Error Conditions

ERR_CMD_NOT_SUPPORTED (642) error generated if not running on Windows.

ERR_INVALID_CHANNEL (696) error generated if the specified channel number is invalid.

Example

The following example attempts to initiate a DDE conversation with Microsoft Excel, version 4 or
later. The goal is to store a simple text message (“Hello from MapInfo!”) in the first cell of a
worksheet that Excel is currently using, but only if that cell is currently empty. If the first cell is not
empty, we will not overwrite its current contents.

Dim chan_num, tab_marker As Integer
Dim topiclist, topicname, cell As String

chan_num = DDEInitiate("EXCEL", "System")
If chan_num = 0 Then

Note "Excel is not responding to DDE conversation."
End Program

End If

' Get a list of Excel's valid topics
topiclist = DDERequest$(chan_num, "topics")

' If Excel 4 is running, topiclist might look like:
' ": Sheet1 System"
' (if spreadsheet is still "unnamed"),or like:
' ": C:Orders.XLS Sheet1 System"
'
' If Excel 5 is running, topiclist might look like:
' "[Book1]Sheet1 [Book2]Sheet2 ..."
'
' Next, extract just the first topic (for example,"Sheet1")
' by extracting the text between the 1st & 2nd tabs;
' or, in the case of Excel 5, by extracting the text
' that appears before the first tab.

If Left$(topiclist, 1) = ":" Then
' ...then it's Excel 4.
tab_marker = InStr(3, topiclist, Chr$(9))
If tab_marker = 0 Then

Note "No Excel documents in use! Stopping."
End Program
MapBasic 11.0 233 Reference

Chapter 5:
DDEPoke statement
End If
topicname = Mid$(topiclist, 3, tab_marker - 3)
Else

' ... assume it's Excel 5.
tab_marker = Instr(1, topiclist, Chr$(9))
topicname = Left$(topiclist, tab_marker - 1)

End If

' open a channel to the specific document
' (e.g., "Sheet1")
DDETerminate chan_num
chan_num = DDEInitiate("Excel", topicname)
If chan_num = 0 Then

Note "Problem communicating with " + topicname End Program
End If

' Let's examine the 1st cell in Excel.
' If cell is blank, put a message in the cell.
' If cell isn't blank, don't alter it -
' just display cell contents in a MapBasic NOTE.
' Note that a "Blank cell" gets returned as a
' carriage-return line-feed sequence:
' Chr$(13) + Chr$(10).
cell = DDERequest$(chan_num, "R1C1")
If cell <> Chr$(13) + Chr$(10) Then

Note
"Message not sent; cell already contains:" + cell

Else
DDEPoke chan_num, "R1C1", "Hello from MapInfo!"
Note "Message sent to Excel,"+topicname+ ",R1C1."

End If
DDETerminateAll

This example does not anticipate every possible obstacle. For example, Excel might
currently be editing a chart (for example, “Chart1”) instead of a worksheet, in which case we
will not be able to reference cell “R1C1”.

See Also:

DDEExecute statement, DDEPoke statement, DDERequest$() function, DDETerminate
statement, DDETerminateAll statement

DDEPoke statement

Purpose

Sends a data value to an item in a DDE server application.
MapBasic 11.0 234 Reference

Chapter 5:
DDEPoke statement
Syntax

DDEPoke channel, itemname, data

channel is an integer channel number returned by the DDEInitiate() function.

itemname is a string value representing the name of an item.

data is a character string to be sent to the item named in the itemname parameter.

Description

The DDEPoke statement stores the data text string in the specified DDE item.

The channel parameter must correspond to the number of a channel which was opened through the
DDEInitiate() function.

The itemname parameter should identify an item which is appropriate for the specified channel.
Different DDE applications support different item names; to learn what item names are supported by
a particular Windows application, refer to the documentation for that application.

In a DDE conversation with Excel, a string of the form R1C1 (for Row 1, Column 1) is a valid item
name. In a DDE conversation with another MapBasic application, the name of a global variable in
the application is a valid item name.

Error Conditions

ERR_CMD_NOT_SUPPORTED (642) error generated if not running on Windows.

ERR_INVALID_CHANNEL (696) error generated if the specified channel number is invalid.

Example

If Excel is already running, the following example stores a simple message (“Hello from MapInfo!”) in
the first cell of an Excel worksheet.

Dim i_chan_num As Integer
i_chan_num = DDEInitiate("EXCEL", "Sheet1")
DDEPoke i_chan_num, "R1C1", "Hello from MapInfo!"

The following example assumes that there is another MapBasic application currently in use—
”Dispatch.mbx”—and assumes that the Dispatch application has a global variable called Address.
The example below uses DDEPoke to modify the Address global variable.

i_chan_num = DDEInitiate("MapInfo","C:\DISPATCH.MBX")
DDEPoke i_chan_num, "Address", "23 Main St."

See Also:

DDEExecute statement, DDEInitiate() function, DDERequest$() function
MapBasic 11.0 235 Reference

Chapter 5:
DDERequest$() function
DDERequest$() function

Purpose

Returns a data value obtained from a DDE conversation.

Syntax

DDERequest$(channel, itemname)

channel is an integer channel number returned by the DDEInitiate() function.

itemname is a string representing the name of an item in the server application.

Return Value

String

Description

The DDERequest$() function returns a string of information obtained through a DDE conversation.
If the request is unsuccessful, the DDERequest$() function returns a null string.

The channel parameter must correspond to the number of a channel which was opened through the
DDEInitiate() function.

The itemname parameter should identify an item which is appropriate for the specified channel.
Different DDE applications support different item names; to learn what item names are supported by
a particular Windows application, refer to the documentation for that application.

The following table lists some topic and item combinations that can be used when conducting a DDE
conversation with Microsoft Excel as the server:
MapBasic 11.0 236 Reference

Chapter 5:
DDERequest$() function
Through the DDERequest$() function, one MapBasic application can observe the current
values of global variables in another MapBasic application. The following table lists the topic
and item combinations that can be used when conducting a DDE conversation with MapInfo
Professional as the server.

Error Conditions

ERR_CMD_NOT_SUPPORTED (642) error generated if not running on Windows.

ERR_INVALID_CHANNEL (696) error if the specified channel number is invalid.

ERR_CANT_INITIATE_LINK (698) error generated if MapBasic cannot link to the topic.

Topic name Item names to use with DDERequest$()

“System” “Systems” returns a list of item names accepted under the
“System” topic;

“Topics” returns a list of DDE topic names accepted by
Excel, including the names of all open worksheets;

“Formats” returns a list of clipboard formats accepted by
Excel (for example, “TEXT BITMAP …”)

wks (name of a worksheet in use) A string of the form R1C1 (for Row 1, Column 1) returns the
contents of that cell

Topic name item names to use with DDERequest$()

“System” “Systems” returns a list of item names accepted under the
“System” topic;

“Topics” returns a list of DDE topic names accepted by MapInfo
Professional, which includes the names of all MapBasic
applications currently in use;

“Formats” returns a list of clipboard formats accepted by MapInfo
Professional (“TEXT”);

“Version” returns the MapInfo version number, multiplied by 100.

mbx (name of .MBX in use) “{items}” returns a list of the names of global variables in use by
the specified MapBasic application; specifying the name of a
global variable lets DDERequest$() return the value of the
variable
MapBasic 11.0 237 Reference

Chapter 5:
DDETerminate statement
Example

The following example uses the DDERequest$() function to obtain the current contents of the first
cell in an Excel worksheet. Note that this example will only work if Excel is already running.

Dim i_chan_num As Integer
Dim s_cell As String
i_chan_num = DDEInitiate("EXCEL", "Sheet1")
s_cell = DDERequest$(i_chan_num, "R1C1")

The following example assumes that there is another MapBasic application currently in use—
”Dispatch”—and assumes that the Dispatch application has a global variable called Address. The
example below uses DDERequest$() to obtain the current value of the Address global variable.

Dim i_chan_num As Integer, s_addr_copy As String
i_chan_num = DDEInitiate("MapInfo","C:\DISPATCH.MBX")
s_addr_copy = DDERequest$(i_chan_num, "Address")

See Also:

DDEInitiate() function

DDETerminate statement

Purpose

Closes a DDE conversation.

Syntax

DDETerminate channel

channel is an integer channel number returned by the DDEInitiate() function.

Description

The DDETerminate statement closes the DDE channel specified by the channel parameter.

The channel parameter must correspond to the channel number returned by the DDEInitiate()
function call (which initiated the conversation). Once a DDE conversation has served its purpose
and is no longer needed, the MapBasic program should terminate the conversation through the
DDETerminate statement or the DDETerminateAll statement.

Multiple MapBasic applications can be in use simultaneously, and each application can open
its own DDE channels. However, a given MapBasic application may only close the DDE
channels which it opened. A MapBasic application may not close DDE channels which were
opened by another MapBasic application.

Error Conditions

ERR_CMD_NOT_SUPPORTED (642) error generated if not running on Windows.
MapBasic 11.0 238 Reference

Chapter 5:
DDETerminateAll statement
ERR_INVALID_CHANNEL (696) error generated if the specified channel number is invalid.

Example

DDETerminate i_chan_num

See Also:

DDEInitiate() function, DDETerminateAll statement

DDETerminateAll statement

Purpose

Closes all DDE conversations which were opened by the same MapBasic program.

Syntax

DDETerminateAll

Description

The DDETerminateAll statement closes all open DDE channels which were opened by the same
MapBasic application. Note that multiple MapBasic applications can be in use simultaneously, and
each application can open its own DDE channels. However, a given MapBasic application may only
close the DDE channels which it opened. A MapBasic application may not close DDE channels
which were opened by another MapBasic application.

Once a DDE conversation has served its purpose and is no longer needed, the MapBasic program
should terminate the conversation through the DDETerminate statement or the DDETerminateAll
statement.

Error Conditions

ERR_CMD_NOT_SUPPORTED (642) error generated if not running on Windows.

See Also:

DDEInitiate() function, DDETerminate statement

Declare Function statement

Purpose

Defines the name and parameter list of a function.

Restrictions

This statement may not be issued from the MapBasic window.

Accessing external functions (using syntax 2) is platform-dependent. DLL files may only be
accessed by applications running on Windows.
MapBasic 11.0 239 Reference

Chapter 5:
Declare Function statement
Syntax 1

Declare Function fname
([[ByVal] parameter As var_type]
 [, [ByVal] parameter As var_type...]) As return_type

fname is the name of the function.

parameter is the name of a parameter to the function.

var_type is a variable type, such as integer; arrays and custom Types are allowed.

return_type is a standard scalar variable type; arrays and custom Types are not allowed.

Syntax 2 (external routines in Windows DLLs)

Declare Function fname Lib "file_name" [Alias "function_alias"]
([[ByVal] parameter As var_type]
 [, [ByVal] parameter As var_type...]) As return_type

fname is the name by which a function will be called.

file_name is the name of a Windows DLL file.

function_alias is the original name of the external function.

parameter is the name of a parameter to the function.

var_type is a data type: with Windows DLLs, this can be a standard variable type or a custom Type.

return_type is a standard scalar variable type.

Description

The Declare Function statement pre-declares a user-defined MapBasic function or an external
function.

A MapBasic program can use a Function…End Function statement to create a custom function.
Every function defined in this fashion must be preceded by a Declare Function statement. For more
information on creating custom functions, see Function…End Function statement.

Parameters passed to a function are passed by reference unless you include the optional ByVal
keyword. For information on the differences between by-reference and by-value parameters, see the
MapBasic User Guide.

Calling External Functions

Using Syntax 2 (above), you can use a Declare Function statement to define an external function.
An external function is a function that was written in another language (for example, C or Pascal),
and is stored in a separate file. Once you have declared an external function, your program can call
the external function as if it were a conventional MapBasic function.

If the Declare Function statement declares an external function, the file_name parameter must
specify the name of the file containing the external function. The external file must be present at run-
time.
MapBasic 11.0 240 Reference

Chapter 5:
Declare Method statement
Every external function has an explicitly assigned name. Ordinarily, the Declare Function
statement's fname parameter matches the explicit routine name from the external file. Alternately,
the Declare Function statement can include an Alias clause, which lets you call the external
function by whatever name you choose. The Alias clause lets you override an external function's
explicit name, in situations where the explicit name conflicts with the name of a standard MapBasic
function.

If the Declare Function statement includes an Alias clause, the function_alias parameter must
match the external function's original name, and the fname parameter indicates the name by which
MapBasic will call the routine.

Restrictions on Windows DLL parameters

You can pass a custom variable type as a parameter to a DLL. However, the DLL must be compiled
with “structure packing” set to the tightest packing. See the MapBasic User Guide for more
information.

Example

The following example defines a custom function, CubeRoot, which returns the cube root of a
number (the number raised to the one-third power).

Declare Sub Main
Declare Function CubeRoot(ByVal x As Float) As Float
Sub Main

Note Str$(CubeRoot(23))
End Sub
Function CubeRoot(ByVal x As Float) As Float

CubeRoot = x ^ (1 / 3)
End Function

See Also:

Declare Sub statement, Function…End Function statement

Declare Method statement

Purpose

Defines the name and argument list of a method/function in a .Net assembly, so that a MapBasic
application can call the function.

Restrictions

This statement may not be issued from the MapBasic window.

Syntax

Declare Method fname Class "class_name" Lib "assembly_name"
 [Alias function_alias]

([[ByVal] parameter As var_type]
MapBasic 11.0 241 Reference

Chapter 5:
Declare Method statement
 [, [ByVal] parameter As var_type...]) [As return_type]

fname is the name by which a function will be called; if the optional Alias clause is omitted, fname
must be the same as the actual .Net method/function name. This option can not be longer than 31
characters.

class_name is the name of the .Net class that provides the function to be called, including the class’s
namespace (such as System.Windows.Forms.MessageBox)

assembly_name is the name of a .Net assembly file, such as filename.dll. If the assembly is to be
loaded from the GAC, assembly_name must be a fully qualified assembly name.

function_alias is the original name of the .Net method/function (the name as defined in the .Net
assembly). Note: Include the Alias clause only when you want to call the method by a name other
than its original name.

parameter is the name of a parameter to the function.

var_type is a MapBasic data type, such as Integer

return_type is a standard MapBasic scalar variable type, such as Integer. If the As clause is omitted,
the MapBasic program can call the method as a Sub (using the Call statement).

Description

The Declare Method statement allows a MapBasic program to call a method (function or procedure)
from a .Net assembly. The .Net assembly can be created using various languages, such as C# or
VB.Net. For details on calling .Net from MapBasic, see the MapBasic User Guide.

MapBasic programs can only call .Net methods or functions that are declared as static. (VB.NET
refers to such functions as “shared functions,” while C# refers to them as “static methods.”)

At run time, if the assembly_name specifies a fully-qualified assembly name, and if the assembly is
registered in the Global Assembly Cache (GAC), MapInfo Professional will load the assembly from
the GAC. Otherwise, the assembly will be loaded from the same directory as the .MBX file (in which
case, assembly_name should be a filename such as "filename.dll"). Thus, you can have your
assembly registered in the GAC, but you are not required to do so.

Examples

Here is a simple example of a C# class that provides a static method:

namespace MyProduct
{
 class MyWrapper
 {
 public static int ShowMessage(string s)
 {
 System.Windows.Forms.MessageBox.Show(s);
 return 0;
 }
 }
}

In VB.Net, the class definition might look like this.
MapBasic 11.0 242 Reference

Chapter 5:
Declare Method statement
Namespace MyProduct

 Public Class MyWrapper

 Public Shared Function ShowMessage(ByVal s As String) As Integer
 System.Windows.Forms.MessageBox.Show(s)
 Return 0
 End Function

 End Class

End Namespace

A MapBasic program could call the method with this syntax:

Declare Method ShowMessage
 Class "MyProduct.MyWrapper"
 Lib "MyAssembly.DLL" (ByVal str As String) As Integer

. . .

Dim retval As Integer
retval = ShowMessage("Here I am")

The following example demonstrates how to declare methods in assemblies that are registered in
the GAC. Note that when an assembly is loaded from the GAC, the Lib clause must specify a fully-
qualified assembly name. Various utilities exist that can help you to identify an assembly's fully-
qualified name, including the gacutil utility provided by Microsoft as part of Visual Studio.

' Declare a method from the System.Windows.Forms.dll assembly:
Declare Method Show
 Class "System.Windows.Forms.MessageBox"
 Lib "System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 (ByVal str As String, ByVal caption As String)

' Declare a method from the mscorlib.dll assembly:
Declare Method Move
 Class "System.IO.File"

 Lib "mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"

 (ByVal sourceFileName As String, ByVal destFileName As String)

' Display a .Net MessageBox dialog box with both a message and a caption:
Call Show("Table update is complete.", "Tool name")

' Call the .Net Move method to move a file
Call Move("C:\work\pending\entries.txt", "C:\work\finished\entries.txt")
MapBasic 11.0 243 Reference

Chapter 5:
Declare Sub statement
Declare Sub statement

Purpose

Identifies the name and parameter list of a sub procedure.

Restrictions

This statement may not be issued from the MapBasic window.

Accessing external functions (using Syntax 2) is platform-dependent. DLL files may only be
accessed by applications running on Windows.

Syntax 1

Declare Sub sub_proc
[([ByVal] parameter As var_type [, ...])]

sub_proc is the name of a sub procedure.

parameter is the name of a sub procedure parameter.

var_type is a standard data type or a custom Type.

Syntax 2 (external routines in Windows DLLs)

Declare Sub sub_proc Lib "file_name" [Alias "sub_alias"]
[([ByVal] parameter As var_type [, ...])]

sub_proc is the name by which an external routine will be called.

file_name is a string; the DLL name.

sub_alias is an external routine's original name.

parameter is the name of a sub procedure parameter.

var_type is a data type: with Windows DLLs, this can be a standard variable type or a custom Type.

Description

The Declare Sub statement establishes a sub procedure's name and parameter list. Typically, each
Declare Sub statement corresponds to an actual sub procedure which appears later in the same
program.

A MapBasic program can use a Sub…End Sub statement to create a procedure. Every procedure
defined in this manner must be preceded by a Declare Sub statement. For more information on
creating procedures, see Sub…End Sub statement.

Parameters passed to a procedure are passed by reference unless you include the optional ByVal
keyword.
MapBasic 11.0 244 Reference

Chapter 5:
Declare Sub statement
Calling External Routines

Using Syntax 2 (above), you can use a Declare Sub statement to define an external routine. An
external routine is a routine that was written in another language (for example, C or Pascal), and is
stored in a separate file. Once you have declared an external routine, your program can call the
external routine as if it were a conventional MapBasic procedure.

If the Declare Sub statement declares an external routine, the file_name parameter must specify
the name of the file containing the routine. The file must be present at run-time.

Every external routine has an explicitly assigned name. Ordinarily, the Declare Sub statement's
sub_proc parameter matches the explicit routine name from the external file. The Declare Sub
statement can include an Alias clause, which lets you call the external routine by whatever name
you choose. The Alias clause lets you override an external routine's explicit name, in situations
where the explicit name conflicts with the name of a standard MapBasic function.

If the Declare Sub statement includes an Alias clause, the sub_alias parameter must match the
external routine's original name, and the sub_proc parameter indicates the name by which
MapBasic will call the routine. You can pass a custom variable type as a parameter to a DLL.
However, the DLL must be compiled with “structure packing” set to the tightest packing. For
information on custom variable types, see Type statement.

Example

Declare Sub Main
Declare Sub Cube(ByVal original As Float, cubed As Float)

Sub Main
Dim x, result As Float
Call Cube(2, result)
' result now contains the value: 8 (2 x 2 x 2)
x = 1
Call Cube(x + 2, result)
' result now contains the value: 27 (3 x 3 x 3)

End Sub
Sub Cube (ByVal original As Float, cubed As Float)

'
' Cube the "original" parameter value, and store
' the result in the "cubed" parameter.
'
cubed = original ^ 3

End Sub

See Also:

Call statement, Sub…End Sub statement
MapBasic 11.0 245 Reference

Chapter 5:
Define statement
Define statement

Purpose

Defines a custom keyword with a constant value.

Restrictions

You cannot issue a Define statement through the MapBasic window.

Syntax

Define identifier definition

identifier is an identifier up to 31 characters long, beginning with a letter or underscore (_).

definition is the text MapBasic should substitute for each occurrence of identifier.

Description

The Define statement defines a new identifier. For the remainder of the program, whenever
MapBasic encounters the same identifier the original definition will be substituted for the identifier.
For examples of Define statements, see the standard MapBasic definitions file, MAPBASIC.DEF.

An identifier defined through a Define statement is not case-sensitive. If you use a Define statement
to define the keyword FOO, your program can refer to the identifier as Foo or foo. You cannot use
the Define statement to re-define a MapBasic keyword, such as Set or Create. For a list of reserved
keywords, see Dim statement.

Examples

Your application may need to reference the mathematical value known as Pi, which has a value of
approximately 3.141593. Accordingly, you might want to use the following definition:

Define PI 3.141593

Following such a definition, you could simply type PI wherever you needed to reference the value
3.141593.

The definition portion of a Define statement can include quotes. For example, the following
statement creates a keyword with a definition including quotes:

Define FILE_NAME "World.tab"

The following Define is part of the standard definitions file, MAPBASIC.DEF. This Define provides
an easy way of clearing the Message window:

Define CLS Print Chr$(12)
MapBasic 11.0 246 Reference

Chapter 5:
DeformatNumber$() function
DeformatNumber$() function

Purpose

Removes formatting from a string that represents a number. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

DeformatNumber$ (numeric_string)

numeric_string is a string that represents a numeric value, such as “12,345,678”.

Return Value

String

Description

Returns a string that represents a number. The return value does not include thousands separators,
regardless of whether the numeric_string argument included comma separators. The return value
uses a period as the decimal separator, regardless of whether the user's computer is set up to use
another character as the decimal separator.

Examples

The following example calls the Val() function to determine the numeric value of a string. Before
calling the Val() function, this example calls the DeformatNumber$() function to remove comma
separators from the string. (The string that you pass to the Val() function cannot contain comma
separators.)

Dim s_number As String
Dim f_value As Float

s_number = "1,222,333.4"
s_number = DeformatNumber$(s_number)

' the variable s_number now contains the
' string: "1222333.4"

f_value = Val(s_number)

Print f_value

See Also:

FormatNumber$() function, Val() function
MapBasic 11.0 247 Reference

Chapter 5:
Delete statement
Delete statement

Purpose

Deletes one or more graphic objects, or one or more entire rows, from a table. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Delete [Object] From table [Where Rowid = id_number]

table is the name of an open table.

id_number is the number of a single row (an integer value of one or more).

Description

The Delete statement deletes graphical objects or entire records from an open table.

By default, the Delete statement deletes all records from a table. However, if the statement includes
the optional Object keyword, MapBasic only deletes the graphical objects that are attached to the
table, rather than deleting the records themselves.

By default, the Delete statement affects all records in the table. However, if the statement includes
the optional Where Rowid =…clause, then only the specified row is affected by the Delete
statement.

There is an important difference between a Delete Object From statement and a Drop Map
statement. A Delete Object From statement only affects objects or records in a table, it does not
affect the table structure itself. A Drop Map statement actually modifies the table structure, so that
graphical objects may not be attached to the table.

Examples

The following Delete statement deletes all of the records from a table. At the conclusion of this
operation, the table still exists, but it is completely empty - as if the user had just created it by
choosing File > New.

Open Table "clients"
Delete From clients
 Table clients

The following Delete statement deletes only the object from the tenth row of the table:

Open Table "clients"
Delete Object From clients Where Rowid = 10
 Table clients

See Also:

Drop Map statement, Insert statement
MapBasic 11.0 248 Reference

Chapter 5:
Dialog statement
Dialog statement

Purpose

Displays a custom dialog box.

Restrictions

You cannot issue a Dialog statement through the MapBasic window.

Syntax

Dialog
[Title title]
[Width w] [Height h] [Position x, y]
[Calling handler]

Control control_clause
[Control control_clause...]

title is a string expression that appears in the title bar of the dialog box.

h specifies the height of the dialog box, in dialog box units (8 dialog box height units represent the
height of one character).

w specifies the width of the dialog, in dialog units (4 dialog height units represent the width of one
character).

x, y specifies the dialog box’s initial position, in pixels, representing distance from the upper-left
corner of MapInfo Professional's work area; if the Position clause is omitted, the dialog box appears
centered.

handler is the name of a procedure to call before the user is allowed to use the dialog box; this
procedure is typically used to issue Alter Control statements.

Each control_clause can specify one of the following types of controls:

• Button
• OKButton
• CancelButton
• EditText
• StaticText
• PopupMenu
• CheckBox
• MultiListBox
• GroupBox
• RadioGroup
• PenPickerm
• BrushPicker
• FontPicker
• SymbolPicker
• ListBox
MapBasic 11.0 249 Reference

Chapter 5:
Dialog statement
See the separate discussions of those control types for more details (for example, for details on
CheckBox controls, see Control CheckBox clause; for details on Picker controls, see Control
PenPicker/BrushPicker/SymbolPicker/FontPicker clause; etc.).

Each control_clause can specify one of the following control types:

• Button / OKButton / CancelButton
• CheckBox
• GroupBox
• RadioGroup
• EditText
• StaticText
• PenPicker / BrushPicker / SymbolPicker / FontPicker
• ListBox / MultiListBox
• PopupMenu

Description

The Dialog statement creates a dialog box, displays it on the screen, and lets the user interact with
it. The dialog box is modal; in other words, the user must dismiss the dialog box (for example, by
clicking OK or Cancel) before doing anything else in MapInfo Professional. For an introduction to
custom dialog boxes, see the MapBasic User Guide.

Anything that can appear on a dialog box is known as a control. Each dialog box must contain at
least one control (for example, an OKButton control). Individual control clauses are discussed in
separate entries (for example, see Control CheckBox clause for a discussion of check-box
controls). As a general rule, every dialog box should include an OKButton control and/or a
CancelButton control, so that the user has a way of dismissing the dialog box.

The Dialog statement lets you create a custom dialog box. If you want to display a standard dialog
box (for example, a File > Open dialog box), use one of the following statements or functions: Ask()
function, Note statement, ProgressBar statement, FileOpenDlg() function, FileSaveAsDlg()
function, or GetSeamlessSheet() function).

For an introduction to the concepts behind MapBasic dialog boxes, see the MapBasic User Guide.

Sizes and Positions of Dialog Boxes and Dialog Box Controls

Within the Dialog statement, sizes and positions are stated in terms of dialog box units. A width of
four dialog box units equals the width of one character, and a height of eight dialog box units equals
the height of one character. Thus, if a dialog box control has a height of 40 and a width of 40, that
control is roughly ten characters wide and 5 characters tall. Control positions are relative to the
upper left corner of the dialog box. To place a control at the upper-left corner of a dialog box, use x-
and y-coordinates of zero and zero.

The Position, Height, and Width clauses are all optional. If you omit these clauses, MapBasic
places the controls at default positions in the dialog box, with subsequent control clauses appearing
further down in the dialog box.
MapBasic 11.0 250 Reference

Chapter 5:
Dialog statement
Terminating a Dialog Box

After a MapBasic program issues a Dialog statement, the user will continue interacting with the
dialog box until one of four things happens:

• The user clicks the OKButton control (if the dialog box has one);
• The user clicks the CancelButton control (if the dialog box has one);
• The user clicks a control with a handler that issues a Dialog Remove statement; or
• The user otherwise dismisses the dialog box (for example, by pressing Esc on a dialog box that

has a CancelButton).

To force a dialog box to remain on the screen after the user has clicked OK or Cancel, assign a
handler procedure to the OKButton or CancelButton control and have that handler issue a Dialog
Preserve statement.

Reading the User’s Input

After a Dialog statement, call the CommandInfo() function to determine whether the user clicked
OK or Cancel to dismiss the dialog box. If the user clicked OK, the following function call returns
TRUE:

CommandInfo(CMD_INFO_DLG_OK)

There are two ways to read values entered by the user: Include Into clauses in the Dialog
statement, or call the ReadControlValue() function from a handler procedure.

If a control specifies the Into clause, and if the user clicks the OKButton, MapInfo Professional
stores the control’s final value in a program variable.

MapInfo Professional only updates the variable if the user clicks OK. Also, MapInfo
Professional only updates the variable after the dialog box terminates.

To read a control's value from within a handler procedure, call the ReadControlValue() function.

Specifying Hotkeys for Controls

When a MapBasic application runs on MapInfo, dialog boxes can assign hotkeys to the various
controls. A hotkey is a convenience allowing the user to choose a dialog box control by pressing key
sequences rather than clicking with the mouse.

To specify a hotkey for a control, include the ampersand character (&) in the title for that control.
Within the Title clause, the ampersand should appear immediately before the character which is to
be used as a hotkey character. Thus, the following Button clause defines a button which the user
can choose by pressing Alt-R:

Control Button
Title "&Reset"

Although an ampersand appears within the Title clause, the final dialog box does not show the
ampersand. If you need to display an ampersand character in a control (for example, if you want a
button to read “Find & Replace”), include two successive ampersand characters in the Title clause:

Title "Find && Replace"
MapBasic 11.0 251 Reference

Chapter 5:
Dialog statement
If you position a StaticText control just before or above an EditText control, and you define the
StaticText control with a hotkey designation, the user is able to jump to the EditText control by
pressing the hotkey sequence.

Specifying the Tab Order

The user can press the Tab key to move the keyboard focus through the dialog box. The focus
moves from control to control according to the dialog box's tab order.

Tab order is defined by the order of the Control clauses in the Dialog statement. When the focus is
on the third control, pressing Tab moves the focus to the fourth control, etc. If you want to change
the tab order, change the order of the Control clauses.

Examples

The following example creates a simple dialog box with an EditText control. In this example, none of
the Control clauses use the optional Position clause; therefore, MapBasic places each control in a
default position.

Dialog
Title "Search"
Control StaticText

Title "Enter string to find:"
Control EditText

Value gs_searchfor 'this is a Global String variable
Into gs_searchfor

Control OKButton
Control CancelButton

If CommandInfo(CMD_INFO_DLG_OK) Then
' ...then the user clicked OK, and the variable
' gs_searchfor contains the text the user entered.

End If

The following program demonstrates the syntax of all of MapBasic's control types.

Include "mapbasic.def"
Declare Sub reset_sub ‘resets dialog to default settings
Declare Sub ok_sub ' notes values when user clicks OK.
Declare Sub Main
Sub Main

Dim s_title As String 'the title of the map
Dim l_showlegend As Logical 'TRUE means include legend
Dim i_details As SmallInt '1 = full details; 2 = partial
Dim i_quarter As SmallInt '1=1st qrtr, etc.
Dim i_scope As SmallInt '1=Town;2=County; etc.
Dim sym_variable As Symbol

Dialog
Title "Map Franchise Locations"

Control StaticText
Title "Enter Map Title:"
Position 5, 10
MapBasic 11.0 252 Reference

Chapter 5:
Dialog statement
Control EditText
Value "New Franchises, FY 95"
Into s_title
ID 1
Position 65, 8 Width 90

Control GroupBox
Title "Level of Detail"
Position 5, 30 Width 70 Height 40

Control RadioGroup
Title "&Full Details;&Partial Details"
Value 2
Into i_details
ID 2
Position 12, 42 Width 60

Control StaticText
Title "Show Franchises As:" Position 95, 30

Control SymbolPicker
Position 95, 45
Into sym_variable
ID 3

Control StaticText
Title "Show Results For:"
Position 5, 80

Control ListBox
Title "First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr"
Value 4
Into i_quarter
ID 4
Position 5, 90 Width 65 Height 35

Control StaticText
Title "Include Map Layers:"
Position 95, 80

Control MultiListBox
Title "Streets;Highways;Towns;Counties;States"
Value 3
ID 5
Position 95, 90 Width 65 Height 35

Control StaticText
Title "Scope of Map:"
Position 5, 130

Control PopupMenu
Title "Town;County;Territory;Entire State"
Value 2
Into i_scope
ID 6
Position 5, 140

Control CheckBox
Title "Include &Legend"
MapBasic 11.0 253 Reference

Chapter 5:
Dialog statement
Into l_showlegend
ID 7
Position 95, 140

Control Button
Title "&Reset"
Calling reset_sub
Position 10, 165

Control OKButton
Position 65, 165
Calling ok_sub

Control CancelButton
Position 120, 165

If CommandInfo(CMD_INFO_DLG_OK) Then
' ... then the user clicked OK.

Else
' ... then the user clicked Cancel.

End If
End Sub
Sub reset_sub

' here, you could use Alter Control statements
' to reset the controls to their original state.

End Sub
Sub ok_sub

' Here, place code to handle user clicking OK
End Sub

The preceding program produces the following dialog box.
MapBasic 11.0 254 Reference

Chapter 5:
Dialog Preserve statement
See Also:

Alter Control statement, Ask() function, Dialog Preserve statement, Dialog Remove
statement, FileOpenDlg() function, FileSaveAsDlg() function, Note statement,
ReadControlValue() function

Dialog Preserve statement

Purpose

Reactivates a custom dialog box after the user clicked OK or Cancel.

Syntax

Dialog Preserve

Restrictions

This statement may only be issued from within a sub procedure that acts as a handler for an
OKButton or CancelButton dialog box control. You cannot issue this statement from the MapBasic
window.

Description

The Dialog Preserve statement allows the user to resume using a custom dialog box (which was
created through a Dialog statement) even after the user clicked the OKButton or CancelButton
control.

The Dialog Preserve statement lets you “confirm” the user's OK or Cancel action. For example, if
the user clicks Cancel, you may wish to display a dialog box asking a question such as “Do you
want to lose your changes?” If the user chooses “No” on the confirmation dialog box, the application
should reactivate the original dialog box. You can provide this functionality by issuing a Dialog
Preserve statement from within the CancelButton control's handler procedure.

Example

The following procedure could be used as a handler for a CancelButton control.

Sub confirm_cancel
If Ask("Do you really want to lose your changes?",

"Yes", "No") = FALSE Then
Dialog Preserve

End If
End Sub

See Also:

Alter Control statement, Dialog statement, Dialog Remove statement, ReadControlValue()
function
MapBasic 11.0 255 Reference

Chapter 5:
Dialog Remove statement
Dialog Remove statement

Purpose

Removes a custom dialog from the screen.

Syntax

Dialog Remove

Restrictions

This statement may only be issued from within a sub procedure that acts as a handler for a dialog
box control. You cannot issue this statement from the MapBasic window.

Description

The Dialog Remove statement removes the dialog box created by the most recent Dialog
statement. A dialog box disappears automatically after the user clicks on an OKButton control or a
CancelButton control. Use the Dialog Remove statement (within a dialog box control's handler
routine) to remove the dialog box before the user clicks OK or Cancel. This is useful, for example, if
you have a dialog box with a ListBox control, and you want the dialog box to come down if the user
double-clicks an item in the list.

Dialog Remove signals to remove the dialog box after the handler sub procedure returns. It
does not remove the dialog box instantaneously.

Example

The following procedure is part of the sample program NVIEWS.MB. It handles the ListBox control in
the Named Views dialog box. When the user single-clicks a list item, this handler procedure enables
various buttons on the dialog box. When the user double-clicks a list item, this handler uses a
Dialog Remove statement to dismiss the dialog box.

MapInfo Professional calls this handler procedure for click events and for double-click
events.

Sub listbox_handler
Dim i As SmallInt
Alter Control 2 Enable
Alter Control 3 Enable
If CommandInfo(CMD_INFO_DLG_DBL) = TRUE Then

'
' ... then the user double-clicked.
'
i = ReadControlValue(1)
Dialog Remove
Call go_to_view(i)
MapBasic 11.0 256 Reference

Chapter 5:
Dim statement
End If
End Sub

See Also:

Alter Control statement, Dialog statement, Dialog Preserve statement, ReadControlValue()
function

Dim statement

Purpose

Defines one or more variables. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Restrictions

When you issue Dim statements through the MapBasic window, you can only define one variable
per Dim statement, although a Dim statement within a compiled program may define multiple
variables. You cannot define array variables using the MapBasic window.

Syntax

Dim var_name [, var_name ...] As var_type
[, var_name [, var_name ...] As var_type ...]

var_name is the name of a variable to define.

var_type is a standard or custom variable Type.

Description

A Dim statement declares one or more variables. The following table summarizes the types of
variables which you can declare through a Dim statement.

Location of Dim Statements and Scope of Variables

Variable Type Description

SmallInt Whole numbers from -32768 to 32767 (inclusive); stored in 2 bytes.

Integer Whole numbers from -2,147,483,648 to +2,147,483,647 (inclusive); stored in 4
bytes.

Float Floating point value; stored in eight-byte IEEE format.

String Variable-length character string, up to 32768 bytes long.

String * length Fixed-length character string (where length dictates the length of the string, in
bytes, up to 32768 bytes); fixed-length strings are padded with trailing blanks.
MapBasic 11.0 257 Reference

Chapter 5:
Dim statement
The Dim statement which defines a variable must precede any other statements which use that
variable. Dim statements usually appear at the top of a procedure or function.

If a Dim statement appears within a Sub…End Sub statement or within a Function…End
Function statement, the statement defines variables that are local in scope. Local variables may
only be accessed from within the procedure or function that contained the Dim statement.

If a Dim statement appears outside of any procedure or function definition, the statement defines
variables that are module-level in scope. Module-level variables can be accessed by any procedure
or function within a program module (for example, within the .MB program file).

To declare global variables (variables that can be accessed by any procedure or function in any of
the modules that make up a project), use the Global statement.

Declaring Multiple Variables and Variable Types

A single Dim statement can declare two or more variables that are separated by commas. You also
can define variables of different types within one Dim statement by grouping like variables together,
and separating the different groups with a comma after the variable type:

Dim jointer, i_min, i_max As Integer, s_name As String

Array Variables

MapBasic supports one-dimensional array variables. To define an array variable, add a pair of
parentheses immediately after the variable name. To specify an initial array size, include a constant
integer expression between the parentheses.

Logical TRUE or FALSE, stored in 1 byte: zero=FALSE, non-zero=TRUE.

Date Date, stored in four bytes: two bytes for the year, one byte for the month, one
byte for the day.

DateTime DateTime is stored in nine bytes: 4 bytes for date, 5 bytes for time. 5 bytes for
time include: 2 for millisec, 1 for sec, 1 for min, 1 for hour.

Object Graphical object (Point, Region, Line, Polyline, Arc, Rectangle, Rounded
Rectangle, Ellipse, Text, or Frame).

Alias Column name.

Pen Pen (line) style setting.

Brush Brush (fill) style setting.

Font Font (text) style setting.

Symbol Symbol (point-marker) style setting.

Location of Dim Statements and Scope of Variables (continued)

Variable Type Description
MapBasic 11.0 258 Reference

Chapter 5:
Dim statement
The following example declares an array of ten float variables, then assigns a value to the first
element in the array:

Dim f_stats(10) As Float
f_stats(1) = 17.23

The number that appears between the parentheses is known as the subscript. The first element of
the array is the element with a subscript of one (as shown in the example above).

To re-size an array, use the ReDim statement. To determine the current size of an array, use the
UBound() function. If the Dim statement does not specify an initial array size, the array will initially
contain no members; in such a case, you will not be able to store any data in the array until re-sizing
the array with a ReDim statement. A MapBasic array can have up to 32,767 items.

String Variables

A string variable can contain a text string up to 32 kilobytes in length. However, there is a limit to how
long a string constant you can specify in a simple assignment statement. The following example
performs a simple string variable assignment, where a constant string expression is assigned to a
string variable:

Dim status As String
status = "This is a string constant ... "

In this type of assignment, the constant string expression to the right of the equal sign has a
maximum length of 256 characters.

MapBasic, like other BASIC languages, pads fixed-length string variables with blanks. In other
words, if you define a 10-byte string variable, then assign a five-character string to that variable, the
variable will actually be padded with five spaces so that it fills the space allotted. (This feature makes
it easier to format text output in such a way that columns line up).

Variable-length string variables, however, are not padded in this fashion. This difference can affect
comparisons of strings; you must exercise caution when comparing fixed-length and variable-length
string variables. In the following program, the If…Then statement would determine that the two
strings are not equal:

Dim s_var_len As String
Dim s_fixed_len As String * 10
s_var_len = "testing"
s_fixed_len = "testing"
If s_var_len = s_fixed_len Then

Note "strings are equal" ' this won't happen
Else

Note "strings are NOT equal" ' this WILL happen
End If

Restrictions on Variable Names

Variable names are case-insensitive. Thus, if a Dim statement defines a variable called abc, the
program may refer to that variable as abc, ABC, or Abc.
MapBasic 11.0 259 Reference

Chapter 5:
Dim statement
Each variable name can be up to 31 characters long, and can include letters, numbers, and the
underscore character (_). Variable names can also include the punctuation marks $, %, &, !, #, and
@, but only as the final character in the name. A variable name may not begin with a number.

Many MapBasic language keywords, such as Open, Close, Set, and Do, are reserved words which
may not be used as variable names. If you attempt to define a variable called Set, MapBasic will
generate an error when you compile the program. The table below summarizes the MapBasic
keywords which may not be used as variable names.

In some BASIC languages, you can dictate a variable's type by ending the variable with one of the
punctuation marks listed above. For example, some BASIC languages assume that any variable
named with a dollar sign (for example, LastName$) is a string variable. In MapBasic, however, you
must declare every variable's type explicitly, through the Dim statement.

Add Alter Browse Call

Close Create DDE

DDEExecute DDEPoke DDETerminate DDETerminateAll

Declare Delete Dialog Dim

Do Drop Else ElseIf

End Error Event Exit

Export Fetch Find For

Function Get Global Goto

Graph If Import Insert

Layout Map Menu Note

Objects OnError Open Pack

Print PrintWin ProgressBar Put

ReDim Register Reload Remove

Rename Resume Rollback Run

Save Seek Select Set

Shade StatusBar Stop Sub

Type Update While
MapBasic 11.0 260 Reference

Chapter 5:
Distance() function
Initial Values of Variables

MapBasic initializes numeric variables to a value of zero when they are defined. Variable-length
string variables are initialized to an empty string, and fixed-length string variables are initialized to all
spaces.

Object and style variables are not automatically initialized. You must initialize Object and style
variables before making references to those variables.

Example

' Below is a custom Type definition, which creates
' a new data type known as Person
Type Person

Name As String
Age As Integer
Phone As String

End Type

' The next Dim statement creates a Person variable
Dim customer As Person

' This Dim creates an array of Person variables:
Dim users(10) As Person

' this Dim statement defines an integer variable
' "counter", and an integer array "counters" :
Dim counter, counters(10) As Integer

' the next statement assigns the "Name" element
' of the first member of the "users" array
users(1).Name = "Chris"

See Also:

Global statement, ReDim statement, Type statement, UBound() function

Distance() function

Purpose

Returns the distance between two locations. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Distance (x1, y1, x2, y2, unit_name)

x1 and x2 are x-coordinates (for example, longitude).

y1 and y2 are y-coordinates (for example, latitude).

unit_name is a string representing the name of a distance unit (for example, “km”).
MapBasic 11.0 261 Reference

Chapter 5:
Do Case…End Case statement
Return Value

Float

Description

The Distance() function calculates the distance between two locations.

The function returns the distance measurement in the units specified by the unit_name parameter;
for example, to obtain a distance in miles, specify “mi” as the unit_name parameter. See Set
Distance Units statement for the list of available unit names.

The x- and y-coordinate parameters must use MapBasic's current coordinate system. By default,
MapInfo Professional expects coordinates to use a Longitude/Latitude coordinate system. You can
reset MapBasic's coordinate system through the Set CoordSys statement.

If the current coordinate system is an earth coordinate system, Distance() returns the great-circle
distance between the two points. A great-circle distance is the shortest distance between two points
on a sphere. (A great circle is a circle that goes around the earth, with the circle's center at the
center of the earth; a great-circle distance between two points is the distance along the great circle
which connects the two points.)

For the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
spherical operation is performed unless the coordinate system is NonEarth, in which case, a
Cartesian operation is performed.

Example

Dim dist, start_x, start_y, end_x, end_y As Float
Open Table "cities"
Fetch First From cities
start_x = CentroidX(cities.obj)
start_y = CentroidY(cities.obj)
Fetch Next From cities
end_x = CentroidX(cities.obj)
end_y = CentroidY(cities.obj)
dist = Distance(start_x,start_y,end_x,end_y,"mi")

See Also:

Area() function, ObjectLen() function, Set CoordSys statement, Set Distance Units
statement

Do Case…End Case statement

Purpose

Decides which group of statements to execute, based on the current value of an expression.

Restrictions

You cannot issue a Do Case statement through the MapBasic window.
MapBasic 11.0 262 Reference

Chapter 5:
Do Case…End Case statement
Syntax

Do Case do_expr
 Case case_expr [, case_expr]

 statement_list
[Case ...]
[Case Else

 statement_list]
End Case

do_expr is an expression.

case_expr is an expression representing a possible value for do_expr.

statement_list is a group of statements to carry out under the appropriate circumstances.

Description

The Do Case statement is similar to the If…Then statement, in that Do Case tests for the existence
of certain conditions, and decides which statements to execute (if any) based on the results of the
test. MapBasic's Do Case statement is analogous to the BASIC language's Select Case statement.
(In MapBasic, the name of the statement was changed to avoid conflicting with the Select
statement).

In executing a Do Case statement, MapBasic examines the first Case case_expr clause. If one of
the expressions in the Case case_expr clause is equal to the value of the do_expr expression, that
case is considered a match. Accordingly, MapBasic executes the statements in that Case's
statement_list, and then jumps down to the first statement following the End Case statement.

If none of the expressions in the first Case case_expr clause equal the do_expr expression,
MapBasic tries to find a match in the following Case case_expr clause. MapBasic will test each
Case case_expr clauses in succession, until one of the cases is a match or until all of the cases are
exhausted.

MapBasic will execute at most one statement_list from a Do Case statement. Upon finding a
matching Case, MapBasic will execute that Case's statement_list, and then jump immediately down
to the first statement following End Case.

If none of the case_expr expressions are equal to the do_expr expression, none of the cases will
match, and thus no statement_list will be executed. However, if a Do Case statement includes a
Case Else clause, and if none of the Case case_expr clauses match, then MapBasic will carry out
the statement list from the Case Else clause.

Note that a Do Case statement of this form:

Do Case expr1
Case expr2

 statement_list1
Case expr3, expr4

 statement_list2
Case Else

 statement_list3
End Case

would have the same effect as an If…Then statement of this form:
MapBasic 11.0 263 Reference

Chapter 5:
Do…Loop statement
If expr1 = expr2 Then
 statement_list1

ElseIf expr1 = expr3 Or expr1 = expr4 Then
 statement_list2

Else
 statement_list3

End If

Example

The following example builds a text string such as “First Quarter”, “Second Quarter”, etc., depending
on the current date.

Dim cur_month As Integer, msg As String
cur_month = Month(CurDate())
Do Case cur_month

Case 1, 2, 3
msg = "First Quarter"

Case 4, 5, 6
msg = "Second Quarter"

Case 7, 8, 9
msg = "Third Quarter"

Case Else
msg = "Fourth Quarter"

End Case

See Also:

If…Then statement

Do…Loop statement

Purpose

Defines a loop which will execute until a specified condition becomes TRUE (or FALSE).

Restrictions

You cannot issue a Do Loop statement through the MapBasic window.

Syntax 1

Do
 statement_list

Loop [{ Until | While } condition]

Syntax 2

Do [{ Until | While } condition]
 statement_list

Loop

statement_list is a group of statements to be executed zero or more times.
MapBasic 11.0 264 Reference

Chapter 5:
Do…Loop statement
condition is a conditional expression which controls when the loop terminates.

Description

The Do…Loop statement provides loop control. Generally speaking, the Do…Loop repeatedly
executes the statements in a statement_list as long as a While condition remains TRUE (or,
conversely, the loop repeatedly executes the statement_list until the Until condition becomes
TRUE).

If the Do…Loop does not contain the optional Until / While clause, the loop will repeat indefinitely.
In such a case, a flow control statement, such as Goto statement or Exit Do statement, will be
needed to halt or exit the loop. The Exit Do statement halts any Do…Loop immediately (regardless
of whether the loop has an Until / While clause), and resumes program execution with the first
statement following the Loop clause.

As indicated above, the optional Until / While clause may either follow the Do keyword or the Loop
keyword. The position of the Until / While clause dictates whether MapBasic tests the condition
before or after executing the statement_list. This is of particular importance during the first iteration
of the loop. A loop using the following syntax:

Do
 statement_list

Loop While condition

will execute the statement_list and then test the condition. If the condition is TRUE, MapBasic will
continue to execute the statement_list until the condition becomes FALSE. Thus, a Do…Loop using
the above syntax will execute the statement_list at least once.

By contrast, a Do…Loop of the following form will only execute the statement_list if the condition is
TRUE.

Do While condition
 statement_list

Loop

Example

The following example uses a Do…Loop statement to read the first ten records of a table.

Dim sum As Float, counter As Integer
Open Table "world"
Fetch First From world
counter = 1
Do

sum = sum + world.population
Fetch Next From world
counter = counter + 1

Loop While counter <= 10

See Also:

Exit Do statement, For…Next statement
MapBasic 11.0 265 Reference

Chapter 5:
Drop Index statement
Drop Index statement

Purpose

Deletes an index from a table. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Drop Index table(column)

table is the name of an open table.

column is the name of a column in that table.

Description

The Drop Index statement deletes an existing index from an open table. Dropping an index reduces
the amount of disk space occupied by a table. (To re-create that index at a later time, issue a Create
Index statement.)

MapInfo Professional cannot drop an index if the table has unsaved edits. Use the Commit
Table statement to save edits.

The Drop Index statement takes effect immediately; no save operation is required. You cannot
undo the effect of a Drop Index statement by selecting File > Revert or Edit > Undo. Similarly, the
MapBasic Rollback statement will not undo the effect of a Drop Index statement.

Example

The following example deletes the index from the Name field of the World table.

Open Table "world"
Drop Index world(name)

See Also:

Create Index statement

Drop Map statement

Purpose

Deletes all graphical objects from a table. Cannot be used on linked tables. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Drop Map table
MapBasic 11.0 266 Reference

Chapter 5:
Drop Table statement
table is the name of an open table.

Description

A Drop Map statement deletes all graphical objects (points, lines, regions, circles, etc.) from an
open table, and modifies the table structure so that graphical objects may not be attached to the
table.

The Drop Map statement takes effect immediately; no save operation is required. You
cannot undo the effect of a Drop Map statement by selecting File > Revert or Edit > Undo.
Similarly, the MapBasic Rollback statement will not undo the effect of a Drop Map
statement. Accordingly, you should be extremely cautious when using the Drop Map
statement.

After performing a Drop Map operation, you will no longer be able to display the corresponding table
in a Map window; the Drop Map statement modifies the table's structure so that objects may no
longer be associated with the table. (A subsequent Create Map statement will restore the table's
ability to contain graphical objects; however, a Create Map statement will not restore the graphical
objects which were discarded during a Drop Map operation.) The Drop Map statement does not
affect the number of records in a table. You still can browse a table after performing Drop Map.

If you wish to delete all of the graphical objects from a table, but you intend to attach new graphical
objects to the same table, use Delete Object instead of Drop Map.

The Drop Map statement does not work on linked tables.

Example

Open Table "clients"
Drop Map clients

See Also:

Create Map statement, Create Table statement, Delete statement

Drop Table statement

Purpose

Deletes a table in its entirety. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Drop Table table

table is the name of an open table.
MapBasic 11.0 267 Reference

Chapter 5:
End MapInfo statement
Description

The Drop Table statement completely erases the specified table from the computer's disk. The table
must already be open.

Note that if a table is based on a pre-existing database or spreadsheet file, the Drop Table
statement will delete the original file as well as the component files which make it a table. In other
words, a Drop Table operation may have the effect of deleting a file which is used outside of
MapInfo Professional.

The Drop Table statement takes effect immediately; no save operation is required. You cannot
undo the effect of a Drop Table statement by selecting File > Revert or Edit > Undo. Similarly, the
MapBasic Rollback statement will not undo the effect of a Drop Table statement. You should be
extremely cautious when using the Drop Table statement.

Many MapInfo table operations (for example, Select) store results in temporary tables (for
example, Query1). Temporary tables are deleted automatically when you exit MapInfo
Professional; you do not need to use the Drop Table statement to delete temporary tables.

The Drop Table statement cannot be used to delete a table that is actually a “view.” For example, a
StreetInfo table (such as SF_STRTS) is actually a view, combining two other tables (SF_STRT1 and
SF_STRT2). So, you could not delete the SF_STRTS table by using the Drop Table statement.

Example

Open Table "clients"
Drop Table clients

See Also:

Create Table statement, Delete statement, Kill statement

End MapInfo statement

Purpose

This statement halts MapInfo Professional.

Syntax

End MapInfo [Interactive]

Description

The End MapInfo statement halts MapInfo Professional.

An application can define a special procedure called EndHandler, which is executed automatically
when MapInfo Professional terminates. Accordingly, when an application issues an End MapInfo
statement, MapInfo Professional automatically executes any sleeping EndHandler procedures
before shutting down. See EndHandler procedure for more information.
MapBasic 11.0 268 Reference

Chapter 5:
End Program statement
If an application issues an End MapInfo statement, and one or more tables have unsaved edits,
MapInfo Professional prompts the user to save or discard the table edits.

If you include the Interactive keyword, and if there are unsaved themes or labels, MapInfo
Professional prompts the user to save or discard the unsaved work. However, if the user's system is
set up so that it automatically saves MAPINFOW.WOR on exit, this prompt does not appear. If you
omit the Interactive keyword, this prompt does not appear.

To halt a MapBasic application without exiting MapInfo Professional, use the End Program
statement.

See Also:

End Program statement, EndHandler procedure

End Program statement

Purpose

Halts a MapBasic application.

Restrictions

The End Program statement may not be issued from the MapBasic window.

Syntax

End Program

Description

The End Program statement halts execution of a MapBasic program. A MapBasic application can
add items to MapInfo Professional menus, and even add entirely new menus to the menu bar.
Typically, a menu item added in this fashion calls a sub procedure from a MapBasic program. Once
a MapBasic application has connected a procedure to the menu in this fashion, the application is
said to be “sleeping.”

If any procedure in a MapBasic application issues an End Program statement, that entire
application is halted—even if “sleeping” procedures have been attached to custom menu items.
When an application halts, MapInfo Professional automatically removes any menu items created by
that application.

If an application defines a procedure named EndHandler, MapBasic automatically calls that
procedure when the application halts, for whatever reason the application halts.

See Also:

End MapInfo statement, EndHandler procedure
MapBasic 11.0 269 Reference

Chapter 5:
EndHandler procedure
EndHandler procedure

Purpose

A reserved procedure name, called automatically when an application terminates.

Syntax

Declare Sub EndHandler

Sub EndHandler
 statement_list

End Sub

statement_list is a list of statements to execute when the application terminates.

Description

EndHandler is a special-purpose MapBasic procedure name.

If the user runs an application containing a sub procedure named EndHandler, the EndHandler
procedure is called automatically when the application ends. This happens whether the user exited
MapInfo Professional or another procedure in the application issued an End Program statement.

Multiple MapBasic applications can be “sleeping” at the same time. When MapInfo
Professional terminates, MapBasic automatically calls all sleeping EndHandler procedures,
one after another.

See Also:

RemoteMsgHandler procedure, SelChangedHandler procedure, ToolHandler procedure,
WinChangedHandler procedure, WinClosedHandler procedure

EOF() function

Purpose

Returns TRUE if MapBasic tried to read past the end of a file, FALSE otherwise.

Syntax

EOF(filenum)

filenum is the number of a file opened through the Open File statement.

Return Value

Logical
MapBasic 11.0 270 Reference

Chapter 5:
EOT() function
Description

The EOF() function returns a logical value indicating whether the End-Of-File condition exists for the
specified file. The integer filenum parameter represents the number of an open file.

If a Get statement tries to read past the end of the specified file, the EOF() function returns a value
of TRUE; otherwise, EOF() returns a value of FALSE.

The EOF() function works with open files; when you wish to check the current position of an open
table, use the EOT() function.

For an example of calling EOF(), see the sample program NVIEWS.MB (Named Views).

Error Conditions

ERR_FILEMGR_NOTOPEN (366) error generated if the specified file is not open.

See Also:

EOT() function, Open File statement

EOT() function

Purpose

Returns TRUE if MapBasic has reached the end of the specified table, FALSE otherwise. You can
call this function from the MapBasic Window in MapInfo Professional.

Syntax

EOT(table)

table is the name of an open table.

Return Value

Logical

Description

The EOT() function returns TRUE or FALSE to indicate whether MapInfo Professional has tried to
read past the end of the specified table. The table parameter represents the name of an open table.

Error Conditions

ERR_TABLE_NOT_FOUND (405) error generated if the specified table is not available

Example

The following example uses the logical result of the EOT() function to decide when to terminate a
loop. The loop repeatedly fetches the next record in a table, until the point when the EOT() function
indicates that the program has reached the end of the table.
MapBasic 11.0 271 Reference

Chapter 5:
EPSGToCoordSysString$() function
Dim f_total As Float
Open Table "customer"
Fetch First From customer
Do While Not EOT(customer)

f_total = f_total + customer.order
Fetch Next From customer

Loop

See Also:

EOF() function, Fetch statement, Open File statement, Open Table statement

EPSGToCoordSysString$() function

Purpose

Converts a string containing a Spatial Reference System into a CoordSys clause that can be used
with any MapBasic function or statement. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

EPSGToCoordSysString$(epsg_string)

epsg_string is a String describing a Spatial Reference System (SRS) for any supported coordinate
systems. SRS strings are also referred to as EPSG (European Petroleum Survey Group) strings (for
example, epsg:2600). For a complete list of EPSG codes used with MapInfo Professional see the
MAPINFOW.PRJ file in your MapInfo Professional installation. The EPSG codes are identified by a
“\p” followed by a number.

Description

The EPSGToCoordSysString$() is used to convert a SRS String into a CoordSys clause that can
be used in any MapBasic function or statement that takes a CoordSys clause as an input.

Example

The following example sets the coordinate system of a map to Earth Projection 1, 104.

run command("Set Map " + EPSGToCoordSysString$("EPSG:4326"))

See Also:

CoordSys clause
MapBasic 11.0 272 Reference

Chapter 5:
Erase() function
Erase() function

Purpose

Returns an object created by erasing part of another object. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

Erase(source_object, eraser_object)

source_object is an object, part of which is to be erased; cannot be a point or text object.

eraser_object is a closed object, representing the area that will be erased.

Return Value

Returns an object representing what remains of source_object after erasing eraser_object.

Description

The Erase() function erases part of an object, and returns an object expression representing what
remains of the object.

The source_object parameter can be a linear object (line, polyline, or arc) or a closed object (region,
rectangle, rounded rectangle, or ellipse), but cannot be a point object or text object. The
eraser_object must be a closed object. The object returned retains the color and pattern styles of the
source_object.

Example

' In this example, o1 and o2 are Object variables
' that already contain Object expressions.
If o1 Intersects o2 Then

If o1 Entirely Within o2 Then
Note "Cannot Erase; nothing would remain."

Else
o3 = Erase(o1, o2)

End If
Else

Note "Cannot Erase; objects do not intersect."
End If

See Also:

Objects Erase statement, Objects Intersect statement
MapBasic 11.0 273 Reference

Chapter 5:
Err() function
Err() function

Purpose

Returns a numeric code, representing the current error. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

Err()

Return Value

Integer

Description

The Err() function returns the numeric code indicating which error occurred most recently.

By default, a MapBasic program which generates an error will display an error message and then
halt. However, by issuing an OnError statement, a program can set up an error handling routine to
respond to error conditions. Once an error handling routine is specified, MapBasic jumps to that
routine automatically in the event of an error. The error handling routine can then call the Err()
function to determine which error occurred.

The Err() function can only return error codes while within the error handler. Once the program
issues a Resume statement to return from the error handling routine, the error condition is reset.
This means that if you call the Err() function outside of the error handling routine, it returns zero.

Some statement and function descriptions within this document contain an Error Conditions heading
(just before the Example heading), listing error codes related to that statement or function. However,
not all error codes are identified in the Error Conditions heading.

Some MapBasic error codes are only generated under narrowly-defined, specific circumstances; for
example, the ERR_INVALID_CHANNEL (696) error is only generated by DDE-related functions or
statements. If a statement might generate such an “unusual” error, the discussion for that statement
will identify the error under the Error Conditions heading.

However, other MapBasic errors are “generic”, and might be generated under a variety of broadly-
defined circumstances. For example, many functions, such as Area() function and ObjectInfo()
function, take an Object expression as a parameter. Any such function will generate the
ERR_FCN_OBJ_FETCH_FAILED (650) error if you pass an expression of the form
tablename.obj as a parameter, when the current row from that table has no associated object. In
other words, any function which takes an Object parameter might generate the
ERR_FCN_OBJ_FETCH_FAILED (650) error. Since the ERR_FCN_OBJ_FETCH_FAILED (650)
error can occur in so many different places, individual functions do not explicitly identify the error.
MapBasic 11.0 274 Reference

Chapter 5:
Error statement
Similarly, there are two math errors—ERR_FP_MATH_LIB_DOMAIN (911) and
ERR_FP_MATH_LIB_RANGE (912)—which can occur as a result of an invalid numeric parameter.
These errors might be generated by calls to any of the following functions: Acos() function, Asin()
function, Atn() function, Cos() function, Exp() function, Log() function, Sin() function,
Sqr() function, or Tan() function.

The complete list of potential MapBasic error codes is included in the file ERRORS.DOC.

See Also:

Error statement, Error$() function, OnError statement

Error statement

Purpose

Simulates the occurrence of an error condition. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Error error_num

error_num is an integer error number.

Description

The Error statement simulates the occurrence of an error.

If an error-handling routine has been enabled through an OnError statement, the simulated error
will cause MapBasic to perform the appropriate error-handling routine. If no error handling routine
has been enabled, the error simulated by the Error statement will cause the MapBasic application to
halt after displaying an appropriate error message.

See Also:

Err() function, Error$() function, OnError statement

Error$() function

Purpose

Returns a message describing the current error. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

Error$()

Return Value

String
MapBasic 11.0 275 Reference

Chapter 5:
Exit Do statement
Description

The Error$() function returns a character string describing the current run-time error, if an error has
occurred. If no error has occurred, the Error$() function returns a null string.

The Error$() function should only be called from within an error handling routine. See Err()
function for more information.

See Also:

Err() function, Error statement, OnError statement

Exit Do statement

Purpose

Exits a Do…Loop statement prematurely.

Restrictions

You cannot issue an Exit Do statement through the MapBasic window.

Syntax

Exit Do

Description

An Exit Do statement terminates a Do…Loop statement. Upon encountering an Exit Do
statement, MapBasic will jump to the first statement following the Do…Loop statement. Note that
the Exit Do statement is only valid within a Do…Loop statement.

Do…Loop statements can be nested; that is, a Do…Loop statement can appear within the body
of another, “outer” Do…Loop statement. An Exit Do statement only halts the iteration of the
nearest Do…Loop statement. Thus, in an arrangement of this sort:

Do While condition1
:

Do While condition2
:
If error_condition

Exit Do
End If
:

Loop
:

Loop

the Exit Do statement will halt the inner loop (Do While condition2) without necessarily affecting the
outer loop (Do While condition1).

See Also:

Do…Loop statement, Exit For statement, Exit Sub statement
MapBasic 11.0 276 Reference

Chapter 5:
Exit For statement
Exit For statement

Purpose

Exits a For…Next statement prematurely.

Restrictions

You cannot issue an Exit For statement through the MapBasic window.

Syntax

Exit For

Description

An Exit For statement terminates a For…Next statement. Upon encountering an Exit For
statement, MapBasic will jump to the first statement following the For…Next statement. Note that
the Exit For statement is only valid within a For…Next statement.

For…Next statements can be nested; that is, a For…Next statement can appear within the body
of another, “outer” For…Next statement. Note that an Exit For statement only halts the iteration of
the nearest For…Next statement. Thus, in an arrangement of this sort:

For x = 1 to 5
:
For y = 2 to 10 step 2

:
If error_condition

Exit For
End If
:

Next
:

Next

the Exit For statement will halt the inner loop (For y = 2 to 10 step 2) without necessarily
affecting the outer loop (For x = 1 to 5).

See Also:

Exit Do statement, For…Next statement

Exit Function statement

Purpose

Exits a Function…End Function statement.

Restrictions

You cannot issue an Exit Function statement through the MapBasic window.
MapBasic 11.0 277 Reference

Chapter 5:
Exit Sub statement
Syntax

Exit Function

Description

An Exit Function statement causes MapBasic to exit the current function. Accordingly, an Exit
Function statement may only be issued from within a Function…End Function statement.

Function calls may be nested; in other words, one function can call another function, which, in turn,
can call yet another function. Note that a single Exit Function statement exits only the current
function.

See Also:

Function…End Function statement

Exit Sub statement

Purpose

Exits a Sub…End Sub statement.

Restrictions

You cannot issue an Exit Sub statement through the MapBasic window.

Syntax

Exit Sub

Description

An Exit Sub statement causes MapBasic to exit the current sub procedure. Accordingly, an Exit
Sub statement may only be issued from within a sub procedure.

Sub…End Sub statement may be nested; in other words, one sub procedure can call another sub
procedure, which, in turn, can call yet another sub procedure, etc. Note that a single Exit Sub
statement exits only the current sub procedure.

See Also:

Call statement, Sub…End Sub statement
MapBasic 11.0 278 Reference

Chapter 5:
Exp() function
Exp() function

Purpose

Returns the number e raised to a specified exponent. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

Exp(num_expr)

num_expr is a numeric expression.

Return Value

Float

Description

The Exp() function raises the mathematical value e to the power represented by num_expr. e has a
value of approximately 2.7182818.

MapBasic supports general exponentiation through the caret operator (^).

Example

Dim e As Float
e = Exp(1)
' the local variable e now contains
' approximately 2.7182818

See Also:

Cos() function, Sin() function, Log() function

Export statement

Purpose

Exports a table to another file format. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax 1 (for exporting MIF/MID files, DBF files, or ASCII text files)

Export table
Into file_name
[Type

{ "MIF" |
"DBF" [Charset char_set] |
MapBasic 11.0 279 Reference

Chapter 5:
Export statement
"ASCII" [Charset char_set] [Delimiter "d "] [Titles] |
"CSV" [Charset char_set] [Titles] }]

[Overwrite]

Syntax 2 (for exporting DXF files)

Export table
Into file_name
[Type "DXF"]
[Overwrite]
[Preserve

[AttributeData] [Preserve] [MultiPolygonRgns [As Blocks]]]
[{ Binary | ASCII [DecimalPlaces decimal_places] }]
[Version { 12 | 13 }]
[Transform

(MI_x1, MI_y1) (MI_x2, MI_y2)
(DXF_x1, DXF_y1) (DXF_x2, DXF_y2)]

table is the name of an open table; do not use quotation marks around this name.

file_name is a string specifying the file name to contain the exported data; if the file name does not
include a path, the export file is created in the current working directory.

char_set is a string that identifies a character set, such as “WindowsLatin1”; see CharSet clause for
details.

d is a character used as a delimiter when exporting an ASCII file.

decimal_places is a small integer (from 0 to 16, default value is 6), which controls the number of
decimal places used when exporting floating-point numbers in ASCII.

MI_x1, MI_y1, etc. are numbers that represent bounds coordinates in the MapInfo Professional
table.

DXF_x1, DXF_y1, etc. are numbers that represent bounds coordinates in the DXF file.

Description

The Export statement copies the contents of a MapInfo table to a separate file, using a file format
which other packages could then edit or import. For example, you could export the contents of a
table to a DXF file, then use a CAD software package to import the DXF file. The Export statement
does not alter the original table.

Specifying the File Format

The optional Type clause specifies the format of the file you want to create.

Type clause File Format Specified

Type “MIF” MapInfo Interchange File format. For information on the MIF file format, see the
MapInfo Professional documentation.

Type “DXF” DXF file (a format supported by CAD packages, such as AutoCAD).
MapBasic 11.0 280 Reference

Chapter 5:
Export statement
If you omit the Type clause, MapInfo Professional assumes that the file extension indicates the
desired file format. For example, if you specify the file name “PARCELS.DXF” MapInfo Professional
creates a DXF file.

If you include the optional Overwrite keyword, MapInfo Professional creates the export file,
regardless of whether a file by that name already exists. If you omit the Overwrite keyword, and the
file already exists, MapInfo Professional does not overwrite the file.

Exporting ASCII Text Files

When you export a table to an ASCII or CSV text file, the text file will contain delimiters. A delimiter
is a special character that separates the fields within each row of data. CSV text files automatically
use a comma (,) as the delimiter. No other delimiter can be specified for CSV export.

The default delimiter for an ASCII text file is the TAB character (Chr$(9)). To specify a different
delimiter, include the optional Delimiter clause. The following example uses a colon (:) as the
delimiter:

Export sites Into "sitedata.txt" Type "ASCII"
Delimiter ":" Titles

When you export to an ASCII or CSV text file, you may want to include the optional Titles keyword.
If you include Titles, the first row of the text file will contain the table's column names. If you omit
Titles, the column names will not be stored in the text file (which could be a problem if you intend to
re-import the file later).

Exporting DXF Files

If you export a table into DXF file, using Syntax 2 as shown above, the Export statement can include
the following DXF-specific clauses:

Include the Preserve AttributeData clause if you want to export the table's tabular data as attribute
data in the DXF file.

Type “DBF” dBASE file format.

Map objects are not exported when you specify DBF format.

Type “ASCII” Text file format.

Map objects are not exported when you specify ASCII format.

Type “CSV” Comma-delimited text file format.

Map objects are not exported when you specify CSV format.

Type clause File Format Specified
MapBasic 11.0 281 Reference

Chapter 5:
ExtractNodes() function
Include the Preserve MultiPolygonRgns As Blocks clause if you want MapInfo Professional to
export each multiple-polygon region as a DXF block entity. If you omit this clause, each polygon
from a multiple-polygon region is stored separately.

Include the Binary keyword to export into a binary DXF file; or, include the ASCII keyword to export
into an ASCII text DXF file. If you do not include either keyword, MapInfo Professional creates an
ASCII DXF file. Binary DXF files are generally smaller, and can be processed much faster than
ASCII. When you export as ASCII, you can specify the number of decimal places used to store
floating-point numbers (0 to 16 decimal places; 6 is the default).

The Version 12 or Version 13 clause controls whether MapInfo Professional creates a DXF file
compliant with AutoCAD 12 or 13. If you omit the clause, MapInfo Professional creates a version 12
DXF file.

Transform specifies a coordinate transformation. In the Transform clause, you specify the
minimum and maximum x- and y-bounds coordinates of the MapInfo table, and then specify the
minimum and maximum coordinates that you want to have in the DXF file.

Example

The following example takes an existing MapInfo table, Facility, and exports the table to a DXF file
called “FACIL.DXF”.

Open Table "facility"

Export facility
Into "FACIL.DXF"
Type "DXF"
Overwrite
Preserve AttributeData
Preserve MultiPolygonRgns As Blocks
ASCII DecimalPlaces 3
Transform (0, 0) (1, 1) (0, 0) (1, 1)

See Also:

Import statement

ExtractNodes() function

Purpose

Returns a polyline or region created from a subset of the nodes in an existing object. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

ExtractNodes(object, polygon_index, begin_node, end_node, b_region)

object is a polyline or region object.
MapBasic 11.0 282 Reference

Chapter 5:
Farthest statement
polygon_index is an integer value, 1 or larger: for region objects. This indicates which polygon (for
regions) or section (for polylines) to query.

begin_node is a SmallInt node number, 1 or larger; indicates the beginning of the range of nodes to
return.

end_node is a SmallInt node number, 1 or larger; indicates the end of the range of nodes to return.

b_region is a logical value that controls whether a region or polyline object is returned; use TRUE for
a region object or FALSE for a polyline object.

Return Value

Returns an object with the specified nodes. MapBasic applies all styles (color, etc.) of the original
object; then, if necessary, MapBasic applies the current drawing styles.

Description

If the begin_node is equal to or greater than end_node, the nodes are returned in the following
order:

• begin_node through the next-to-last node in the polygon;
• First node in polygon through end_node.

If object is a region object, and if begin_node and end_node are both equal to 1, MapBasic returns
the entire set of nodes for that polygon. This provides a simple mechanism for extracting a single
polygon from a multiple-polygon region. To determine the number of polygons in a region, call the
ObjectInfo() function.

Error Conditions

ERR_FCN_ARG_RANGE (644) error generated if b_region is FALSE and the range of nodes
contains fewer than two nodes, or if b_region is TRUE and the range of nodes contains fewer than
three nodes.

See Also:

ObjectNodeX() function, ObjectNodeY() function

Farthest statement

Purpose

Find the object in a table that is farthest from a particular object. The result is a two-point Polyline
object representing the farthest distance. You can issue this statement from the MapBasic Window
in MapInfo Professional.

Syntax

Farthest [N | All] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
MapBasic 11.0 283 Reference

Chapter 5:
Farthest statement
[Ignore [Contains][Min min_value][Max max_value] Units unitname]
[Data clause]

N is an optional parameter for the number of “farthest” objects to find. The default is 1. If All is used,
then a distance object is created for every combination.

fromtable is a table of objects from which you want to find farthest distances.

fromvar is a MapBasic variable representing an object that you want to find the farthest distances
from.

totable is a table of objects that you want to find farthest distances to.

intotable is a table to place the results into.

min_value is the minimum distance to include in the results.

max_value is the maximum distance to include in the results.

unitname is string representing the name of a distance unit (for example, “km”) used for min_value
and/or max_value.

Description

The Farthest statement finds all the objects in the fromtable that is furthest from a particular object.
Every object in the fromtable is considered. For each object in the fromtable, the furthest object in
the totable is found. If N is defined, then the N farthest objects in the totable are found. A two-point
Polyline object representing the farthest points between the fromtable object and the chosen totable
object is placed in the intotable. If All is specified, then an object is placed in the intotable
representing the distance between the fromtable object and each totable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (for example, if N is greater
than 1), then objects of the same distance will fill subsequent slots. If a tie exists at the second
farthest object, and three objects are requested, then one of the second farthest objects will become
the third farthest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For
example, if both tables contain Region objects, then the minimum distance between Region objects
is found, and the two-point Polyline object produced represents the points on each object used to
calculate that distance. If the Region objects intersect, then the minimum distance is zero, and the
two-point Polyline returned will be degenerate, where both points are identical and represent a point
of intersection.

The distances calculated do not take into account any road route distance. It is strictly a “as the bird
flies” distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many
totable objects are found for each fromtable object. One use of the Min distance could be to
eliminate distances of zero. This may be useful in the case of two point tables to eliminate
comparisons of the same point. For example, if there are two point tables representing Cities, and
we want to find the closest cities, we may want to exclude cases of the same city.
MapBasic 11.0 284 Reference

Chapter 5:
Farthest statement
The Max distance can be used to limit the objects to consider in the totable. This may be most useful
in conjunction with N or All. For example, we may want to search for the five airports that are closest
to a set of cities (where the fromtable is the set of cities and the totable is a set of airports), but we
don't care about airports that are farther away than 100 miles. This may result in less than five
airports being returned for a given city. This could also be used in conjunction with the All
parameter, where we would find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Farthest statement, since it
effectively limits the number of totable objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min_value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Farthest statement.
For example, the first pass may return all objects between 0 and 100 miles, and the second pass
may return all objects between 100 and 200 miles, and the results should not contain duplicates (for
example, a distance of 100 should only occur in the first pass and never in the second pass).

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable
or an error will occur. If the Coordsys of the intotable is NonEarth and the distance method is
Spherical, then an error will occur. If the Coordsys of the intotable is Latitude/Longitude, and the
distance method is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. See Set Distance
Units statement for the list of available unit names. The entire Ignore clause is optional, as are the
Min and Max sub clauses within it.

Normally, if one object is contained within another object, the distance between the objects is zero.
For example, if fromtable is WorldCaps and totable is World, then the distance between London and
the United Kingdom would be zero. If the Contains keyword is used within the Ignore clause, then
the distance will not be automatically be zero. Instead, the distance from London to the boundary of
the United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as
polylines for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result
came from.

Data Clause
Data IntoColumn1=column1, IntoColumn2=column2

The IntoColumn on the left hand side of the equals sign must be a valid column in intotable. The
column name on the right hand side of the equals sign must be a valid column name from either
totable or fromtable. If the same column name exists in both totable and fromtable, then the column
in totable will be used (e.g., totable is searched first for column names on the right hand side of the
equals sign).

To avoid any conflicts such as this, the column names can be qualified using the table alias. For
example:
MapBasic 11.0 285 Reference

Chapter 5:
Fetch statement
Data name1=states.state_name, name2=county.state_name

To fill a column in the intotable with the distance, we can either use the Table > Update Column
functionality from the menu or use the Update statement.

See Also:

Nearest statement, CartesianObjectDistance() function, ObjectDistance() function,
SphericalObjectDistance() function, CartesianConnectObjects() function, ConnectObjects()
function, SphericalConnectObjects() function

Fetch statement

Purpose

Sets a table's cursor position (for example, which row is the current row). You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Fetch { First | Last | Next | Prev | Rec n } From table

n is the number of the record to read.

table is the name of an open table.

Description

Use the Fetch statement to retrieve records from an open table. By issuing a Fetch statement, your
program places the table cursor at a certain row position in the table; this dictates which of the
records in the table is the “current” record.

The term “cursor” is used here to signify a row's position in a table. This has nothing to do
with the on-screen mouse cursor.

After you issue a Fetch statement, you can retrieve data from the current row by using one of the
following expression types:

A Fetch First statement positions the cursor at the first un-deleted row in the table.

A Fetch Last statement positions the cursor at the last un-deleted row in the table.

A Fetch Next statement moves the cursor forward to the next un-deleted row.

Syntax Example

table.column World.Country

table.col# World.col1

table.col(number) World.col(1)
MapBasic 11.0 286 Reference

Chapter 5:
Fetch statement
A Fetch Prev statement moves the cursor backward to the previous un-deleted row.

A Fetch Rec n statement positions the cursor on a specific row, even if that row is deleted.

If the specified record is deleted, the statement generates run-time error 404.

Various MapInfo Professional and MapBasic operations (for example, Select, Update, and screen
redraws) automatically reset the current row. Accordingly, Fetch statements should be issued just
before any statements that make assumptions about which row is current.

Reading Past the End of the Table

After you issue a Fetch statement, you may need to call the EOT() function to determine whether
you fetched an actual row.

If the Fetch statement placed the cursor on an actual row, the EOT() function returns FALSE
(meaning, there is not an end-of-table condition).

If the Fetch statement attempted to place the cursor past the last row, the EOT() function returns
TRUE (meaning, there is an end-of-table condition; therefore there is no “current row”).

The following example shows how to use a Fetch Next statement to loop through all rows in a table.
As soon as a Fetch Next statement attempts to read past the final row, the EOT() function returns
TRUE, causing the loop to halt.

Dim i As Integer

i = 0
Fetch First From world
Do While Not EOT(world)

i = i + 1
Fetch Next From world

Loop

Print "Number of undeleted records: " + i

Examples

The following example shows how to fetch the 3rd record from the table States:

Open Table "states"
Fetch Rec 3 From states 'position at 3rd record
Note states.state_name 'display name of state

As illustrated in the example below, the Fetch statement can operate on a temporary table (for
example, Selection).

Select * From states Where pop_1990 < pop_1980
Fetch First From Selection
Note Selection.col1 + " has negative net migration"
MapBasic 11.0 287 Reference

Chapter 5:
FileAttr() function
See Also:

EOT() function, Open Table statement

FileAttr() function

Purpose

Returns information about an open file. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

FileAttr(filenum, attribute)

filenum is the number of a file opened through an Open File statement.

attribute is a code indicating which file attribute to return; see table below.

Return Value

Integer

Description

The FileAttr() function returns information about an open file. The attribute parameter must be one
of the codes in this table:

Error Conditions

ERR_FILEMGR_NOTOPEN (366) error is generated if the specified file is not open.

See Also:

EOF() function, Get statement, Open File statement, Put statement

attribute parameter ID Return Value

FILE_ATTR_MODE 1 Small integer, indicating the mode in which the file was opened.
Return value will be one of the following:

• MODE_INPUT (0)
• MODE_OUTPUT (1)
• MODE_APPEND (2)
• MODE_RANDOM (3)
• MODE_BINARY (4)

FILE_ATTR_FILESIZE 2 Integer, indicating the file size in bytes.
MapBasic 11.0 288 Reference

Chapter 5:
FileExists() function
FileExists() function

Purpose

Returns a logical value indicating whether or not a file exists. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

FileExists(filespec)

filespec is a string that specifies the file path and name.

Return Value

Logical: TRUE if the file already exists, otherwise FALSE.

Example

If FileExists("C:\MapInfo\TODO.TXT") Then

Open File "C:\MapInfo\TODO.TXT" For INPUT As #1

End If

See Also:

TempFileName$() function

FileOpenDlg() function

Purpose

Displays a File Open dialog box, and returns the name of the file the user selected. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

FileOpenDlg(path, filename, filetype, prompt)

path is a string value, indicating the directory or folder to choose files from.

filename is a string value, indicating the default file name for the user to choose.

filetype is a string value, three or four characters long, indicating a file type (for example, “TAB” to
specify tables).

prompt is a string title that appears on the bar at the top of the dialog box.
MapBasic 11.0 289 Reference

Chapter 5:
FileOpenDlg() function
Return Value

String value, representing the name of the file the user chose (or an empty string if the user
cancelled).

Description

The FileOpenDlg() function displays a dialog box similar to the one that displays when the user
chooses File > Open.

To choose a file from the list that appears in the dialog box, the user can either click a file in the list
and click the OK button, or simply double-click a file in the list. In either case, the FileOpenDlg()
function returns a character string representing the full path and name of the file the user chose.
Alternately, if the user clicks the Cancel button instead of picking a file, the dialog returns a null
string ("").

The FileOpenDlg() function does not actually open any files; it merely presents the user with a
dialog box, and lets the user choose a file. If your application then needs to actually open the file
chosen by the user, the application must issue a statement such as the Open Table statement. If
you want your application to display an Open dialog box, and then you want MapInfo Professional to
automatically open the selected file, you can issue a statement such as the Run Menu Command
statement with M_FILE_OPEN or M_FILE_ADD_WORKSPACE.

The path parameter specifies the directory or folder from which the user will choose an existing file.
Note that the path parameter only dictates the initial directory, it does not prevent the user from
changing directories once the dialog box appears. If the path parameter is blank (a null string), the
dialog box presents a list of files in the current working directory.

The filename parameter specifies the default file name for the user to choose.

The filetype parameter is a string, usually three or four characters long, which indicates the type of
files that should appear in the dialog box. Some filetype settings have special meaning; for example,
if the filetype parameter is “TAB”, the dialog box presents a list of MapInfo tables, and if the filetype
parameter is “WOR”, the dialog box presents a list of MapInfo workspace files.

There are also a variety of other filetype values, summarized in the table below. If you specify one of
the special type values from the table below, the dialog box includes a control that lets the user
choose between seeing a list of table files or a list of all files (“*.*”).

filetype parameter Type of files that appear

“TAB” MapInfo tables

“WOR” MapInfo workspaces

“MIF” MapInfo Interchange Format files, used for importing / exporting maps from
/ to ASCII text files.

“DBF” dBASE or compatible data files

“WKS”, “WK1” Lotus spreadsheet files
MapBasic 11.0 290 Reference

Chapter 5:
FileSaveAsDlg() function
Each of the three-character file types listed above corresponds to an actual file extension; in other
words, specifying a filetype parameter of “WOR” tells MapBasic to display a list of files having the
“.WOR” file extension, because that is the extension used by MapInfo Professional workspaces.

To help you write portable applications, MapBasic lets you use the same three-character filetype
settings on all platforms. On Windows, a control in the lower left corner of the dialog box lets the user
choose whether to see a list of files with the .TAB extension, or a list of all files in the current
directory. If the FileOpenDlg() function specifies a filetype parameter which is not listed in the table
of file extensions above, the dialog box appears without that control.

Example

Dim s_filename As String
s_filename = FileOpenDlg("","","TAB","Open Table")

See Also:

FileSaveAsDlg() function, Open File statement, Open Table statement

FileSaveAsDlg() function

Purpose

Displays a Save As dialog box, and returns the name of the file the user entered. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

FileSaveAsDlg(path, filename, filetype, prompt)

path is a string value, indicating the default destination directory.

filename is a string value, indicating the default file name.

“XLS”, "XLSX" Excel spreadsheet files

“DXF” AutoCAD data interchange format files

“MMI”, “MBI” MapInfo for DOS interchange files

“MB” MapBasic source program files

“MBX” Compiled MapBasic applications

“TXT” Text files

“BMP” Windows bitmap files

“WMF” Windows metafiles

filetype parameter Type of files that appear
MapBasic 11.0 291 Reference

Chapter 5:
Find statement
filetype is a string value, indicating the type of file that the dialog box lets the user choose.

prompt is a string title that appears at the top of the dialog box.

Return Value

String value, representing the name of the file the user entered (or an empty string if the user
cancelled).

Description

The FileSaveAsDlg() function displays a Save As dialog box, similar to the dialog box that displays
when the user chooses File > Save Copy As.

The user can type in the name of the file they want to save. Alternately, the user can double-click
from the list of grayed-out filenames that appears in the dialog box. Since each file name in the list
represents an existing file, MapBasic asks the user to verify that they want to overwrite the existing
file.

If the user specifies a filename and clicks OK, the FileSaveAsDlg() function returns a character
string representing the full path and name of the file the user chose. If the user clicks the Cancel
button instead of picking a file, the function returns a null string ("").

The path parameter specifies the initial directory path. The user can change directories once the
dialog box appears. If the path parameter is blank (a null string), the dialog box presents a list of files
in the current directory.

The filename parameter specifies the default file name for the user to choose.

The filetype parameter is a three-character (or shorter) string which identifies the type of files that
should appear in the dialog box. To display a dialog box that lists workspaces, specify the string
“WOR” as the filetype parameter; to display a dialog box that lists table names, specify the string
“TAB.” See FileOpenDlg() function for more information about three-character filetype codes.

The FileSaveAsDlg() function does not actually save any files; it merely presents the user with a
dialog box, and lets the user choose a file name to save. To save data under the file name chosen
by the user, issue a statement such as the Commit Table statement.

See Also:

Commit Table statement, FileOpenDlg() function

Find statement

Purpose

Finds a location in a mappable table. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Find address [, region] [Interactive]
MapBasic 11.0 292 Reference

Chapter 5:
Find statement
address is a string expression representing the name of a map object to find; to find the intersection
of two streets, use the syntax: streetname && streetname.

region is the name of a region object which refines the search.

Description

The Find statement searches a mappable table for a named location (represented by the address
parameter). MapBasic stores the search results in system variables, which a program can then
access through the CommandInfo() function. If the Find statement includes the optional
Interactive keyword, and if MapBasic is unable to locate the specified address, a dialog box
displays a list of “near matches.”

The Find statement can only search a mappable table (for example, a table which has graphic
objects attached). The table must already be open. The Find statement operates on whichever
column is currently chosen for searching. A MapBasic program can issue a Find Using statement
to identify a specific table column to search. If the Find statement is not preceded by a Find Using
statement, MapBasic searches whichever table was specified the last time the user chose MapInfo
Professional's Query > Find command.

The Find statement can optionally refine a search by specifying a region name in addition to the
address parameter. In other words, you could simply try to find a city name (for example, “Albany”)
by searching a table of cities; or you could refine the search by specifying both a city name and a
region name (for example, “Albany”, “CA”). The Find statement does not automatically add a symbol
to the map to mark where the address was found. To create such a symbol, call the CreatePoint()
function or the Create Point statement; see example below.

Determining Whether the Address Was Found

Following a Find statement, a MapBasic program can issue the function call
CommandInfo(CMD_INFO_FIND_RC) to determine if the search was successful. If the search was
successful, call CommandInfo(CMD_INFO_X) to determine the x-coordinate of the queried
location, and call CommandInfo(CMD_INFO_Y) to determine the y-coordinate. To determine the
row number that corresponds to the “found” address, call
CommandInfo(CMD_INFO_FIND_ROWID).

The Find statement may result in an exact match, an approximate match, or a failure to match. If the
Find statement results in an exact match, the function call CommandInfo(CMD_INFO_FIND_RC)
returns a value of one (1). If the Find statement results in an approximate match, the function call
returns a value greater than one (1). If the Find statement fails to match the address, the function
call returns a negative value.

The table below summarizes the Find-related information represented by the
CommandInfo(CMD_INFO_FIND_RC) return value. The return value has up to three digits, and
that each of the three digits indicates the relative success or failure of a different part of the search.
MapBasic 11.0 293 Reference

Chapter 5:
Find statement
The Mod operator is useful when examining individual digits from the Find result. For example, to
determine the last digit of a number, use the expression number Mod 10. To determine the last two
digits of a number, use the expression number Mod 100; etc.

The distinction between exact and approximate matches is best illustrated by example. If a table of
cities contains one entry for “Albany”, and the Find Using statement attempts to locate a city name
without a refining region name, and the Find statement specifies an address parameter value of
“Albany”, the search results in an exact match. Following such a Find statement, the function call
CommandInfo(CMD_INFO_FIND_RC) would return a value of 1 (one), indicating that an exact
match was found.

Now suppose that the Find operation has been set up to refine the search with an optional region
name; in other words, the Find statement expects a city name followed by a state name (for
example, “Albany”, “NY”). If a MapBasic program then issues a Find statement with “Albany” as the

Digit Values Meaning

xx1 Exact match.

xx2 A substitution from the abbreviations file used.

xx3 (-) Exact match not found.

xx4 (-) No object name specified; match not found.

xx5 (+) The user chose a name from the Interactive dialog box.

x1x Side of street undetermined.

x2x (+ / -) Address number was within min/max range.

x3x (+ / -) Address number was not within min/max range.

x4x (+ / -) Address number was not specified.

x5x (-) Streets do not intersect.

x6x (-) The row matched does not have a map object.

x7x (+) The user chose an address number from the Interactive dialog box.

1xx (+ / -) Name found in only one region other than specified region.

2xx (-) Name found in more than one region other than the specified region.

3xx (+ / -) No refining region was specified, and one match was found.

4xx (-) No region was specified, and multiple matches were found.

5xx (+) Name found more than once in the specified region.

6xx (+) The user chose a region name from the Interactive dialog box.
MapBasic 11.0 294 Reference

Chapter 5:
Find statement
address and a null string as the state name, that is technically not an exact match, because
MapBasic expects the city name to be followed by a state name. Nevertheless, if there is only one
“Albany” record in the table, MapBasic will be able to locate that record. Following such a Find
operation, the function call CommandInfo(CMD_INFO_FIND_RC) would return a value of 301. The
1 digit signifies that the city name matched exactly, while the 3 digit indicates that MapBasic was
only partly successful in locating a correct refining region.

If a table of streets contains “Main St”, and a Find statement attempts to locate “Main Street”,
MapBasic considers the result to be an approximate match (assuming that abbreviation file
processing has been enabled; see Find Using statement). Strictly speaking, the string “Main
Street” does not match the string “Main St”. However MapBasic is able to match the two strings after
substituting possible abbreviations from the MapInfo Professional abbreviations file
(MAPINFOW.ABB). Following the Find statement, the CommandInfo(CMD_INFO_FIND_RC)
function call returns a value of 2.

If the Find operation presents the user with a dialog box, and the user enters text in the dialog box in
order to complete the find, then the return code will have a 1 (one) in the millions place.

Example

Include "mapbasic.def"
Dim x, y As Float, win_id As Integer
Open Table "states" Interactive
Map From States
win_id = FrontWindow()
Find Using states(state)
Find "NY"
If CommandInfo(CMD_INFO_FIND_RC) >= 1 Then

x = CommandInfo(CMD_INFO_X)
y = CommandInfo(CMD_INFO_Y)
Set Map

Window win_id
Center (x, y)

' Now create a symbol at the location we found.
' Create the object in the Cosmetic layer.
Insert Into

WindowInfo(win_id, WIN_INFO_TABLE) (Object)
Values (CreatePoint(x, y))

Else
Note "Location not found."

End If

See Also:

Find Using statement, CommandInfo() function
MapBasic 11.0 295 Reference

Chapter 5:
Find Using statement
Find Using statement

Purpose

Dictates which table(s) and column(s) should be searched in subsequent Find operations. You can
issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Find Using table (column)
[Refine Using table (column)]
[Options

[Abbrs { On | Off }]
[ClosestAddr { On | Off }]
[OtherBdy { On | Off }]
[Symbol symbol_style]]
[Inset inset_value { Percent | Distance Units dist_unit}]
[Offset value] [Distance Units dist_unit]]

table is the name of an open table.

column is the name of a column in the table.

symbol_style is a Symbol variable or a function call that returns a Symbol value; this controls what
type of symbol is drawn on the map if the user chooses Query > Find.

inset_value is a positive integer value representing how far from the ends of the line to adjust the
placement of an address location.

value specifies the Offset value (the distance back from the street).

dist_unit is a string that represents the name of a distance unit (for example, “mi” for miles, “m” for
meters.

Description

The Find Using statement specifies which table(s) and column(s) MapBasic will search when
performing a Find statement. Note that the column specified must be indexed.

The optional Refine clause specifies a second table, which will act as an additional search criterion;
the table must contain region objects. The specified column does not need to be indexed. If you omit
the Refine clause, subsequent Find statements expect a simple location name (for example,
“Portland”). If you include a Refine clause, subsequent Find statements expect a location name and
a region name (for example, “Portland”, “OR”).

The optional Abbrs clause dictates whether MapBasic will try substituting abbreviations from the
abbreviations file in order to find a match. By default, this option is enabled (On); to disable the
option, specify the clause Abbrs Off.

The optional ClosestAddr clause dictates whether MapBasic will use the closest available address
number in cases where the address number does not match. By default, this option is disabled (Off);
to enable the option, specify the clause ClosestAddr On.
MapBasic 11.0 296 Reference

Chapter 5:
Fix() function
The optional OtherBdy clause dictates whether MapBasic will match to a record found in a refining
region other than the refining region specified. By default, this option is disabled (Off); to enable the
option, specify the clause OtherBdy On.

MapInfo Professional saves the Inset and Offset settings specified the last time the user chose
Query > Find Options, Table > Geocode Options or executed a Find Using statement. Thus, the
last specified inset/offset options becomes the default settings for the next time.

If Percent is specified, it represents the percentage of the length of the line where the address is to
be placed. For Percent, valid values for inset_value are from 0 to 50. If Distance Units are
specified, inset_value represents the distance from the ends of the line where the address is to be
placed. For distance, valid values for inset_value are from 0 to 32,767. The inset takes the
addresses that would normally fall at the end of the street and moves them away from the end going
in the direction towards the center.

The Offset value sets the addresses back from the street instead of right on the street. value is a
positive integer value representing how far to offset the placement of an address location back from
the street. Valid values are from 0 to 32,767.

Example

Find Using city_1k(city)
Refine Using states(state)

Find "Albany", "NY"

See Also:

Create Index statement, Find statement

Fix() function

Purpose

Returns an integer value, obtained by removing the fractional part of a decimal value. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

Fix(num_expr)

num_expr is a numeric expression.

Return Value

Integer
MapBasic 11.0 297 Reference

Chapter 5:
Font clause
Description

The Fix() function removes the fractional portion of a number, and returns the resultant integer
value. The Fix() function is similar to, but not identical to, the Int() function. The two functions
differ in the way that they treat negative fractional values. When passed a negative fractional
number, Fix() returns the nearest integer value greater than or equal to the original value; thus, the
function call:

Fix(-2.3)

returns a value of -2. But when the Int() function is passed a negative fractional number, it returns
the nearest integer value that is less than or equal to the original value. Thus, the function call:

Int(-2.3)

returns a value of -3.

Example

Dim i_whole As Integer
i_whole = Fix(5.999)
' i_whole now has the value 5.

i_whole = Fix(-7.2)
' i_whole now has the value -7.

See Also:

Int() function, Round() function

Font clause

Purpose

Specifies a text style. You can use this clause in the MapBasic Window in MapInfo Professional.

Syntax

Font font_expr

font_expr is a Font expression, for example, MakeFont(fontname, style, size, fgcolor,
bgcolor).

Description

The Font clause specifies a text style. Font is a clause, not a complete MapBasic statement.
Various object-related statements, such as the Create Text statement, allow you to specify a Font
setting; this lets you choose the typeface and point size of the new text object. If you omit the Font
expression from a Create Text statement, the new object uses MapInfo Professional's current Font.
The keyword Font may be followed by an expression that evaluates to a Font value.

This expression can be a Font variable:

Font font_var
MapBasic 11.0 298 Reference

Chapter 5:
Font clause
or a call to a function (for example, CurrentFont() function or MakeFont() function) which returns
a Font value:

Font MakeFont("Helvetica", 1, 12, BLACK, WHITE)

With some MapBasic statements (for example, the Set Legend statement), the keyword Font can
be followed immediately by the five parameters that define a Font style (font name, style, point size,
foreground color, and background color) within parentheses:

Font("Helvetica", 1, 12, BLACK, WHITE)

The following table summarizes the components that define a font:

The following table shows how the style parameter corresponds to font styles.

Component Description

font name A string that identifies a font. The set of available fonts depends on the user's
system and the hardware platform in use.

style Integer value. Controls text attributes such as bold, italic, and underline. See
table below for details.

size Integer value representing a point size. A point size of twelve is one-sixth of
an inch tall.

foreground color Integer RGB color value, representing the color of the text. See Rnd()
function.

background color Integer RGB color value. If the halo style is used, this is the halo color;
otherwise, this is the background fill color.

To specify a transparent background style in a Font clause, omit the
background color. For example: Font("Helvetica", 1, 12, BLACK).
To specify a transparent fill when calling the MakeFont() function, specify -1
as the background color.

Style Value Description of text style

0 Plain

1 Bold

2 Italic

4 Underline

8 Strikethrough

32 Shadow
MapBasic 11.0 299 Reference

Chapter 5:
For…Next statement
To specify two or more style attributes, add the values from the left column. For example, to specify
both the Bold and All Caps attributes, use a style value of 513.

Example

Include "MAPBASIC.DEF"
Dim o_title As Object
Create Text

Into Variable o_title
"Your message could go HERE"
(73.5, 42.6) (73.67, 42.9)
Font MakeFont("Helvetica",1,12,BLACK,WHITE)

See Also:

Alter Object statement, Chr$() function, Create Text statement, RGB() function

For…Next statement

Purpose

Defines a loop which will execute for a specific number of iterations.

Restrictions

You cannot issue a For…Next statement through the MapBasic window.

Syntax

For var_name = start_expr To end_expr [Step inc_expr]
 statement_list

Next

var_name is the name of a numeric variable.

start_expr is a numeric expression.

end_expr is a numeric expression.

inc_expr is a numeric expression.

statement_list is the group of statements to execute with each iteration of the For loop.

256 Halo

512 All Caps

1024 Expanded

Style Value Description of text style
MapBasic 11.0 300 Reference

Chapter 5:
For…Next statement
Description

The For…Next statement provides loop control. This statement requires a numeric variable
(identified by the var_name parameter). A For…Next statement either executes a group of
statements (the statement_list) a number of times, or else skips over the statement_list completely.
The start_expr, end_expr, and inc_expr values dictate how many times, if any, the statement_list will
be carried out.

Upon encountering a For…Next statement, MapBasic assigns the start_expr value to the var_name
variable. If the variable is less than or equal to the end_expr value, MapBasic executes the group of
statements in the statement_list, and then adds the inc_expr increment value to the variable. If no
Step clause was specified, MapBasic uses a default increment value of one. MapBasic then
compares the current value of the variable to the end_expr expression; if the variable is currently
less than or equal to the end_expr value, MapBasic once again executes the statements in the
statement_list. If, however, the var_name variable is greater than the end_expr, MapBasic stops the
For loop, and resumes execution with the statement which follows the Next statement.

Conversely, the For…Next statement can also count downwards, by using a negative Step value. In
this case, each iteration of the For loop decreases the value of the var_name variable, and
MapBasic will only decide to continue executing the loop as long as var_name remains greater than
or equal to the end_expr.

Each For statement must be terminated by a Next statement. Any statements which appear
between the For and Next statements comprise the statement_list; this is the list of statements
which will be carried out upon each iteration of the loop.

The Exit For statement allows you to exit a For loop regardless of the status of the var_name
variable. The Exit For statement tells MapBasic to jump out of the loop, and resume execution with
the first statement which follows the Next statement.

MapBasic permits you to modify the value of the var_name variable within the body of the For loop;
this can affect the number of times that the loop is executed. However, as a matter of programming
style, you should try to avoid altering the contents of the var_name variable within the loop.

Example

Dim i As Integer

' the next loop will execute a Note statement 5 times
For i = 1 to 5

Note "Hello world!"
Next

' the next loop will execute the Note statement 3 times
For i = 1 to 5 Step 2

Note "Hello world!"
Next

' the next loop will execute the Note statement 3 times
For i = 5 to 1 Step -2

Note "Hello world!"
Next
MapBasic 11.0 301 Reference

Chapter 5:
ForegroundTaskSwitchHandler procedure
' MapBasic will skip the following For statement
' completely, because the initial start value is
' already larger than the initial end value
For i = 100 to 50 Step 5

Note "This note will never be executed"
Next

See Also:

Do…Loop statement, Exit For statement

ForegroundTaskSwitchHandler procedure

Purpose

A reserved procedure name, called automatically when MapInfo Professional receives the focus
(becoming the active application) or loses the focus (another application becomes active).

Syntax

Declare Sub ForegroundTaskSwitchHandler

Sub ForegroundTaskSwitchHandler
 statement_list

End Sub

statement_list is a list of statements.

Description

If the user runs an application containing a procedure named ForegroundTaskSwitchHandler,
MapInfo Professional calls the procedure automatically whenever MapInfo Professional receives or
loses the focus. Within the procedure, call the CommandInfo() function to determine whether
MapInfo Professional received or lost the focus.

Example

Sub ForegroundTaskSwitchHandler

If CommandInfo(CMD_INFO_TASK_SWITCH)
= SWITCHING_INTO_MAPINFO Then

' ... then MapInfo just became active
Else
' ... another app just became active
End If

End Sub

See Also:

CommandInfo() function
MapBasic 11.0 302 Reference

Chapter 5:
Format$() function
Format$() function

Purpose

Returns a string representing a custom-formatted number. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

Format$(value, pattern)

value is a numeric expression.

pattern is a string which specifies how to format the results.

Return Value

String

Description

The Format$() function returns a string representing a formatted number. Given a numeric value
such as 12345.67, Format$() can produce formatted results such as “$12,345.67”.

The value parameter specifies the numeric value that you want to format.

The pattern parameter is a string of code characters, chosen to produce a particular type of
formatting. The pattern string should include one or more special format characters, such as #, 0, %,
the comma character (,), the period (.), or the semi-colon (;); these characters control how the
results will look. The table below summarizes the format characters.

pattern character Role in formatting results:

The result will include one or more digits from the value.

If the pattern string contains one or more # characters to the left of the
decimal place, and if the value is between zero and one, the formatted
result string will not include a zero before the decimal place.

0 A digit placeholder similar to the # character. If the pattern string contains
one or more 0 characters to the left of the decimal place, and the value is
between zero and one, the formatted result string will include a zero before
the decimal place. See examples below.

. (period) The pattern string must include a period if you want the result string to
include a “decimal separator.” The result string will include the decimal
separator currently in use on the user's computer. To force the decimal
separator to be a period, use the Set Format statement.
MapBasic 11.0 303 Reference

Chapter 5:
Format$() function
Error Conditions

ERR_FCN_INVALID_FMT (643) error generated if the pattern string is invalid

Examples

The following examples show the results you can obtain by using various pattern strings. The results
are shown as comments in the code.

You will obtain slightly different results if your computer is set up with non-US number
formatting.

Format$(12345, ",#") ' returns "12,345"
Format$(-12345, ",#") ' returns "-12,345"
Format$(12345, "$#") ' returns "$12345"
Format$(-12345, "$#") ' returns "-$12345"

, (comma) The pattern string must include a comma if you want the result string to
include “thousand separators.” The result string will include the thousand
separator currently set up on the user's computer. To force the thousand
separator to be a comma, use the Set Format statement.

% The result will represent the value multiplied by one hundred; thus, a value
of 0.75 will produce a result string of “75%”. If you wish to include a percent
sign in your result, but you do not want MapBasic to multiply the value by
one hundred, place a \ (back slash) character before the percent sign (see
below).

E+ The result is formatted with scientific notation. For example, the value 1234
produces the result “1.234e+03”. If the exponent is positive, a plus sign
appears after the “e”. If the exponent is negative (which is the case for
fractional numbers), the results include a minus sign after the “e”.

E- This string of control characters functions just as the “E+” string, except that
the result will never show a plus sign following the “e”.

; (semi-colon) By including a semicolon in your pattern string, you can specify one format
for positive numbers and another format for negative numbers. Place the
semicolon after the first set of format characters, and before the second set
of format characters. The second set of format characters applies to
negative numbers. If you want negative numbers to appear with a minus
sign, include “–” in the second set of format characters.

\ If the back slash character appears in a pattern string, MapBasic does not
perform any special processing for the character which follows the back
slash. This lets you include special characters (for example, %) in the
results, without causing the special formatting actions described above.

pattern character Role in formatting results:
MapBasic 11.0 304 Reference

Chapter 5:
FormatDate$() function
Format$(12345.678, "$,#.##") ' returns "$12,345.68"
Format$(-12345.678, "$,#.##") ' returns "-$12,345.68"

Format$(12345.678, "$,#.##;($,#.##)") 'returns "$12,345.68"
Format$(-12345.678, "$,#.##;($,#.##)") 'returns "($12,345.68)"
Format$(12345.6789, ",#.###") ' returns "12,345.679"
Format$(12345.6789, ",#.#") ' returns "12,345.7"

Format$(-12345.6789, "#.###E+00") ' returns "-1.235e+04"
Format$(0.054321, "#.###E+00") ' returns "5.432e-02"

Format$(-12345.6789, "#.###E-00") ' returns "-1.235e04"
Format$(0.054321, "#.###E-00") ' returns "5.432e-02"

Format$(0.054321, "#.##%") ' returns "5.43%"
Format$(0.054321, "#.##\%") ' returns ".05%"
Format$(0.054321, "0.##\%") ' returns "0.05%"

See Also:

Str$() function

FormatDate$() function

Purpose

Returns a date formatted in the short date style specified by the Control Panel. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

FormatDate$(value)

value is a number or string representing the date in a YYYYMMDD format.

Return Value

String

Description

The FormatDate$() function returns a string representing a date in the local system format as
specified by the Control Panel.

If you specify the year as a two-digit number (for example, 96), MapInfo Professional uses the
current century or the century as determined by the Set Date Window statement.

Year can take two-digit year expressions. Use the Date window to determine which century should
be used. See DateWindow() function.
MapBasic 11.0 305 Reference

Chapter 5:
FormatNumber$() function
Examples

Assuming Control Panel settings are d/m/y for date order, '-' for date separator, and “dd-MMM-yyyy”
for short date format:

Dim d_Today As Date
d_Today = CurDate()
Print d_Today 'returns "19970910"
Print FormatDate$(d_Today) 'returns "10-Sep-1997"
Dim s_EnteredDate As String
s_EnteredDate = "03-02-61"
Print FormatDate$(s_EnteredDate) 'returns "03-Feb-1961"
s_EnteredDate = "12-31-61"
Print FormatDate$(s_EnteredDate) ' returns ERROR: not d/m/y ordering
s_EnteredDate = "31-12-61"
Print FormatDate$(s_EnteredDate) ' returns 31-Dec-1961"

See Also:

DateWindow() function, Set Date Window statement

FormatNumber$() function

Purpose

Returns a string representing a number, including thousands separators and decimal-place
separators that match the user's system configuration. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

FormatNumber$(num)

num is a numeric value or a string that represents a numeric value, such as “1234.56”.

Return Value

String

Description

Returns a string that represents a number. If the number is large enough to need a thousands
separators, this function inserts thousands separators. MapInfo Professional reads the user's
system configuration to determine which characters to use as the thousands separator and decimal
separator.

Examples

The following table demonstrates how the FormatNumber$() function with a comma as the
thousands separator and period as the decimal separator (United States defaults):
MapBasic 11.0 306 Reference

Chapter 5:
FormatTime$ function
If the user's computer is set up to use period as the thousands separator and comma as the decimal
separator, the following table demonstrates the results:

See Also:

DeformatNumber$() function

FormatTime$ function

Purpose

Returns a string representing a time using the format specified in the second argument. You can call
this function from the MapBasic Window in MapInfo Professional.

The format string should follow the same Microsoft standards as for setting the locale time format:

Function Call Result returned

FormatNumber$("12345.67") “12,345.67” (inserted a thousands separator)

FormatNumber$("12,345.67") “12,345.67” (no change)

Function Call Result returned

FormatNumber$("12345.67") “12.345,67” (inserted a thousands separator, and changed
the decimal separator to match user's setup)

FormatNumber$("12,345.67") “12.345,67” (changed both characters to match the user's
setup)

Hours Meaning

h Hours without leading zeros for single-digit hours (12-hour clock).

hh Hours with leading zeros for single-digit hours (12-hour clock).

H Hours without leading zeros for single-digit hours (24-hour clock).

HH Hours with leading zeros for single-digit hours (24-hour clock).

Minutes Meaning

m Minutes without leading zeros for single-digit minutes.

mm Minutes with leading zeros for single-digit minutes.

Seconds Meaning
MapBasic 11.0 307 Reference

Chapter 5:
FME Refresh Table statement
Source: http://msdn2.microsoft.com/en-us/library/ms776320.aspx

In the preceding formats, the letters m, s, and t must be lowercase, and the letter h must be
lowercase to denote the 12-hour clock or uppercase to denote the 24-hour clock.

Our code follows the rules for specifying the system local time format. In addition, we also allow the
user to specify f, ff, or fff for tenths of a second, hundredths of a second, or milliseconds.

Syntax

FormatTime$ (Time, String)

Return Value

String

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim Z as time
Z = CurTime()
Print FormatTime$(Z, "hh:mm:ss.fff tt")

FME Refresh Table statement

Purpose

Refreshes a Universal Data Source (FME) table from the original data source. You can issue this
statement from the MapBasic Window in MapInfo Professional.

s Seconds without leading zeros for single-digit seconds.

ss Seconds with leading zeros for single-digit seconds.

Time marker Meaning

t One-character time marker string.

Do not to use this format for certain languages, for example, Japanese
(Japan). With this format, the application always takes the first character
from the time marker string, defined by LOCALE_S1159 (AM) and
LOCALE_S2359 (PM). Because of this, the application can create
incorrect formatting with the same string used for both AM and PM.

tt Multi-character time marker string.
MapBasic 11.0 308 Reference

http://msdn2.microsoft.com/en-us/library/ms776320.aspx

Chapter 5:
FrontWindow() function
Syntax

FME Refresh Table alias

alias is the an alias for an open registered Universal Data Source (FME) table.

Example

The following example refreshes the local table named watershed.

FME Refresh Table watershed

FrontWindow() function

Purpose

Returns the integer identifier of the active window. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

FrontWindow()

Return Value

Integer

Description

The FrontWindow() function returns the integer ID of the foremost document window (Map,
Browse, Graph, or Layout). Note that immediately following a statement which creates a new
window (for example, Map, Browse, Graph, Layout), the new window is the foremost window.

Example

Dim map_win_id As Integer
Open Table "states"
Map From states
map_win_id = FrontWindow()

See Also:

NumWindows() function, WindowID() function, WindowInfo() function

Function…End Function statement

Purpose

Defines a custom function.

Restrictions

You cannot issue a Function…End Function statement through the MapBasic window.
MapBasic 11.0 309 Reference

Chapter 5:
Function…End Function statement
Syntax

Function name ([[ByVal] parameter As datatype]
 [, [ByVal] parameter As datatype...]) As return_type
statement_list

End Function

name is the function name.

parameter is the name of a parameter to the function.

datatype is a variable type, such as integer; arrays and custom Types are allowed.

return_type is a standard scalar variable type; arrays and custom Types are not allowed.

statement_list is the list of statements that the function will execute.

Description

The Function…End Function statement creates a custom, user-defined function. User-defined
functions may be called in the same fashion that standard MapInfo Professional functions are called.

Each Function…End Function definition must be preceded by a Declare Function statement.

A user-defined function is similar to a Sub procedure; but a function returns a value. Functions are
more flexible, in that any number of function calls may appear within one expression. For example,
the following statement performs an assignment incorporating two calls to the Proper$() function:

 fullname = Proper$(firstname) + " " + Proper$(lastname)

Within a Function…End Function definition, the function name parameter acts as a variable. The
value assigned to the name “variable” will be the value that is returned when the function is called. If
no value is assigned to name, the function will always return a value of zero (if the function has a
numeric data type), FALSE (if the function has a logical data type), or a null string (if the function has
a string data type).

Restrictions on Parameter Passing

A function call can return only one “scalar” value at a time. In other words, a single function call
cannot return an entire array's worth of values, nor can a single function call return a set of values to
fill in a custom data Type variable. By default, every parameter to a user-defined function is a by-
reference parameter. This means that the function's caller must specify the name of a variable as
the parameter. If the function modifies the value of a by-reference parameter, the modified value will
be reflected in the caller's variable.

Any or all of a function's parameters may be specified as by-value if the optional ByVal keyword
precedes the parameter name in the Function…End Function definition. When a parameter is
declared by-value, the function's caller can specify an expression for that parameter, rather than
having to specify the name of a single variable. However, if a function modifies the value of a by-
value parameter, there is no way for the function's caller to access the new value. You cannot pass
arrays, custom Type variables, or Alias variables as ByVal parameters to custom functions.
However, you can pass any of those data types as by-reference parameters. If your custom function
takes no parameters, your Function…End Function statement can either include an empty pair of
parentheses, or omit the parentheses entirely. However, every function call must include a pair of
MapBasic 11.0 310 Reference

Chapter 5:
Function…End Function statement
parentheses, regardless of whether the function takes parameters. For example, if you wish to
define a custom function called Foo, your Function…End Function statement could either look like
this:

Function Foo()
' ... statement list goes here ...

End Function

or like this:

Function Foo
' ... statement list goes here ...

End Function

but all calls to the function would need to include the parentheses, in this fashion:

var_name = Foo()

Availability of Custom Functions

The user may not incorporate calls to user-defined functions when filling in standard MapInfo
Professional dialog boxes. A custom function may only be called from within a compiled MapBasic
application. Thus, a user may not specify a user-defined function within the SQL Select dialog box;
however, a compiled MapBasic program may issue a Select statement which does incorporate
calls to user-defined functions.

A custom function definition is only available from within the application that defines the function. If
you write a custom function which you wish to include in each of several MapBasic applications, you
must copy the Function…End Function definition to each of the program files.

Function Names

The Function…End Function statement's name parameter can match the name of a standard
MapBasic function, such as Abs or Chr$. Such a custom function will replace the standard
MapBasic function by the same name (within the confines of that MapBasic application). If a
program defines a custom function named Abs, any subsequent calls to the Abs function will
execute the custom function instead of MapBasic's standard Abs() function.

When a MapBasic application redefines a standard function in this fashion, other applications are
not affected. Thus, if you are writing several separate applications, and you want each of your
applications to use your own, customized version of the Distance() function, each of your
applications must include the appropriate Function…End Function statement.

When a MapBasic application redefines a standard function, the re-definition applies throughout the
entire application. In every procedure of that program, all calls to the redefined function will use the
custom function, rather than the original.

Example

The following example defines a custom function, CubeRoot, which returns the cube root of a
number (the number raised to the one-third power). Because the call to CubeRoot appears earlier in
the program than the CubeRoot Function…End Function definition, this example uses the Declare
Function statement to pre-define the CubeRoot function parameter list.
MapBasic 11.0 311 Reference

Chapter 5:
Geocode statement
Declare Function CubeRoot(ByVal x As Float) As Float
Declare Sub Main

Sub Main
Dim f_result As Float
f_result = CubeRoot(23)
Note Str$(f_result)

End Sub

Function CubeRoot(ByVal x As Float) As Float
CubeRoot = x ^ 0.33333333333

End Function

See Also:

Declare Function statement, Declare Sub statement, Sub…End Sub statement

Geocode statement

Purpose

Geocodes a table or individual value using a remote geocode service through a connection created
using the Open Connection statement and set up using the Set Connection Geocode statement.
You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Geocode connection_number
Input

[Table input_tablename]
[Country = Country_expr

[Street = Street_expr,
[IntersectingStreet = IntersectingStreet_expr],

 Municipality = Municipality_expr,
 CountrySubdivision = CountrySubdiv_expr,
 PostalCode = PostalCode_expr,
 CountrySecondarySubdivision= CountrySecondarySubdiv_expr,
 SecondaryPostalCode = SecondaryPostalCode_expr,
 Placename = Placename_expr,
 Street2 = Street2_expr,
 MunicipalitySubdivision = MunicipalitySubdiv_expr]]

Output
[Into

[Table out_tablename [Key out_keycolumn = in_keyexpr]] |
[Variable variable_name]]

[Point [On | Off] [Symbol Symbol_expr],]
[Street_column = Street, Municipality_column = Municipality,
 CountrySubdiv_column = CountrySubdivision,
 PostalCode_column = PostalCode,
 CountrySecondarySubdiv_column = CountrySecondarySubdivision,
 SecondaryPostalCode_column = SecondaryPostalCode,
MapBasic 11.0 312 Reference

Chapter 5:
Geocode statement
 Placename_column = Placename,
 MunicipalitySubdiv_column = MunicipalitySubdivision,
 Country_column = Country, ResultCode_column = ResultCode,
 Latitude_column = Latitude, Longitude_column = Longitude
 Columns colname = geocoder_keyname [,] ...]

[Interactive [On [Max Candidates candidates_expr | All]
[CloseMatchesOnly [On | Off]]

| Off [First | None]]

connection_number is the number returned when the connection was created. See Open
Connection statement.

input_tablename is a table alias of an open table including result sets and selections.

Country_expr is a string expression representing the three letter ISO code for the country.

Street_expr is an expression that specifies a street address.

IntersectingStreet_expr is an expression that specifies a street that should intersect with the street
specified in Street_expr.

Municipality_expr is an expression that specifies the name of a municipality.

CountrySubdivision_expr is an expression that specifies the name of a subdivision of a country. For
example, in the US this specifies the name of a state. In Canada it specifies the name of a province.

PostalCode_expr is an expression that specifies a postal code.

CountrySecondarySubdiv_expr is an expression that specifies the name of a secondary subdivision
for a country. For example, in the US this corresponds to a county, in Canada this corresponds to a
census division.

SecondaryPostalCode_expr is an expression that specifies a secondary postal code system. In the
US this corresponds to a ZIP+4 extension on a ZIP Code.

Placename_expr is an expression that specifies the name of a well-known place, such as a large
building that may contain multiple addresses.

Street2_expr is an expression that specifies a secondary address line.

MunicipalitySubdiv_expr is an expression that specifies the name of a municipality subdivision.

out_tablename is a table alias of a table to be used as the holder of the data resulting from the
geocode operation.

out_keycolumn is a string representing the name of a key column in the output table that will be used
to hold some identifying “key” from the input records. This is used to identify the record from where
the geocode came.

in_keyexpr is an expression from (the input table) whose value is inserted in the output record.

variable_name is the name of a variable that can hold a single geometry.

Symbol_expr is an expression that specifies the symbol to use when displaying a Point from the
geometry column. See Symbol clause for more information.

Street_column is an alias that represents the name of the column to hold the Street result.
MapBasic 11.0 313 Reference

Chapter 5:
Geocode statement
Municipality_column is a string the represents the name of the column to hold the Municipality result.

CountrySubdiv_column is a string the represents the name of the column to hold the Country
Subdivision result.

PostalCode_column is a string the represents the name of the column to hold the Postal Code
result.

CountrySecondarySubdiv_column is a string the represents the name of the column to hold the
Country Secondary Subdivision result.

SecondaryPostalCode_column is a string the represents the name of the column to hold the
Secondary Postal Code result.

Placename_column is a string the represents the name of the column to hold the Placename result.

MunicipalitySubdiv_column is a string the represents the name of the column to hold the
Municipality Subdivision result.

Country_column is a string the represents the name of the column to hold the Country result.

ResultCode_column is a string the represents the name of the column to hold the Result Code
generated by the geocoder.

Latitude_column is a string the represents the name of the float or decimal column to hold the
Latitude result.

Longitude_column is a string the represents the name of the float or decimal column to hold the
Longitude result.

colname is a string the represents the name of the column for a geocoder-specific result.

geocoder_keyname is a string representing the name of a country-specific geocoder item. These
items are documented by the specific geocoder.

candidates_expr is an expression that specifies the number of candidates to be returned in an
interactive geocoding session.

Description

Every Geocode statement must include an Input clause and an Output clause. The
input_tablename is optional, however if a table is not specified, the resulting geocode operation
would be performed on a set of string inputs (variables or constants), so that only a single address is
geocoded in each request. The output_tablename is also optional. See Table vs. non-table- based
input and output below.

Input clause

The Input clause is required as a geocode request needs some input data.

A Country must be specified either as an explicit argument or as a column in input_tablename.
When a single country is used, it can be a constant string if no data is available. ISO standard three
letter country codes must be used.

The list of fields to include from input_table to be geocoded must include at least one value. The
more expressions that are included, the more accurate your geocoding result will be.
MapBasic 11.0 314 Reference

Chapter 5:
Geocode statement
Output clause

The Output clause is required, as without it, the entire command returns nothing.

Into Table indicates that the Output clause refer to columns in output_table, which must be
writable. If not specified, the clauses refer to the input_table. Note that if the input columns are to be
updated, they must be specified both for input AND output.

Key is used with Into Table. This clause creates a relationship between the key columns in the input
and output table.

Variable specifies that the geometry result from the geocode operation is stored in a variable
defined in variable_name. When using this output option, note that if the input is a table only the first
record is processed and the remainder of the records are skipped.

Point specifies that the geographic result of the geocode is to be stored in either the table or the
variable. In the case of a table, this requires that the table be mappable.

To store the point stored into the object column, specify Point or Point On (default is on). The
current default symbol is used. To return the same using a specific symbol, specify Point On
Symbol symbol_expr. If you do not want to store the point in the object column, specify Point Off.
Whether you want the object created or not, you can still store the x and y values in real number
columns. To do this specify those columns as Latitude = latitude_column Longitude =
longitude_column.

The rest of the output data specifies columns in the output table where well known geocoder return
values are stored. In general, these may be more specific than the input. For example, it may be
possible to geocode an address with just a business name of “MapInfo” and a post code of “12180”.
However, much more is returned in the output. The Columns extension allows for data to be
returned that is geocoder specific. The user must know the names of the keys as defined by the
geocoders.

Table vs. non-table- based input and output

The Geocode statement can be used with any combination of table-based and non-table-based
inputs and outputs. If you choose to use a table-based input you can have your output placed into
either a new or existing table, or into a variable. If the output is a variable then only the first record is
processed and the only value stored is the geographic object.

If you choose non-table-based input, the values for the operation must either be expressions (not
column names), variables, or constant strings, the output can be placed either into a table or
assigned to a variable.

Interactive clause

Interactive [On | Off] is an optional keyword that controls whether a dialog box to be displayed in
the case of multiple candidates returned for each address. When this occurs, the user is prompted to
choose, respecify, skip, or cancel the operation.

is asked to decide which of the choices is best given the opportunity to skip this input. When On, the
dialog box displays in these situations. When Off, if multiple matches occur the choices are to
accept the first candidate or none, meaning that the record is skipped. The default is skipping the
record.
MapBasic 11.0 315 Reference

Chapter 5:
Geocode statement
If the Interactive keyword is not included, it is equivalent to Interactive Off None and no options
can be specified. If Interactive is specified, the default is On.

• Interactive is equivalent to Interactive On. When no value is provided for Max the default is
three (3) candidates to be returned.

• Interactive On Max Candidates All returns all candidates
• Interactive On Max Candidates 4* myMBVariable/6 returns the number of candidates

resulting from the evaluation of the expression.
• Interactive Off is equivalent to Interactive Off None.
• Interactive Off First returns the first candidate in the list.

The CloseMatchesOnly setting sets the geocode service to only return close matches as defined
by the server. If CloseMatchesOnly is set to Off, all results are returned up to the number defined in
Max Candidates with the ones that are considered to be close marked as such.

Examples

The following example shows a geocode request using the nystreets table and specifying the use of
the city, Streetname, state, and postalcode.

Geocode connectionHandle Input Table nystreets municipality=city,
street=StreetName, countrysubdivision=state, postalcode=zip,
country="usa"
OUTPUT StreetName=street, address=municipality

This example shows a geocode request using the nystreets table and specifying a symbol for
displaying the output.

Geocode connectionHandle Input Table nystreets street=StreetName,
country="usa"
Output Point Symbol MakeFontSymbol(65, 255 ,24,"MapInfo
Cartographic",32,0), StreetName=street

This example sends a request with the Interactive set to On with the return value being placed into
the street column.

Geocode connectionHandle Input Table nystreets street=StreetName,
country="usa"
Output Point Symbol MakeFontSymbol(65, 255 ,24,"MapInfo
Cartographic",32,0),
StreetName=street Interactive on Max Candidates 5

The following example shows a Geocode request without using a table and outputting the results
into a variable:

Geocode connectionHandle Input street="1 Global View", country="usa",
countrysubdivison="NY", municipality="Troy"
Output Variable outvar

See Also:

Open Connection statement
MapBasic 11.0 316 Reference

Chapter 5:
GeocodeInfo() function
GeocodeInfo() function

Purpose

Returns any and all attributes that were set on a connection using the Set Connection Geocode
statement. In addition, GeocodeInfo() can also return some status values from the last geocode
command issued using each connection. There is also an attribute to handle the maximum number
of addresses that the server will permit to be sent to the service at a time. You can call this function
from the MapBasic Window in MapInfo Professional.

Syntax

GeoCodeInfo(connection_handle, attribute)

connection_handle is an Integer.

attribute is an Integer code, indicating which type of information should be returned.

Return Value

Float, Integer, SmallInt, Logical, or String, depending on the attribute parameter.

Description

The GeoCodeInfo() function returns the properties defaulted by the connection or the properties
that have been changed using Set GeoCode. Like many functions of this type in MapBasic, the
return values vary according to the attribute parameter. All the codes for these values are listed in
MAPBASIC.DEF.

attribute Value ID GeoCodeInfo() Return Value

GEOCODE_STREET_NAME 1 Logical representing whether or not a match
for StreetName is set.

GEOCODE_STREET_NUMBER 2 Logical representing whether or not a match
for StreetNumber is set.

GEOCODE_MUNICIPALITY 3 Logical representing whether or not a match
for municipality is set.

GEOCODE_MUNICIPALITY2 4 Logical representing whether or not a match
for MunicipalitySubdivision is set.

GEOCODE_COUNTRY_SUBDIVISION 5 Logical representing whether a match for
CountrySubdivision is set.

GEOCODE_COUNTRY_SUBDIVISION2 6 Logical representing whether or not a match
for CountrySecondarySubdivision is set.
MapBasic 11.0 317 Reference

Chapter 5:
GeocodeInfo() function
GEOCODE_POSTAL_CODE 7 Logical representing whether or not a match
for PostalCode is set.

GEOCODE_DICTIONARY 9 SmallInt value representing one of these five
values:

• DICTIONARY_ALL
• DICTIONARY_ADDRESS_ONLY
• DICTIONARY_USER_ONLY
• DICTIONARY_PREFER_ADDRESS
• DICTIONARY_PREFER_USER

GEOCODE_BATCH_SIZE 10 Integer value representing the batch size.

GEOCODE_FALLBACK_GEOGRAPHIC 11 Logical representing whether or not the
geocoder should fall back to a geographic
centroid when other options fail.

GEOCODE_FALLBACK_POSTAL 12 Logical representing whether or not the
geocoder should fall back to a postal centroid
when other options fail.

GEOCODE_OFFSET_CENTER 13 Float value representing the distance from
the center of the road that the point is
returned.

GEOCODE_OFFSET_CENTER_UNITS 14 String value representing the units of the
center of the road values.

GEOCODE_OFFSET_END 15 Float value representing the distance from
the end of the road that the point is returned.

GEOCODE_OFFSET_END_UNITS 16 String value representing the units of the
offset from end of street value

GEOCODE_MIXED_CASE 17 Logical representing whether MapInfo
Professional should format the strings
returned in mixed case or leave them as
uppercase. This option may not be available
for all countries. The option uses a country
specific algorithm that has knowledge of what
address parts and what items should be
capitalized and what should be made lower
case.

attribute Value ID GeoCodeInfo() Return Value
MapBasic 11.0 318 Reference

Chapter 5:
GeocodeInfo() function
GEOCODE_RESULT_MARK_MULTIPLE 18 Logical representing whether MapInfo
Professional should change the result code
returned from the server by adding an
indicator to the result code that the result was
based on an arbitrary choice between
multiple close matches. This flag only affects
the behavior under the following
circumstances:

1. The geocoding was not interactive so no
possibility of presenting the candidates
dialog was possible.

1. The non-interactive command flag was to
pick the first candidate returned rather
than none. (see Geocode command
“First”). This forces MapInfo Professional
to pick one of the candidates.

2. The actual request returned more than
one close match for a particular record.

GEOCODE_COUNT_GEOCODED 19 Integer value representing the number of
records geocoded during the last operation.

GEOCODE_COUNT_NOTGEOCODED 20 Integer value representing the number of
records not geocoded during the last
operation.

GEOCODE_UNABLE_TO_CONVERT_D
ATA

21 Logical representing whether a column was
not updated during the last operation
because of a data type problem. The case
where this occurs is when integer columns
are erroneously specified for non-numeric
postal codes.

GEOCODE_PASSTHROUGH 100 Integer specifying the number of passthrough
items set on this connection. There are two
items for each pair. This value is used to
know when to stop the enumeration of these
values without error.

attribute Value ID GeoCodeInfo() Return Value
MapBasic 11.0 319 Reference

Chapter 5:
Get statement
Example

The following MapBasic snippet will print the Envinsa Location Utility Constraints to the message
window in MapInfo Professional:

Include "MapBasic.Def"
declare sub main
sub main
dim iConnect as integer

Open Connection Service Geocode Envinsa
URL

"http://envinsa_server:8066/LocationUtility/services/LocationUtility"
User "john"
Password "green"
into variable iConnect

Print "Geocode Max Batch Size: " +
GeoCodeInfo(iConnect,GEOCODE_MAX_BATCH_SIZE)
end sub

See Also:

Open Connection statement, Set Connection Geocode statement

Get statement

Purpose

Reads from a file opened in Binary or Random access mode.

Syntax

Get [#] filenum, [position], var_name

filenum is the number of a file opened through an Open File statement.

position is the file position to read from.

GEOCODE_PASSTHROUGH + n String values alternately representing name
and value for each passthrough pair. n is
valid up to the value returned via
GEOCODE_INFO_PASSTHROUGH.

GEOCODE_MAX_BATCH_SIZE 22 Integer value representing the maximum
number of records (for example, addresses)
that the server will permit to be sent to the
service at one time.

attribute Value ID GeoCodeInfo() Return Value
MapBasic 11.0 320 Reference

Chapter 5:
Get statement
var_name is the name of a variable where MapBasic will store results.

Description

The Get statement reads from an open file. The behavior of the Get statement and the set of
parameters which it expects are affected by the options specified in the preceding Open File
statement.

If the Open File statement specified Random file access, the Get statement's Position clause can
be used to indicate which record of data to read. When the file is opened, the file position points to
the first record of the file (record 1). A Get automatically increments the file position, and thus the
Position clause does not need to be used if sequential access is being performed. However, you can
use the Position clause to set the record position before the record is read.

If the Open File statement specified Binary file access, one variable can be read at a time. What
data is read depends on the byte-order format of the file and the var_name variable being used to
store the results. If the variable type is integer, then 4 bytes of the binary file will be read, and
converted to a MapBasic variable. Variables are stored the following way:

With Binary file access, the position parameter is used to position the file pointer to a specific offset
in the file. When the file is opened, the position is set to one (the beginning of the file). As a Get is
performed, the position is incremented by the same amount read. If the Position clause is not used,
the Get reads from where the file pointer is positioned.

The Get statement requires two commas, even if the optional position parameter is omitted.

If a file was opened in Binary mode, the Get statement cannot specify a variable-length string
variable; any string variable used in a Get statement must be fixed-length.

See Also:

Open File statement, Put statement

Variable Type Storage In File

Logical One byte, either 0 or non-zero.

SmallInt Two byte integer.

Integer Four byte integer.

Float Eight byte IEEE format.

String Length of string plus a byte for a 0 string terminator.

Date Four bytes: SmallInt year, byte month, byte day.

Other data types Cannot be read.
MapBasic 11.0 321 Reference

Chapter 5:
GetCurrentPath() function
GetCurrentPath() function

Purpose

Returns the path of a special MapInfo Professional directory defined initially in the Preferences
dialog box to access specific MapInfo files. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

GetCurrentPath$(current_path_id)

current_path_id is one of the following values:

PREFERENCE_PATH_TABLE (0)
PREFERENCE_PATH_WORKSPACE (1)
PREFERENCE_PATH_MBX (2)
PREFERENCE_PATH_IMPORT (3)
PREFERENCE_PATH_SQLQUERY (4)
PREFERENCE_PATH_THEMETHEMPLATE (5)
PREFERENCE_PATH_MIQUERY (6)
PREFERENCE_PATH_NEWGRID (7)
PREFERENCE_PATH_CRYSTAL (8)
PREFERENCE_PATH_GRAPHSUPPORT (9)
PREFERENCE_PATH_REMOTETABLE (10)
PREFERENCE_PATH_SHAPEFILE (11)
PREFERENCE_PATH_WFSTABLE (12)
PREFERENCE_PATH_WMSTABLE (13)

Return Value

String

Description

Given the ID of a special MapInfo Preference directory, the GetCurrentPath$() function returns the
path of the directory. An example of a special MapInfo directory is the default location to which
MapInfo Professional writes out new native MapInfo tables.

Example

Copy this example into the MapBasic window for a demonstration of this function.

include "mapbasic.def"
declare sub main
sub main
dim sMiPrfFile as string
sMiPrfFile = GetCurrentPath$(PREFERENCE_PATH_WORKSPACE)
Print sMiPrfFile
end sub
MapBasic 11.0 322 Reference

Chapter 5:
GetDate() function
See Also:

GetPreferencePath$() function

GetDate() function

Purpose

Returns the Date component of a DateTime. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

GetDate(DateTime)

Return Value

Date

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim dtX as datetime
dim Z as date
dtX = "03/07/2007 12:09:09.000 AM"
Z = GetDate(dtX)
Print FormatDate$(Z)

GetFolderPath$() function

Purpose

Returns the path of a special MapInfo Professional or Windows directory. You can call this function
from the MapBasic Window in MapInfo Professional.

Syntax

GetFolderPath$(folder_id)

folder_id is one of the following values:

FOLDER_MI_APPDATA (-1)
FOLDER_MI_LOCAL_APPDATA (-2)
FOLDER_MI_PREFERENCE (-3)
FOLDER_MI_COMMON_APPDATA (-4)
FOLDER_APPDATA (26)
FOLDER_LOCAL_APPDATA (28)
FOLDER_COMMON_APPDATA (35)
FOLDER_COMMON_DOCS (46)
FOLDER_MYDOCS (5)
FOLDER_MYPICS (39)
MapBasic 11.0 323 Reference

Chapter 5:
GetGridCellValue() function
Return Value

String

Description

Given the ID of a special MapInfo or Windows directory, GetFolderPath$() function returns the path
of the directory. An example of a special Windows directory is the My Documents directory. An
example of a special MapInfo directory is the preference directory; the default location to which
MapInfo Professional writes out the preference file.

The location of many of these directories varies between versions of Windows. They can also vary
depending on which user is logged in. Note that FOLDER_MI_APPDATA (-1),
FOLDER_MI_LOCAL_APPDATA (-2), and FOLDER_MI_COMMON_APPDATA (-4) may not exist.
Before attempting to access those directories, test for their existence by using FileExists()
function. FOLDER_MI_PREFERENCE (-3) always exists.

IDs beginning in FOLDER_MI return the path for directories specific to MapInfo Professional. The
rest of the IDs return the path for Windows directories and correspond to the IDs defined for WIN32
API function SHGetFolderPath. The most common of these IDs have been defined for easy use in
MapBasic applications. Any ID valid to SHGetFolderPath will work with GetFolderPath$().

Example

include "mapbasic.def"
declare sub main
sub main
dim sMiPrfFile as string
sMiPrfFile = GetFolderPath$(FOLDER_MI_PREFERENCE)
Print sMiPrfFile
end subet128

See Also:

LocateFile$() function

GetGridCellValue() function

Purpose:

Determines the value of a grid cell if the cell is non-null.

Syntax:

GetGridCellValue(table_id, x_pixel, y_pixel)

table_id is a string representing a table name, a positive integer table number, or 0 (zero). The table
must be a grid table.

x_pixel is the integer number of the X coordinate of the grid cell. Pixel numbers start at 0. The
maximum pixel value is the (pixel_width-1), determined by calling

RasterTableInfo(...RASTER_TAB_INFO_WIDTH).
MapBasic 11.0 324 Reference

Chapter 5:
GetMetadata$() function
y_pixel is the integer number of the Y coordinate of the grid cell. Pixel numbers start at 0. The
maximum pixel value is the (pixel_height-1), determined by calling

RasterTableInfo(...RASTER_TAB_INFO_HEIGHT).

Return Value

A Float is returned, representing the value of a specified cell in the table if the cell is non-null. The
IsGridCellNull() function should be used before calling this function to determine if the cell is null or if
it contains a value.

GetMetadata$() function

Purpose

Retrieves metadata from a table. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

GetMetadata$(table_name, key_name)

table_name is the name of an open table, specified either as an explicit table name (for example,
World) or as a string representing a table name (for example, “World”).

key_name is a string representing the name of a metadata key.

Return Value

String, up to 239 bytes long. If the key does not exist, or if there is no value for the key, MapInfo
Professional returns an empty string.

Description

This function returns a metadata value from a table. For more information about querying a table's
metadata, see Metadata statement, or see the MapBasic User Guide.

Example

If the Parcels table has a metadata key called “\Copyright” then the following statement reads the
key's value:

Print GetMetadata$(Parcels, "\Copyright")

See Also:

Metadata statement
MapBasic 11.0 325 Reference

Chapter 5:
GetPreferencePath$() function
GetPreferencePath$() function

Purpose

Returns the path of a special MapInfo Professional directory defined in the Preferences dialog to
access specific MapInfo files. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

GetPreferencePath$(preference_path_id)

preference_path_id is one of the following values:

• PREFERENCE_PATH_TABLE (0)
• PREFERENCE_PATH_WORKSPACE (1)
• PREFERENCE_PATH_MBX (2)
• PREFERENCE_PATH_IMPORT (3)
• PREFERENCE_PATH_SQLQUERY (4)
• PREFERENCE_PATH_THEMETHEMPLATE (5)
• PREFERENCE_PATH_MIQUERY (6)
• PREFERENCE_PATH_NEWGRID (7)
• PREFERENCE_PATH_CRYSTAL (8)
• PREFERENCE_PATH_GRAPHSUPPORT (9)
• PREFERENCE_PATH_REMOTETABLE (11)
• PREFERENCE_PATH_WFSTABLE (12)
• PREFERENCE_PATH_WMSTABLE (13)

Return Value

String

Description

Given the ID of a special MapInfo Preference directory, the GetPreferencePath$() function returns
the path of the directory. An example of a special MapInfo directory is the default location to which
MapInfo Professional writes out new native MapInfo tables.

Example

include "mapbasic.def"
declare sub main
sub main
dim sMiPrfFile as string
sMiPrfFile = GetPreferencePath$(PREFERENCE_PATH_WORKSPACE)
Print sMiPrfFile
end sub
MapBasic 11.0 326 Reference

Chapter 5:
GetSeamlessSheet() function
See Also:

LocateFile$() function

GetSeamlessSheet() function

Purpose

Prompts the user to select one sheet from a seamless table, and then returns the name of the
chosen sheet. You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

GetSeamlessSheet(table_name)

table_name is the name of a seamless table that is open.

Return Value

String, representing a table name (or an empty string if user cancels).

Description

This function displays a dialog box listing all of the sheets that make up a seamless table. If the user
chooses a sheet and clicks OK, this function returns the table name the user selected. If the user
cancels, this function returns an empty string.

Example

Sub Browse_A_Table(ByVal s_tab_name As String)
Dim s_sheet As String

If TableInfo(s_tab_name, TAB_INFO_SEAMLESS) Then
s_sheet = GetSeamlessSheet(s_tab_name)
If s_sheet <> "" Then

Browse * From s_sheet
End If

Else
Browse * from s_tab_name

End If

End Sub

See Also:

Set Table statement, TableInfo() function
MapBasic 11.0 327 Reference

Chapter 5:
GetTime() function
GetTime() function

Purpose

Returns the Time component of a DateTime. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

GetTime(DateTime)

Return Value

Time

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim dtX as datetime
dim Z as time
dtX = "03/07/2007 12:09:09.000 AM"
Z = GetTime(dtX)
Print FormatTime$(Z,"hh:mm:ss.fff tt")

Global statement

Purpose

Defines one or more global variables.

Syntax

Global var_name [, var_name...] As var_type
[, var_name...] As var_type...]

var_name is the name of a global variable to define.

var_type is integer, float, date, logical, string, or a custom variable Type.

Description

A Global statement defines one or more global variables. Global statements may only appear
outside of a sub procedure.

The syntax of the Global statement is identical to the syntax of the Dim statement; the difference is
that variables defined through a Global statement are global in scope, while variables defined
through a Dim statement are local. A local variable may only be examined or modified by the sub
procedure which defined it, whereas any sub procedure in a program may examine or modify any
global variable. A sub procedure may define local variables with names which coincide with the
names of global variables. In such a case, the sub procedure's own local variables take precedence
(for example, within the sub procedure, any references to the variable name will utilize the local
MapBasic 11.0 328 Reference

Chapter 5:
Goto statement
variable, not the global variable by the same name). Global array variables may be re-sized with the
ReDim statement. Windows, global variables are “visible” to other Windows applications through
DDE conversations.

Example

Declare Sub testing()
Declare Sub Main()
Global gi_var As Integer
Sub Main()

Call testing
Note Str$(gi_var) ' this displays "23"

End Sub

Sub testing()
gi_var = 23

End Sub

See Also:

Dim statement, ReDim statement, Type statement, UBound() function

Goto statement

Purpose

Jumps to a different spot (in the same procedure), identified by a label.

Restrictions

You cannot issue a Goto statement through the MapBasic window.

Syntax

Goto label

label is a label appearing elsewhere in the same procedure.

Description

The Goto statement performs an unconditional jump. Program execution continues at the statement
line identified by the label. The label itself should be followed by a colon; however, the label name
should appear in the Goto statement without the colon.

Generally speaking, the Goto statement should not be used to exit a loop prematurely. The Exit Do
statement and Exit For statement provide the ability to exit a loop. Similarly, you should not use a
Goto statement to jump into the body of a loop.

A Goto statement may only jump to a label within the same procedure.
MapBasic 11.0 329 Reference

Chapter 5:
Graph statement
Example

Goto endproc

...

endproc: End Program

See Also:

Do Case…End Case statement, Do…Loop statement, For…Next statement, OnError
statement, Resume statement

Graph statement

Purpose

Opens a new Graph window. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Graph
label_column, expr ["label_text"][, ...]
From table
[Position (x, y) [Units paperunits]]
[Width window_width [Units paperunits]]
[Height window_height [Units paperunits]]
[Min | Max]
[Using template_file [Restore] [Series In Columns]]

label_column is the name of the column to use for labelling the y-axis.

expr is an expression providing values to be graphed.

label_text is the text that displays for each label column instead of the column name

table is the name of an open table.

paperunits is the name of a paper unit (for example, “in”).

x, y specifies the position of the upper left corner of the Grapher, in paper units.

window_width and window_height specify the size of the Grapher, in paper units.

template_file is a valid graph template file.

Description

If the Using clause is present and template_file specifies a valid graph template file, then a graph is
created based on the specified template file. Otherwise a 5.0 graph is created. If the Restore clause
is included, then title text in the template file is used in the graph window. Otherwise default text is
used for each title in the graph. The Restore keyword is included when writing the Graph command
to a workspace, so when the workspace is opened the title text is restored exactly as is was when
MapBasic 11.0 330 Reference

Chapter 5:
GridTableInfo() function
the workspace was saved. The Restore keyword is not used in the Graph command constructed by
the Create Graph wizard, so the default text is used for each title. If Series In Columns is included,
then the graph series are based on the table columns. Otherwise the series are based on the table
rows.

The Graph statement adds a new Grapher window to the screen, displaying the specified table. The
graph will appear as a rotated bar chart; subsequent Set Graph statements can re-configure the
specifics of the graph (for example, the graph rotation, graph type, title, etc.).

MapInfo Professional 's Window > Graph dialog box is limited in that it only allows the user to
choose column names to graph. MapBasic's Graph statement, however, is able to graph full
expressions which involve column names. Similarly, although the Graph dialog box only allows the
user to choose four columns to graph, the Graph statement can construct a graph with up to 255
columns.

If the Graph statement includes the optional Max keyword, the resultant Grapher window is
maximized, taking up all of the screen space available to MapInfo Professional. Conversely, if the
Graph statement includes the Min keyword, the window is minimized.

Example (5.5 and later graphs)

Graph State_Name, Pop_1980, Pop_1990, Num_Hh_80 From States Using
"C:\Program Files\MapInfo\GRAPHSUPPORT\Templates\Column\Percent.3tf"
Graph City, Tot_hu, Tot_pop From City_125 Using "C:\Program
Files\MapInfo\GRAPHSUPPORT\Templates\Bar\Clustered.3tf" Series In Columns

Example (pre-5.5 graphs)

Graph Country, Population From Selection

See Also:

Set Graph statement

GridTableInfo() function

Purpose

Returns information about a grid table.

Syntax

GridTableInfo(table_id, attribute)

table_id is a string representing a table name, a positive integer table number, or 0 (zero). The table
must be a grid table.

attribute is an integer code indicating which aspect of the grid table to return.

Return Value

String, SmallInt, Integer or Logical, depending on the attribute parameter specified.
MapBasic 11.0 331 Reference

Chapter 5:
GroupLayerInfo function
The attribute parameter can be any value from the table below. Codes in the left column (for
example, GRID_TAB_INFO_) are defined in MAPBASIC.DEF.

GroupLayerInfo function

Purpose

This function returns information about a specific group layer in the map.

Syntax

GroupLayerInfo (map_window_id, group_layer_id, attribute)

map_window_id is a Map window identifier.

group_layer_id is the number of a group layer in the Map window (for example, 1 for the top group
layer) or a name of a group layer in the map. To determine the number of group layers in a Map
window, call the MapperInfo() function.

attribute is a code indicating the type of information to return; see table below.

Return Value

Depends on the attribute parameter.

attribute code ID GridTableInfo() returns:

GRID_TAB_INFO_MIN_VALUE 1 Float result, representing the minimum grid cell
value in the file

GRID_TAB_INFO_MAX_VALUE 2 Float result, representing the maximum grid cell
value in the file

GRID_TAB_INFO_HAS_HILLSHADE 3 Logical result, TRUE if the grid file has
hillshade/relief shade information. This flag does
not depend on whether the file is displayed using
the hillshading.
MapBasic 11.0 332 Reference

Chapter 5:
GroupLayerInfo function
Description

The attributes are:

Group layer ID’s are from zero (0) to n, where n is the number of group layers in the list and zero (0)
refers to top level, or “root” of the layer list. All the group layer info attributes will apply to the root of
the list with the exception of GROUPLAYER_INFO_DISPLAY (3). GROUPLAYER_INFO_NAME (1)
will return the map’s name (same as its window title). The cosmetic layer will be included in any of
the attributes that count graphical layers.

Specifying a map window ID of zero (0) returns the name of the map window, and returns the name
of the Cosmetic Layer as "cosmetic1", "cosmetic2".

See Also:

LayerInfo() function, MapperInfo() function

Value of window_id, attribute ID Description

GROUPLAYER_INFO_NAME 1 Returns a string value, which is the name
of the group layer.

GROUPLAYER_INFO_LAYERLIST_ID 2 Returns a numeric value, the ID of the
group layer in the layer list (position of the
group layer in the layer list).

GROUPLAYER_INFO_DISPLAY 3 Returns the boolean value

• GROUPLAYER_INFO_DISPLAY_ON
(true if the layer is visible (0))

• GROUPLAYER_INFO_DISPLAY_OFF (f
alse if the layer is not visible (non-
zero))

GROUPLAYER_INFO_LAYERS 4 Returns the count of graphical layers in
the group. It will ignore group layers but
include all nested graphical layers.

GROUPLAYER_INFO_ALL_LAYERS 5 Returns the count of layers and group
layers (includes all nested layers and
group layers).

GROUPLAYER_INFO_TOPLEVEL_LAYERS 6 Returns the count of graphical or group
layers at the top level of the group’s layer
list.

GROUPLAYER_INFO_PARENT_GROUP_ID 7 Returns the group layer ID of the
immediate group containing this group,
will return zero (0) if group layer is in the
top level list.
MapBasic 11.0 333 Reference

Chapter 6:
HomeDirectory$() function
HomeDirectory$() function

Purpose

Returns a string indicating the user's home directory path. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

HomeDirectory$()

Return Value

String

Description

The HomeDirectory$() function returns a string which indicates the user's home directory path.

The significance of a home directory path depends on the hardware platform on which the user is
running. The table below summarizes the platform-dependent home directory path definitions.

Example

Dim s_home_dir As String
s_home_dir = HomeDirectory$()

See Also:

ApplicationDirectory$() function, ProgramDirectory$() function, SystemInfo() function

HotlinkInfo function

Purpose

Returns information about a HotLink definition in a map layer. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

HotlinkInfo (map_window_id, layer_number, hotlink_number, attribute)

map_window_id is a Map window identifier.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer);
to determine the number of layers in a Map window, call the MapperInfo() function.

Environment Definition of “Home Directory”

Windows The directory path to the user's Windows directory.
MapBasic 11.0 334 Reference

Chapter 6:
Hour function
hotlink_number - the index of the hotlink definition being queried. The first hotlink definition in a
layer has index of 1.

attribute - the following attribute values are allowed:

See Also:

Set Map statement, LayerInfo() function,

Hour function

Purpose

Returns the hour component of a Time. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Hour (Time)

Return Value

Number

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim Z as time
dim iHour as integer
Z = CurDateTime()
iHour = Hour(Z)
Print iHour

Hotlink Name ID Description

HOTLINK_INFO_EXPR 1 Returns the filename expression for this hotlink definition.

HOTLINK_INFO_MODE 2 Returns the mode for this hotlink definition, one of the
following predefined values:

• HOTLINK_MODE_LABEL (0)
• HOTLINK_MODE_OBJ (1)

HOTLINK_MODE_BOTH (2)

HOTLINK_INFO_ENABLED 3 Returns TRUE if the relative path option is on for this hotlink
definition.

HOTLINK_INFO_ENABLED 4 Returns TRUE if this hotlink definition is enabled.
MapBasic 11.0 335 Reference

Chapter 6:
If…Then statement
If…Then statement

Purpose

Decides which block of statements to execute (if any), based on the current value of one or more
expressions.

Syntax

If if_condition Then
if_statement_list
[ElseIf elseif_condition Then
elseif_statement_list]
[ElseIf ...]
[Else
 else_statement_list]

End If

condition is a condition which will evaluate to TRUE or FALSE

statement_list is a list of zero or more statements.

Restrictions

You cannot issue an If…Then statement through the MapBasic window.

Description

The If…Then statement allows conditional execution of different groups of statements.

In its simplest form, the If statement does not include an ElseIf clause, nor an Else clause:

If if_condition Then
 if_statement_list

End If

With this arrangement, MapBasic evaluates the if_condition at run-time. If the if_condition is TRUE,
MapBasic executes the if_statement_list; otherwise, MapBasic skips the if_statement_list.

An If statement may also include the optional Else clause:

If if_condition Then
 if_statement_list

Else
 else_statement_list

End If

With this arrangement, MapBasic will either execute the if_statement_list (if the condition is TRUE)
or the else_statement_list (if the condition is FALSE).

Additionally, an If statement may include one or more ElseIf clauses, following the If clause (and
preceding the optional Else clause):

If if_condition Then
 if_statement_list
MapBasic 11.0 336 Reference

Chapter 6:
Import statement
ElseIf elseif_condition Then
 elseif_statement_list

Else
 else_statement_list

End If

With this arrangement, MapBasic tests a series of two or more conditions, continuing until either one
of the conditions turns out to be TRUE or until the Else clause or the End If is reached. If the
if_condition is TRUE, MapBasic will perform the if_statement_list, and then jump down to the
statement which follows the End If. But if that condition is FALSE, MapBasic then evaluates the
else_if_condition; if that condition is TRUE, MapBasic will execute the elseif_statement_list.

An If statement may include two or more ElseIf clauses, thus allowing you to test any number of
possible conditions. However, if you are testing for one out of a large number of possible conditions,
the Do Case…End Case statement is more elegant than an If statement with many ElseIf clauses.

Example

Dim today As Date
Dim today_mon, today_day, yearcount As Integer

today = CurDate() ' get current date
today_mon = Month(today) ' get the month value
today_day = Day(today) ' get the day value (1-31)

If today_mon = 1 And today_day = 1 Then
Note "Happy New Year!"
yearcount = yearcount + 1

ElseIf today_mon = 2 And today_day = 14 Then
Note "Happy Valentine's Day!"

ElseIf today_mon = 12 And today_day = 25 Then
Note "Merry Christmas!"

Else
Note "Good day."

End If

See Also:

Do Case…End Case statement

Import statement

Purpose

Creates a new MapInfo Professional table by importing an exported file, such as a GML or DXF file.
You can issue this statement from the MapBasic Window in MapInfo Professional.

See Importing MIF/MID, PICT, or MapInfo for DOS Files, Importing DXF Files, Importing GML
Files, or Importing GML 2.1 Files.
MapBasic 11.0 337 Reference

Chapter 6:
Import statement
Importing MIF/MID, PICT, or MapInfo for DOS Files

Syntax

Import file_name
[Type file_type]
[Into table_name]
[Overwrite]

file_name is a string that specifies the name of the file to import.

file_type is a string that specifies the import file format (MIF, MBI, MMI, IMG, or PICT).

table_name specifies the name of the new table to create.

Description

The Import statement creates a new MapInfo table by importing the contents of an existing file.

To create a MapInfo table based on a spreadsheet or database file, use the Register Table
statement, not the Import statement.

The optional Type clause specifies the format of the file you want to import. The Type clause can
take one of the following forms:

If you omit the Type clause, MapInfo Professional assumes that the file's extension indicates the file
format. For example, a file named “PARCELS.DXF” is assumed to be a DXF file. (For more about
DXF, see Importing DXF Files.)

The Into clause lets you override the name and location of the MapInfo table that is created. If no
Into clause is specified, the new table is created in the same directory location as the original file,
with a corresponding file name. For example, on Windows, if you import the text file “WORLD.MIF”,
the new table's default name is “WORLD.TAB”.

Type clause File Format Specified

Type “DXF” DXF file (a format supported by CAD packages, such as AutoCAD). See
Importing DXF Files.

Type “MIF” MIF/MID file pair, created by exporting a MapInfo table.

Type “MBI” MapInfo Boundary Interchange, created by MapInfo for DOS.

Type “MMI” MapInfo Map Interchange, created by MapInfo for DOS.

Type “IMG” MapInfo Image file, created by MapInfo for DOS.

Type “GML” GML files. See Importing GML Files.

Type “GML21” GML 2.1 files. See Importing GML 2.1 Files.
MapBasic 11.0 338 Reference

Chapter 6:
Import statement
If you include the optional Overwrite keyword, MapInfo Professional creates a new table, regardless
of whether a table by that name already exists; the new table replaces the existing table. If you omit
the Overwrite keyword, and the table already exists, MapInfo Professional does not overwrite the
table.

Example

Sample importing using current MapInfo style:

Import "D:\midata\GML\test.gml" Type "GML" layer "TopographicLine" style
auto off Into "D:\midata\GML\test_TopographicLine.TAB" Overwrite

The following example imports a MIF (MapInfo Interchange Format) file:

Import "WORLD.MIF"
Type "MIF"
Into "world_2.tab"

Map From world_2

Importing DXF Files

Syntax

Import file_name
[Type "DXF"]
[Into table_name]
[Overwrite]
[Warnings { On | Off }]
[Preserve

[AttributeData] [Preserve] [Blocks As MultiPolygonRgns]]
[CoordSys...]
[Autoflip]
[Transform

(DXF_x1, DXF_y1) (DXF_x2, DXF_y2)
(MI_x1, MI_y1) (MI_x2, MI_y2)]

[Read
[Integer As Decimal] [Read] [Float As Decimal]]

[Store [Handles] [Elevation] [VisibleOnly]]
[Layer DXF_layer_name

[Into table_name]
[Preserve

[AttributeData] [Preserve] [Blocks As MultiPolygonRgns]]
]

[Layer...]

file_name is a string that specifies the name of the file to import.

table_name specifies the name of the new table to create.

DXF_x1, DXF_y1, etc. are numbers that represent coordinates in the DXF file.

MI_x1, MI_y1, etc. are numbers that represent coordinates in the MapInfo table.
MapBasic 11.0 339 Reference

Chapter 6:
Import statement
DXF_layer_name is a string representing the name of a layer in the DXF file.

Description

If you import a DXF file, the Import statement can include the following DXF-specific clauses.

The order of the clauses is important; placing the clauses in the wrong order can cause
compilation errors.

Warnings On or Warnings Off – Controls whether warning messages are displayed during the
import operation. By default, warnings are off.

Preserve AttributeData – Include this clause if you want MapInfo Professional to preserve the
attribute data from the DXF file.

Preserve Blocks As MultiPolygonRgns – Include this clause if you want MapInfo Professional to
store all of the polygons from a DXF block record into one multiple-polygon region object. If you omit
this clause, each DXF polygon becomes a separate MapInfo Professional region object.

CoordSys – Controls the projection and coordinate system of the table. For details, see CoordSys
clause.

Autoflip – Include this option if you want the map's x-coordinates to be flipped around the center
line of the map. This option is only allowed if you specify a non-Earth coordinate system.

Transform – Specifies a coordinate transformation. In the Transform clause, you specify the
minimum and maximum x- and y-coordinates of the imported file, and you specify the minimum and
maximum coordinates that you want to have in the MapInfo table.

Read Integer As Decimal – Include this clause if you want to store whole numbers from the DXF
file in a decimal column in the new table. This clause is only allowed when you include the Preserve
AttributeData clause.

Read Float As Decimal – Include this clause if you want to store floating-point numbers from the
DXF file in a decimal column in the new table. This clause is only allowed when you include the
Preserve AttributeData clause.

Store [Handles] [Elevation] [VisibleOnly] – If you include Handles, the MapInfo table stores
handles (unique ID numbers of objects in the drawing) in a column called _DXFHandle. If you
include Elevation, MapInfo Professional stores each object's center elevation in a column called
_DXFElevation. (For lines, MapInfo Professional stores the elevation at the center of the line; for
regions, MapInfo Professional stores the average of the object's elevation values.) If you include
VisibleOnly, MapInfo Professional ignores invisible objects.

Layer clause – If you do not include any Layer clauses, all objects from the DXF file are imported
into a single MapInfo table. If you include one or more Layer clauses, each DXF layer that you name
becomes a separate MapInfo table.

If your DXF file contains multiple layers, and if your Import statement includes one or more Layer
clauses, MapInfo Professional only imports the layers that you name. For example, suppose your
DXF file contains four layers (layers 0, 1, 2, and 3). The following Import statement imports all four
layers into a single MapInfo table:
MapBasic 11.0 340 Reference

Chapter 6:
Import statement
Import "FLOORS.DXF"
Into "FLOORS.TAB"
Preserve AttributeData

The following statement imports layers 1 and 3, but does not import layers 0 or 2:

Import "FLOORS.DXF"
Layer "1"

Into "FLOOR_1.TAB"
Preserve AttributeData

Layer "3"
Into "FLOOR_3.TAB"
Preserve AttributeData

Importing GML Files

Syntax

Import file_name
[Type "GML"]
[Layer layer_name]
[Into table_name]
[Style Auto [On | Off]]

file_name is a string that specifies the name of the file to import.

layer_name is a string representing the name of a layer in the GML file.

table_name specifies the name of the new table to create.

Description

Type is “GML” for GML files.

MapInfo Professional supports importing OSGB (Ordnance Survey of Great Britain) GML files.
Cartographic Symbol, Topographic Point, Topographic Line, Topographic Area, and Boundary Line
are supported; Cartographic Text is not supported. Topographic Area can be distributed in two
forms; MapInfo Professional supports the non-topological form. If the files contains XLINKS,
MapInfo Professional only imports attribute data, and does not import spatial objects. These XLINKs
are stored in the GML file as “xlink:href=”. If topological objects are included in the file, a warning
displays indicating that spatial objects cannot be imported. Access the Browser view to see the
display of attribute data.

Example

Sample importing using GML style:

Import "D:\midata\GML\est.gml" Type "GML" layer "LandformArea" style auto
on Into "D:\midata\GML\est_LandformArea.TAB" Overwrite
MapBasic 11.0 341 Reference

Chapter 6:
Import statement
Importing GML 2.1 Files

Syntax

Import file_name
[Type "GML21"]
[Layer layer_name]
[Into table_name]
[Overwrite]
[CoordSys...]

file_name is the name of the GML 2.1 file to import.

layer_name is the name of the GML layer.

table_name is the MapInfo table name.

Description

Type is “GML21” for GML 2.1 files.

Overwrite causes the TAB file to be automatically overwritten. If Overwrite is not specified, an error
will result if the TAB file already exists.

The Coordsys clause is optional. If the GML file contains a supported projection and the Coordsys
clause is not specified, the projection from the GML file will be used. If the GML file contains a
supported projection and the Coordsys clause is specified, the projection from the Coordsys
clause will be used. If the GML file does not contain a supported projection, the Coordsys clause
must be specified.

If the Coordsys clause does not match the projection of the GML file, your data may not
import correctly. The coordinate system must match the coordinate system of the data in the
GML file. It will not transform the data from one projection to another.

Example

Sample importing using GML21 style:

Import "D:\midata\GML\GML2.1\mi_usa.xml" Type "GML21" layer "USA" Into
"D:\midata\GML\GML2.1\mi_usa_USA.TAB" Overwrite CoordSys Earth Projection
1, 104

See Also:

Export statement
MapBasic 11.0 342 Reference

Chapter 6:
Include statement
Include statement

Purpose

Incorporates the contents of a separate text file as part of a MapBasic program. Issuing this
statement from the MapBasic Window in MapInfo Professional does not work.

Syntax

Include "filename"

filename is the name of an existing text file.

Restrictions

You cannot issue an Include statement through the MapBasic window.

Description

When MapBasic is compiling a program file and encounters an Include statement, the entire
contents of the included file are inserted into the program file. The file specified by an Include
statement should be a text file, containing only legitimate MapBasic statements.

If the filename parameter does not specify a directory path, and if the specified file does not exist in
the current directory, the MapBasic compiler looks for the file in the program directory. This
arrangement allows you to leave standard definitions files, such as MAPBASIC.DEF, in one
directory, rather than copying the definitions files to the directories where you keep your program
files.

The most common use of the Include statement is to include the file of standard MapBasic
definitions, MAPBASIC.DEF. This file, which is provided with MapBasic, defines a number of
important identifiers, such as TRUE and FALSE.

Whenever you change the contents of a file that you use through an Include statement, you should
then recompile any MapBasic programs which Include that file.

Example

Include "MAPBASIC.DEF"

Input # statement

Purpose

Reads data from a file, and stores the data in variables.

Syntax

Input # filenum, var_name [, var_name...]

filenum is the number of a file opened through the Open File statement.
MapBasic 11.0 343 Reference

Chapter 6:
Insert statement
var_name is the name of a variable.

Description

The Input # statement reads data from a file which was opened in a sequential mode (for example,
INPUT mode), and stores the data in one or more MapBasic variables.

The Input # statement reads data (up to the next end-of-line) into the variable(s) indicated by the
var_name parameter(s). MapInfo Professional treats commas and end-of-line characters as field
delimiters. To read an entire line of text into a single string variable, use Line Input statement.

MapBasic automatically converts the data to the type of the variable(s). When reading data into a
string variable, the Input # statement treats a blank line as an empty string. When reading data into
a numeric variable, the Input # statement treats a blank line as a zero value.

After issuing an Input # statement, call the EOF() function to determine if MapInfo Professional
was able to read the data. If the input was successful, the EOF() function returns FALSE; if the
end-of-file was reached before the input was completed, the EOF() function returns TRUE.

For an example of the Input # statement, see the sample program NVIEWS (Named Views).

The following data types are not available with the Input # statement:

• Alias
• Pen
• Brush
• Font
• Symbol
• Object

See Also:

EOF() function, Line Input statement, Open File statement, Write # statement

Insert statement

Purpose

Appends new rows to an open table. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Insert Into table
[(columnlist)]
{ Values (exprlist) | Select columnlist From table }

table is the name of an open table.

columnlist is a list of column expressions, comma-separated.

exprlist is a list of one or more expressions, comma-separated.
MapBasic 11.0 344 Reference

Chapter 6:
Insert statement
Description

The Insert statement inserts new rows into an open table. There are two main forms of this
statement, allowing you to either add one row at a time, or insert groups of rows from another table
(via the Select clause). In either case, the number of column values inserted must match the
number of columns in the column list. If no column list is specified, all fields are assumed. Note that
you must use a Commit Table statement if you want to permanently save newly-inserted records to
disk.

If you know exactly how many columns are in the table you are modifying, and if you have values to
store in each of those columns, then you do not need to specify the optional columnlist clause.

In the following example, we know that the table has four columns (Name, Address, City, and State),
and we provide MapBasic with a value for each of those columns.

Insert Into customers
Values ("Mary Ryan", "23 Main St", "Dallas", "TX")

The preceding statement would generate an error at run-time if it turned out that the table had fewer
than (or more than) four columns. In cases where you do not know exactly how many columns are in
a table or the exact order in which the columns appear, you should use the optional columnlist
clause.

Examples

The following example inserts a new row into the customer table, while providing only one column
value for the new row; thus, all other columns in the new row will initially be blank. Here, the one
value specified by the Values clause will be stored in the “Name” column, regardless of how many
columns are in the table, and regardless of the position of the “Name” column in the table structure.

Insert Into customers (Name)
Values ("Steve Harris")

The following statement creates a point object and inserts the object into a new row of the Sites
table. Note that Obj is a special column name representing the table's graphical objects.

Insert Into sites (Obj)
Values (CreatePoint(-73.5, 42.8))

The following example illustrates how the Insert statement can append records from one table to
another. In this example, we assume that the table NY_ZIPS contains ZIP Code boundaries for New
York state, and NJ_ZIPS contains ZIP Code boundaries for New Jersey. We want to put all ZIP
Code boundaries into a single table, for convenience's sake (since operations such as Find can only
work with one table at a time).

Accordingly, the Insert statement below appends all of the records from the New Jersey table into
the New York table.

Insert Into NY_ZIPS
Select * From NJ_ZIPS

In the following example, we select the graphical objects from the table World, then insert each
object as a new record in the table Outline.

Open Table "world"
Open Table "outline"
MapBasic 11.0 345 Reference

Chapter 6:
InStr() function
Insert Into outline (Obj)
Select Obj From World

See Also:

Commit Table statement, Delete statement, Rollback statement

InStr() function

Purpose

Returns a character position, indicating where a substring first appears within another string. You
can call this function from the MapBasic Window in MapInfo Professional.

Syntax

InStr(position, string, substring)

position is a positive integer, indicating the start position of the search.

string is a string expression.

substring is a string expression which we will try to locate in string.

Return Value

Integer

Description

The InStr() function tests whether the string expression string contains the string expression
substring. MapBasic searches the string expression, starting at the position indicated by the position
parameter; thus, if the position parameter has a value of one, MapBasic will search from the very
beginning of the string parameter.

If string does not contain substring, the InStr() function returns a value of zero.

If string does contain substring, the InStr() function returns the character position where the
substring appears. For example, if the substring appears at the very start of the string, InStr() will
return a value of one.

If the substring parameter is a null string, the InStr() function returns zero.

The InStr() function is case-sensitive. In other words, the InStr() function cannot locate the
substring “BC” within the larger string “abcde”, because “BC” is upper-case.

Error Conditions

ERR_FCN_ARG_RANGE (644) error generated if an argument is outside of the valid range

Example

Dim fullname As String, pos As Integer
fullname = "New York City"
MapBasic 11.0 346 Reference

Chapter 6:
Int() function
pos = InStr(1, fullname, "York")
' pos will now contain a value of 5 (five)

pos = InStr(1, fullname, "YORK")
' pos will now contain a value of 0;
' YORK is uppercase, so InStr will not locate it
' within the string "New York City"

See Also:

Mid$() function

Int() function

Purpose

Returns an integer value obtained by removing the fractional part of a decimal value. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

Int(num_expr)

num_expr is a numeric expression.

Return Value

Integer

Description

The Int() function returns the nearest integer value that is less than or equal to the specified
num_expr expression. The Fix() function is similar to, but not identical to, the Int() function. The
two functions differ in the way that they treat negative fractional values. When passed a negative
fractional number, Fix() function will return the nearest integer value greater than or equal to the
original value; so, the function call Fix(-2.3) will return a value of -2. But when the Int() function
is passed a negative fractional number, it returns the nearest integer value that is less than or equal
to the original value. So, the function call Int(-2.3) returns a value of -3.

Example

Dim whole As Integer
whole = Int(5.999)
' whole now has the value 5

whole = Int(-7.2)
' whole now has the value -8

See Also:

Fix() function, Round() function
MapBasic 11.0 347 Reference

Chapter 6:
IntersectNodes() function
IntersectNodes() function

Purpose

Calculates the set of points at which two objects intersect, and returns a polyline object that contains
each of the points of intersection. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

IntersectNodes(object1, object2, points_to_include)

object1 and object2 are object expressions; may not be point or text objects.

points_to_include is one of the following SmallInt values:

• INCL_CROSSINGS returns points where segments cross.
• INCL_COMMON returns end-points of segments that overlap.
• INCL_ALL returns points where segments cross and points where segments overlap.

Return Value

A polyline object that contains the specified points of intersection.

Description

The IntersectNodes() function returns a polyline object that contains all nodes at which two objects
intersect.

IsGridCellNull() function

Purpose

Returns a Logical. Returns TRUE if the cell value location (x, y) is valid for the table, and is a null cell
(a cell that does not have an assigned value). Returns FALSE if the cell contains a value that is non-
null. The GetCellValue() function can be used to retrieve the value.

Syntax

IsGridCellNull(table_id, x_pixel, y_pixel)

table_id is a string representing a table name, a positive integer table number, or 0 (zero). The table
must be a grid table.

x_pixel is the integer pixel number of the X coordinate of the grid cell. Pixel numbers start at 0. The
maximum pixel value is the (pixel_width-1), determined by calling

RasterTableInfo(...RASTER_TAB_INFO_WIDTH)
MapBasic 11.0 348 Reference

Chapter 6:
IsogramInfo() function
y_pixel is the integer pixel number of the Y coordinate of the grid cell. Pixel numbers start at 0. The
maximum pixel value is the (pixel_height-1), determined by calling

RasterTableInfo(...RASTER_TAB_INFO_HEIGHT).

Return Value

A Logical is returned, representing whether the specified cell in the table is null, or non-null. If the
grid cell is non-null (IsGridCellNull() returns FALSE), then the GetGridCellValue() function can be
called to retrieve the value for that grid pixel.

IsogramInfo() function

Purpose

Returns any and all attributes that were set on a connection using the Set Connection Isogram
statement. Includes attributes to handle the maximum number of records for server, time, and
distance values. You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

IsogramInfo(connection_handle, attribute)

connection_handle is an integer signifying the number of the connection returned from the Open
Connection statement.

attribute is an Integer code, indicating which type of information should be returned.

Return Value

Float, Logical, or String, depending on the attribute parameter.

Description

This function returns the properties defaulted by the connection or the properties that have been
changed using the Set Connection Isogram statement.

There are several attributes that IsogramInfo() can return. Codes are defined in MAPBASIC.DEF.

attribute setting ID IsogramInfo() Return Value

ISOGRAM_BANDING 1 Logical representing the Banding option

ISOGRAM_MAJOR_ROADS_ONLY 2 Logical representing the MajorRoadsOnly
option

ISOGRAM_RETURN_HOLES 3 Logical representing the choice of returning
regions with holes or not.

ISOGRAM_MAJOR_POLYGON_ONLY 4 Logical representing the choice of returning
only the main polygon of a region.
MapBasic 11.0 349 Reference

Chapter 6:
IsogramInfo() function
ISOGRAM_MAX_OFF_ROAD_DISTANCE 5 Float value representing the Maximum off
Road Distance value

ISOGRAM_MAX_OFF_ROAD_DISTANCE_
UNITS

6 The unit string associated with the value

ISOGRAM_SIMPLIFICATION_FACTOR 7 Float value representing the Simplification
Factor. (a percent value represented as a
value between 0 and 1

ISOGRAM_DEFAULT_AMBIENT_SPEED 8 Float value representing the default ambient
speed.

ISOGRAM_DEFAULT_AMBIENT_SPEED_
DISTANCE_UNIT

9 String value representing the distance unit
(“mi”, “km”).

ISOGRAM_DEFAULT_AMBIENT_SPEED_
TIME_UNIT

10 String value representing the time unit (“hr”,
“min”, “sec”).

ISOGRAM_DEFAULT_PROPAGATION_FA
CTOR

11 Determines the off-road network
percentage of the remaining cost (distance)
for which off network travel is allowed when
finding the Distance boundary. Roads not
identified in the network can be driveways
or access roads, among others. The
propagation factor is a percentage of the
cost used to calculate the distance between
the starting point and the Distance. The
default value for this property is 0.16.

ISOGRAM_BATCH_SIZE 12 Integer value representing the maximum
number of records that are sent to the
service at one time.

ISOGRAM_POINTS_ONLY 13 Logical representing the whether or not
records that contain non-point objects
should be skipped.

ISOGRAM_RECORDS_INSERTED 14 Integer value representing the number of
records inserted in the last command.

ISOGRAM_RECORDS_NOTINSERTED 15 Integer value representing the number of
records NOT inserted in the last command.

ISOGRAM_MAX_BATCH_SIZE 16 Integer value representing the maximum
number of records (for example, points) that
the server will permit to be sent to the
service at one time.

attribute setting ID IsogramInfo() Return Value
MapBasic 11.0 350 Reference

Chapter 6:
IsogramInfo() function
Example

The following MapBasic snippet will print the Envinsa Routing Constraints to the message window in
MapInfo Professional:

Include "MapBasic.Def"
declare sub main
sub main
dim iConnect as integer
Open Connection Service Isogram

URL "http://envinsa_server:8062/Route/services/Route"
User "john"
Password "green"
into variable iConnect

Print "Isogram_Max_Batch_Size: " +
IsogramInfo(iConnect,Isogram_Max_Batch_Size)
Print "Isogram_Max_Bands: " + IsogramInfo(iConnect, Isogram_Max_Bands)
Print "Isogram_Max_Distance: " + IsogramInfo(iConnect,
Isogram_Max_Distance)
Print "Isogram_Max_Distance_Units: " + IsogramInfo(iConnect,
Isogram_Max_Distance_Units)
Print "Isogram_Max_Time: " + IsogramInfo(iConnect,Isogram_Max_Time)
Print "Isogram_Max_Time_Units: " +
IsogramInfo(iConnect,Isogram_Max_Time_Units)
Close Connection iConnect
end sub

ISOGRAM_MAX_BANDS 17 Integer value representing the maximum
number of Iso bands (for example,
distances or times) allowed.

ISOGRAM_MAX_DISTANCE 18 Float value representing the maximum
distance permitted for an Isodistance
request. The distance units are specified by
ISOGRAM_MAX_DISTANCE_UNITS.

ISOGRAM_MAX_DISTANCE_UNITS 19 String value representing the units for
ISOGRAM_MAX_DISTANCE.

ISOGRAM_MAX_TIME 20 Float value representing the maximum time
permitted for an Isochrone request. The
time units are specified by
ISOGRAM_MAX_TIME_UNITS.

ISOGRAM_MAX_TIME_UNITS 21 String value representing the units for
ISOGRAM_MAX_TIME.

attribute setting ID IsogramInfo() Return Value
MapBasic 11.0 351 Reference

Chapter 6:
IsPenWidthPixels() function
See Also:

Create Object statement, Open Connection statement, Set Connection Isogram statement

IsPenWidthPixels() function

Purpose

The IsPenWidthPixels function determines if a pen width is in pixels or in points. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

IsPenWidthPixels(penwidth)

penwidth is a small integer representing the pen width.

Return Value

True if the width value is in pixels. False if the width value is in points.

Description

The IsPenWidthPixels() function will return TRUE if the given pen width is in pixels. The pen width
for a line may be determined using the StyleAttr() function.

Example

Include "MAPBASIC.DEF"
Dim CurPen As Pen
Dim Width As Integer
Dim PointSize As Float
CurPen = CurrentPen()
Width = StyleAttr(CurPen, PEN_WIDTH)
If Not IsPenWidthPixels(Width) Then

PointSize = PenWidthToPoints(Width)
End If

See Also:

CurrentPen() function, MakePen() function, Pen clause, PenWidthToPoints() function,
StyleAttr() function

Kill statement

Purpose

Deletes a file. You can issue this statement from the MapBasic Window in MapInfo Professional.
MapBasic 11.0 352 Reference

Chapter 6:
LabelFindByID() function
Syntax

Kill filespec

filespec is a string which specifies a filename (and, optionally, the file's path).

Return Value

String

Description

The Kill statement deletes a file from the disk. There is no “undo” operation for a Kill statement.
Therefore, the Kill statement should be used with caution.

Example

Kill "C:\TEMP\JUNK.TXT"

See Also:

Open File statement

LabelFindByID() function

Purpose

Initializes an internal label pointer, so that you can query the label for a specific row in a map layer.
You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

LabelFindByID(map_window_id, layer_number, row_id, table, b_mapper)

map_window_id is an integer window id, identifying a Map window.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer).

row_id is a positive integer value, indicating the row number of the row whose label you wish to
query.

table is a table name or an empty string (""): when you query a table that belongs to a seamless
table, specify the name of the member table; otherwise, specify an empty string.

b_mapper is a logical value. Specify TRUE to query the labels that appear when the Map is active;
specify FALSE to query the labels that appear when the map is inside a Layout.

Return Value

Logical value: TRUE means that a label exists for the specified row.
MapBasic 11.0 353 Reference

Chapter 6:
LabelFindFirst() function
Description

Call LabelFindByID() when you want to query the label for a specific row in a map layer. If the
return value is TRUE, then a label exists for the row, and you can query the label by calling the
LabelInfo() function.

Example

The following example maps the World table, displays automatic labels, and then determines
whether a label was drawn for a specific row in the table.

Include "mapbasic.def"
Dim b_morelabels As Logical
Dim i_mapid As Integer
Dim obj_mytext As Object
Open Table "World" Interactive As World
Map From World
i_mapid = FrontWindow()
Set Map Window i_mapid Layer 1 Label Auto On
' Make sure all labels draw before we continue...
Update Window i_mapid
' Now see if row # 1 was auto-labeled
b_morelabels = LabelFindByID(i_mapid, 1, 1, "", TRUE)
If b_morelabels Then

' The object was labeled; now query its label.
obj_mytext = LabelInfo(i_mapid, 1, LABEL_INFO_OBJECT)
' At this point, you could save the obj_mytext object
' in a permanent table; or you could query it by
' calling ObjectInfo() or ObjectGeography().

End If

See Also:

LabelFindFirst() function, LabelFindNext() function, LabelInfo() function

LabelFindFirst() function

Purpose

Initializes an internal label pointer, so that you can query the first label in a map layer. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

LabelFindFirst(map_window_id, layer_number, b_mapper)

map_window_id is an integer window id, identifying a Map window.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer).

b_mapper is a logical value. Specify TRUE to query the labels that appear when the Map is active;
specify FALSE to query the labels that appear when the map is inside a Layout.
MapBasic 11.0 354 Reference

Chapter 6:
LabelFindNext() function
Return Value

Logical value: TRUE means that labels exist for the specified layer (either labels are currently
visible, or the user has edited labels, and those edited labels are not currently visible).

Description

Call LabelFindFirst() when you want to loop through a map layer's labels to query the labels.
Querying labels is a two-step process:

1. Set MapBasic's internal label pointer by calling the LabelFindFirst() function, the
LabelFindNext() function, or the LabelFindByID() function.

2. If the function you called in step 1 did not return FALSE, you can query the current label by
calling the LabelInfo() function.

To continue querying additional labels, return to step 1.

Example

For an example, see LabelInfo() function.

See Also:

LabelFindByID() function, LabelFindNext() function, LabelInfo() function

LabelFindNext() function

Purpose

Advances the internal label pointer, so that you can query the next label in a map layer. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

LabelFindNext(map_window_id, layer_number)

map_window_id is an integer window id, identifying a Map window.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer).

Return Value

Logical value: TRUE means the label pointer was advanced to the next label; FALSE means there
are no more labels for this layer.

Description

After you call the LabelFindFirst() function to begin querying labels, you can call
LabelFindNext() to advance to the next label in the same layer.

Example

For an example, see LabelInfo() function.
MapBasic 11.0 355 Reference

Chapter 6:
LabelInfo() function
See Also:

LabelFindByID() function, LabelFindFirst() function, LabelInfo() function

LabelInfo() function

Purpose

Returns information about a label in a map. LabeIInfo can return a label as text object and the
text object returned can be curved or can be returned as rotated straight text. However, if
the label is curved, it will be returned as rotated flat text. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

Labelinfo(map_window_id, layer_number, attribute)

map_window_id is an integer window id, identifying a Map window.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer).

attribute is a code indicating the type of information to return; see table below.

Return Value

Return value depends on attribute.

Description

The Labelinfo() function returns information about a label in a Map window.

Labels are different than text objects. To query a text object, call functions such as
ObjectInfo() function or ObjectGeography() function.

Before calling Labelinfo(), you must initialize MapBasic's internal label pointer by calling the
LabelFindFirst() function, the LabelFindNext() function, or the LabelFindByID() function. See
the example below.

The attribute parameter must be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.
MapBasic 11.0 356 Reference

Chapter 6:
LabelInfo() function
attribute code ID Labelinfo() Return Value

LABEL_INFO_OBJECT 1 Text object is returned, which is an approximation of
the label. This feature allows you to convert a label
into a text object, which you can save in a permanent
table.

LABEL_INFO_OBJECT returns a text object,
but if the label is curved, it will return a label
with a Parallel orientation. MapBasic does not
support curved labels as text objects.

LABEL_INFO_POSITION 2 Integer value between 0 and 8, indicating the label's
position relative to its anchor location. The return
value will match one of these codes:

• LAYER_INFO_LBL_POS_CC (0),
• LAYER_INFO_LBL_POS_TL (1),
• LAYER_INFO_LBL_POS_TC (2),
• LAYER_INFO_LBL_POS_TR (3),
• LAYER_INFO_LBL_POS_CL (4),
• LAYER_INFO_LBL_POS_CR (5),
• LAYER_INFO_LBL_POS_BL (6),
• LAYER_INFO_LBL_POS_BC (7),
• LAYER_INFO_LBL_POS_BR (8).

For example, if the label is Below and to the Right of
the anchor, its position is 8; if the label is Centered
horizontally and vertically over its anchor, its position
is zero.

LABEL_INFO_ANCHORX 3 Float value, indicating the x-coordinate of the label's
anchor location.

LABEL_INFO_ANCHORY 4 Float value, indicating the y-coordinate of the label's
anchor location.

LABEL_INFO_OFFSET 5 Integer value between 0 and 200, indicating the
distance (in points) the label is offset from its anchor
location.

LABEL_INFO_ROWID 6 Integer value, representing the ID number of the row
that owns this label; returns zero if no label exists.
MapBasic 11.0 357 Reference

Chapter 6:
LabelInfo() function
LABEL_INFO_TABLE 7 String value, representing the name of the table that
owns this label. Useful if you are using seamless
tables and you need to know which member table
owns the label.

LABEL_INFO_EDIT 8 Logical value; TRUE if label has been edited.

LABEL_INFO_EDIT_VISIBILITY 9 Logical value; TRUE if label visibility has been set to
OFF.

LABEL_INFO_EDIT_ANCHOR 10 Logical value; TRUE if label has been moved.

LABEL_INFO_EDIT_OFFSET 11 Logical value; TRUE if label's offset has been
modified.

LABEL_INFO_EDIT_FONT 12 Logical value; TRUE if label's font has been
modified.

LABEL_INFO_EDIT_PEN 13 Logical value; TRUE if callout line's Pen style has
been modified.

LABEL_INFO_EDIT_TEXT 14 Logical value; TRUE if label's text has been
modified.

LABEL_INFO_EDIT_TEXTARROW 15 Logical value; TRUE if label's text arrow setting has
been modified.

LABEL_INFO_EDIT_ANGLE 16 Logical value; TRUE if label's rotation angle has
been modified.

LABEL_INFO_EDIT_POSITION 17 Logical value; TRUE if label's position (relative to
anchor) has been modified.

LABEL_INFO_EDIT_TEXTLINE 18 Logical value; TRUE if callout line has been moved.

LABEL_INFO_SELECT 19 Logical value; TRUE if label is selected.

attribute code ID Labelinfo() Return Value
MapBasic 11.0 358 Reference

Chapter 6:
LabelOverrideInfo() function
Example

The following example shows how to loop through all of the labels for a row, using the Labelinfo()
function to query each label.

Dim b_morelabels As Logical
Dim i_mapid, i_layernum As Integer
Dim obj_mytext As Object
' Here, you would assign a Map window's ID to i_mapid,
' and assign a layer number to i_layernum.
b_morelabels = LabelFindFirst(i_mapid, i_layernum, TRUE)
Do While b_morelabels

obj_mytext = LabelInfo(i_mapid, i_layernum, LABEL_INFO_OBJECT)
' At this point, you could save the obj_mytext object
' in a permanent table; or you could query it by
' calling ObjectInfo() or ObjectGeography().
b_morelabels = LabelFindNext(i_mapid, i_layernum)

Loop

See Also:

LabelFindByID() function, LabelFindFirst() function, LabelFindNext() function

LabelOverrideInfo() function
Returns information about a specific label override.

Syntax

LabelOverrideInfo (
window_id, layer_number, labeloverride_index, attribute)

window_id is the integer window identifier of a Map window.

LABEL_INFO_DRAWN 20 Logical value; TRUE if label is currently visible.

LABEL_INFO_ORIENTATION 21 Returns Smallint value indicating the 'current' label's
orientation. The current label is initialized by using
one of the following Label functions: LabelFindFirst,
LabelFindByID, or LabelFindNext. The Return value
will be one of these:

• LAYER_INFO_LABEL_ORIENT_HORIZONTAL
(label has angle equal to 0)

• LAYER_INFO_LABEL_ORIENT_PARALLEL
(label has non-zero angle)

• LAYER_INFO_LABEL_ORIENT_CURVED (label
is curved)

attribute code ID Labelinfo() Return Value
MapBasic 11.0 359 Reference

Chapter 6:
LabelOverrideInfo() function
layer_number is the number of a layer in the current Map window (for example, 1 for the top layer);
to determine the number of layers in a Map window, call the MapperInfo() function.

labeloverride_index is an integer index (1-based) for the override definition within the layer. Each
label override is tied to an zoom range and is ordered so that the smallest zoom range value is on
top (index 1).

attribute is a code indicating the type of information to return; see table below.

Return Value

Return value depends on attribute parameter.

Description

The LabelOverrideInfo() function returns label information for a specific label override for one
layer in an existing Map window. The layer_number must be a valid layer (1 is the topmost table
layer, and so on). The attribute parameter must be one of the codes from the following table; codes
are defined in MAPBASIC.DEF.

Attribute Code ID LabelOverrideInfo() Return Value

LBL_OVR_INFO_NAME 1 Label override name.

LBL_OVR_INFO_VISIBILITY 2 Smallint value, indicating whether the override
label are visible. The return value will be one of:

• LBL_OVR_INFO_VIS_OFF (0)
override label is disabled/off; never visible

• LBL_OVR_INFO_VIS_ON (1)
override label is currently visible in the map

• LBL_OVR_INFO_VIS_OFF_ZOOM (2)
override label is currently not visible because
it's outside the map zoom range

LBL_OVR_INFO_ZOOM_MIN 3 Float value, indicating the minimum zoom value
(in MapBasic's current distance units) at which
the label override displays.

LBL_OVR_INFO_ZOOM_MAX 4 Float value, indicating the maximum zoom value
at which the label override displays.

LBL_OVR_INFO_EXPR 5 String value: the expression used in labels.
MapBasic 11.0 360 Reference

Chapter 6:
LabelOverrideInfo() function
LBL_OVR_INFO_LT 6 SmallInt value indicating what type of line, if any,
connects a label to its original location after you
move the label. The return value will match one
of these values:

• LAYER_INFO_LBL_LT_NONE (0)
no line

• LAYER_INFO_LBL_LT_SIMPLE (1)
simple line

• LAYER_INFO_LBL_LT_ARROW (2)
line with an arrowhead

LBL_OVR_INFO_FONT 7 Font style used in labels.

LBL_OVR_INFO_PARALLEL 8 Logical value: TRUE if layer is set for parallel
labels.

LBL_OVR_INFO_POS 9 SmallInt value, indicating label position. Return
value will match one of these values (T=Top,
B=Bottom, C=Center, R=Right, L=Left):

• LAYER_INFO_LBL_POS_CC (0)
• LAYER_INFO_LBL_POS_TL (1)
• LAYER_INFO_LBL_POS_TC (2)
• LAYER_INFO_LBL_POS_TR (3)
• LAYER_INFO_LBL_POS_CL (4)
• LAYER_INFO_LBL_POS_CR (5)
• LAYER_INFO_LBL_POS_BL (6)
• LAYER_INFO_LBL_POS_BC (7)
• LAYER_INFO_LBL_POS_BR (8)

LBL_OVR_INFO_OVERLAP 10 Logical value; TRUE if overlapping labels are
allowed.

LBL_OVR_INFO_DUPLICATES 11 Logical value; TRUE if duplicate labels are
allowed.

LBL_OVR_INFO_OFFSET 12 SmallInt value from 0 to 50, indicating how far the
labels are offset from object centroids. The offset
value represents a distance, in points.

LBL_OVR_INFO_MAX 13 Integer value, indicating the maximum number of
labels allowed for this label layer override. If no
maximum has been set, return value is
2,147,483,647.

Attribute Code ID LabelOverrideInfo() Return Value
MapBasic 11.0 361 Reference

Chapter 6:
LabelOverrideInfo() function
Example

LabelOverrideInfo(nMID, nLayer, nOverride, LBL_OVR_INFO_ORIENTATION)

See Also:

StyleOverrideInfo() function, LayerStyleInfo() function, Set Map statement, LayerInfo()
function

LBL_OVR_INFO_PARTIALSEGS 14 Logical value; TRUE if the Label Partial Objects
check box is checked for this layer.

LBL_OVR_INFO_ORIENTATION 15 Returns Smallint value indicating the setting for
the layer's auto label orientation. Return value
will be one of these values:

• LAYER_INFO_LABEL_ORIENT_HORIZONTAL
labels have angle equal to 0

• LAYER_INFO_LABEL_ORIENT_PARALLEL
labels have non-zero angle

• LAYER_INFO_LABEL_ORIENT_CURVED
labels are curved

If LAYER_INFO_LABEL_ORIENT_PARALLEL is
returned then LBL_OVR_INFO_PARALLEL
returns TRUE.

LBL_OVR_INFO_ALPHA 16 SmallInt value, representing the alpha factor for
the labels of the specified layer.

• 0=fully transparent.
• 255=fully opaque.

To turn set the translucency or alpha for a layer,
use the Set Map label clause statement, see
Managing Individual Label Properties.

LBL_OVR_INFO_AUTODISPLAY 17 Logical value: TRUE if this label override is set to
display labels automatically.

LBL_OVR_INFO_POS_RETRY 18 Logical value: TRUE if label overlaps with others,
try multiple label positions until a position is found
that does not overlap any other labels, or until all
position are exhausted.

LBL_OVR_INFO_LINE_PEN 19 Pen style used for displaying the label line.

LBL_OVR_INFO_PERCENT_OVER 20 SmallInt value, max percentage curved label can
overhang polyline.

Attribute Code ID LabelOverrideInfo() Return Value
MapBasic 11.0 362 Reference

Chapter 6:
LayerControlInfo() function
LayerControlInfo() function

Purpose

Returns information about the Layer Control window.

Syntax

LayerControlInfo (attribute)

attribute is a code indicating the type of information to return; see table below.

Description

The attribute parameter is a value from the table below. Codes in the left column are defined in
MAPBASIC.DEF.

Example

LayerControlInfo(LC_INFO_SEL_COUNT)

See Also:

LayerControlSelectionInfo() function

LayerControlSelectionInfo() function

Purpose

Returns information about a selected item in the Layer Control window.

Syntax

LayerControlSelectionInfo (selection_index, attribute)

selection_id is the index of a selected item in Layer Control.

attribute is a code indicating the type of information to return; see table below.

attribute code ID TableInfo() returns

LC_INFO_SEL_COUNT 1 Smallint result, indicating the number of selected
items.
MapBasic 11.0 363 Reference

Chapter 6:
LayerInfo() function
Description

The attribute parameter can be any value from the table below. Codes in the left column are defined
in MAPBASIC.DEF.

Example

LayerControlSelectionInfo(layer_number, LC_SEL_INFO_NAME)

See Also:

LayerControlInfo() function

LayerInfo() function

Purpose

Returns information about a layer in a Map window. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

LayerInfo(window_id, layer_number, attribute)

attribute code ID TableInfo() returns

LC_SEL_INFO_NAME 1 String result, representing the name of the selected.

LC_SEL_INFO_TYPE 2 Smallint result, indicating the type of selected item.
Return value will be one of the values:

• LC_SEL_INFO_TYPE_MAP (0)
• LC_SEL_INFO_TYPE_LAYER (1)
• LC_SEL_INFO_TYPE_GROUPLAYER (2)
• LC_SEL_INFO_TYPE_STYLE_OVR (3)
• LC_SEL_INFO_TYPE_LABEL_OVR (4)

LC_SEL_INFO_MAPWIN_ID 3 Integer value, representing the window id of the
mapper associated with the selected item.

LC_SEL_INFO_LAYER_ID 4 Smallint value, indicating the ID of the layer
associated with the selected item. If you query this
value when a map item is selected, the return value
is -1.

LC_SEL_INFO_OVR_ID 5 Smallint value, indicating the index of the override
associated with the selected item. If you query this
value when a map, layer, or grouplayer item is
selected, the return value is -1.
MapBasic 11.0 364 Reference

Chapter 6:
LayerInfo() function
window_id is the integer window identifier of a Map window.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer);
to determine the number of layers in a Map window, call the MapperInfo() function.

attribute is a code indicating the type of information to return; see table below.

Return Value

Return value depends on attribute parameter.

Restrictions

Many of the settings that you can query using LayerInfo() function only apply to conventional map
layers (as opposed to Cosmetic map layers, thematic map layers, and map layers representing
raster image tables). See example below.

Description

The LayerInfo() function returns information about one layer in an existing Map window. The
layer_number must be a valid layer (1 is the topmost table layer, and so on). The attribute parameter
must be one of the codes from the following table; codes are defined in MAPBASIC.DEF. From here
you can also query the Hotlink options using the LAYER_HOTLINK_* attributes.

Attribute Code ID LayerInfo() Return Value

LAYER_INFO_NAME 1 String indicating the name of the table
associated with this map layer. If the specified
layer is the map's Cosmetic layer, the string will
be a table name such as “Cosmetic1”; this table
name can be used with other statements (for
example, Select statement).

LAYER_INFO_EDITABLE 2 Logical value; TRUE if the layer is editable.

LAYER_INFO_SELECTABLE 3 Logical value; TRUE if the layer is selectable.

LAYER_INFO_ZOOM_LAYERED 4 Logical; TRUE if zoom-layering is enabled.

LAYER_INFO_ZOOM_MIN 5 Float value, indicating the minimum zoom value
(in MapBasic's current distance units) at which
the layer displays. (To set MapBasic's distance
units, use Set Distance Units statement.)

LAYER_INFO_ZOOM_MAX 6 Float value, indicating the maximum zoom value
at which the layer displays.

LAYER_INFO_COSMETIC 7 Logical; TRUE if this is the Cosmetic layer.

LAYER_INFO_PATH 8 String value representing the full directory path of
the table associated with the map layer.
MapBasic 11.0 365 Reference

Chapter 6:
LayerInfo() function
LAYER_INFO_DISPLAY 9 SmallInt indicating how and whether this layer is
displayed; return value will be one of these
values:

• LAYER_INFO_DISPLAY_OFF (0)
the layer is not displayed

• LAYER_INFO_DISPLAY_GRAPHIC (1)
objects in this layer appear in their “default”
style—the style saved in the table

• LAYER_INFO_DISPLAY_GLOBAL (2)
objects in this layer are displayed with a
“style override” specified in Layer Control

• LAYER_INFO_DISPLAY_VALUE (3)
objects in this layer appear as thematic
shading

LAYER_INFO_OVR_LINE 10 Pen style used for displaying linear objects. If the
base set of layer properties includes a stacked
style, the pen returned is the first pass of the
stacked style.

LAYER_INFO_OVR_PEN 11 Pen style used for displaying the borders of filled
objects. If the base set of layer properties
includes a stacked style, the pen returned is the
first pass of the stacked style.

LAYER_INFO_OVR_BRUSH 12 Brush style used for displaying filled objects. If
the base set of layer properties includes a
stacked style, the brush returned is the first pass
of the stacked style.

LAYER_INFO_OVR_SYMBOL 13 Symbol style used for displaying point objects. If
the base set of layer properties includes a
stacked style, the symbol returned is the first
pass of the stacked style.

LAYER_INFO_OVR_FONT 14 Font style used for displaying text objects. If the
base set of layer properties includes a stacked
style, the font returned is the first pass of the
stacked style.

LAYER_INFO_LBL_EXPR 15 String value: the expression used in labels.

Attribute Code ID LayerInfo() Return Value
MapBasic 11.0 366 Reference

Chapter 6:
LayerInfo() function
LAYER_INFO_LBL_LT 16 SmallInt value indicating what type of line, if any,
connects a label to its original location after you
move the label. The return value will match one
of these values:

• LAYER_INFO_LBL_LT_NONE (0)
no line

• LAYER_INFO_LBL_LT_SIMPLE (1)
simple line

• LAYER_INFO_LBL_LT_ARROW (2)
line with an arrowhead

LAYER_INFO_LBL_CURFONT 17 For applications compiled with MapBasic 3.x, this
query returns the following values:

Logical value: TRUE if layer is set to use the
current font, or FALSE if layer is set to use the
custom font (see LAYER_INFO_LBL_FONT).

For applications compiled with MapBasic 4.0 or
later, this query always returns FALSE.

LAYER_INFO_LBL_FONT 18 Font style used in labels.

LAYER_INFO_LBL_PARALLEL 19 Logical value: TRUE if layer is set for parallel
labels.

LAYER_INFO_LBL_POS 20 SmallInt value, indicating label position. Return
value will match one of these values (T=Top,
B=Bottom, C=Center, R=Right, L=Left):

• LAYER_INFO_LBL_POS_TL (1)
• LAYER_INFO_LBL_POS_TC (2)
• LAYER_INFO_LBL_POS_TR (3)
• LAYER_INFO_LBL_POS_CL (4)
• LAYER_INFO_LBL_POS_CC (0)
• LAYER_INFO_LBL_POS_CR (5)
• LAYER_INFO_LBL_POS_BL (6)
• LAYER_INFO_LBL_POS_BC (7)
• LAYER_INFO_LBL_POS_BR (8)

LAYER_INFO_ARROWS 21 Logical value; TRUE if layer displays direction
arrows on linear objects.

LAYER_INFO_NODES 22 Logical value; TRUE if layer displays object
nodes.

Attribute Code ID LayerInfo() Return Value
MapBasic 11.0 367 Reference

Chapter 6:
LayerInfo() function
LAYER_INFO_CENTROIDS 23 Logical value; TRUE if layer displays object
centroids.

LAYER_INFO_TYPE 24 SmallInt value, indicating this layer's file type:

• LAYER_INFO_TYPE_NORMAL (0)
for a normal layer

• LAYER_INFO_TYPE_COSMETIC (1)
for the Cosmetic layer;

• LAYER_INFO_TYPE_IMAGE (2)
for a raster image layer

• LAYER_INFO_TYPE_THEMATIC (3)
for a thematic layer

• LAYER_INFO_TYPE_GRID (4)
for a grid image layer

• LAYER_INFO_TYPE_WMS (5)
for a layer from a Web Service Map

• LAYER_INFO_TYPE_TILESERVER (6)
for a layer from a Tile Server

LAYER_INFO_LBL_VISIBILITY 25 SmallInt value, indicating whether labels are
visible; see the Visibility clause of the Set Map
statement. Return value will be one of these
values:

• LAYER_INFO_LBL_VIS_ON (3)
labels always visible

• LAYER_INFO_LBL_VIS_OFF (1)
labels never visible

• LAYER_INFO_LBL_VIS_ZOOM (2)
labels visible when in zoom range

LAYER_INFO_LBL_ZOOM_MIN 26 Float value, indicating the minimum zoom
distance for this layer's labels.

LAYER_INFO_LBL_ZOOM_MAX 27 Float value, indicating the maximum zoom
distance for this layer's labels.

LAYER_INFO_LBL_AUTODISPLAY 28 Logical value: TRUE if this layer is set to display
labels automatically. See the Auto clause of the
Set Map statement.

LAYER_INFO_LBL_OVERLAP 29 Logical value; TRUE if overlapping labels are
allowed.

LAYER_INFO_LBL_DUPLICATES 30 Logical value; TRUE if duplicate labels are
allowed.

Attribute Code ID LayerInfo() Return Value
MapBasic 11.0 368 Reference

Chapter 6:
LayerInfo() function
LAYER_INFO_LBL_OFFSET 31 SmallInt value from 0 to 50, indicating how far
the labels are offset from object centroids. The
offset value represents a distance, in points.

LAYER_INFO_LBL_MAX 32 Integer value, indicating the maximum number of
labels allowed for this layer. If no maximum has
been set, return value is 2,147,483,647.

LAYER_INFO_LBL_PARTIALSEGS 33 Logical value; TRUE if the Label Partial Objects
check box is checked for this layer.

LAYER_INFO_HOTLINK_EXPR 34 Returns the layer's Hotlink filename expression.
Can return empty string (““)

LAYER_INFO_HOTLINK_MODE 35 Returns the layer's Hotlink mode, one of the
following predefined values:

• HOTLINK_MODE_LABEL (0) default
• HOTLINK_MODE_OBJ (1)
• HOTLINK_MODE_BOTH (2)

LAYER_INFO_HOTLINK_RELATIVE 36 Returns TRUE if the relative path option is on,
FALSE otherwise. FALSE is default.

LAYER_INFO_HOTLINK_COUNT 37 Allows you to query the number of hotlink
definitions in a layer.

LAYER_INFO_LBL_ORIENTATION* 38 Returns Smallint value indicating the setting for
the layer's auto label orientation. Return value
will be one of these values:

• LAYER_INFO_LABEL_ORIENT_HORIZONTAL
labels have angle equal to 0

• LAYER_INFO_LABEL_ORIENT_PARALLEL
labels have non-zero angle

• LAYER_INFO_LABEL_ORIENT_CURVED
labels are curved

If LAYER_INFO_LABEL_ORIENT_PARALLEL is
returned then LBL_OVR_INFO_PARALLEL
returns TRUE.

LAYER_INFO_LAYER_ALPHA 39 SmallInt value, representing the alpha factor for
the specified layer.

• 0=fully transparent.
• 255=fully opaque.

To set the translucency or alpha for a layer, use
the Set Map statement.

Attribute Code ID LayerInfo() Return Value
MapBasic 11.0 369 Reference

Chapter 6:
LayerInfo() function
LAYER_INFO_LAYER_TRANSLUCENC
Y

40 SmallInt value, representing the translucency
percentage for the specified layer.

• 100=fully transparent.
• 0=fully opaque.

To set the translucency or alpha for a layer, use
the Set Map statement.

LAYER_INFO_LABEL_ALPHA 41 SmallInt value, representing the alpha factor for
the labels of the specified layer.

• 0=fully transparent.
• 255=fully opaque.

To set the translucency or alpha for a layer, use
the Set Map LABELCLAUSE statement.

LAYER_INFO_LAYERLIST_ID 42 Returns the overall numeric ID of the layer in the
current layer list. For example, a layer may be
the first group layer from the top down in the map
layer list (its group layer ID would be 1), but it
may be the 4th layer from the top. Thus its layer
list ID would be 4. This ID can be used with the
LayerListInfo function.

LAYER_INFO_PARENT_GROUP_ID 43 Returns the group layer ID of the immediate
group containing this layer, returns 0 if layer is in
the top level list.

LAYER_INFO_OVR_STYLE_COUNT 44 Returns a smallint; indicates the number of
display style overrides.

LAYER_INFO_OVR_LBL_COUNT 45 Returns a smallint; indicates the number of label
overrides.

LAYER_INFO_OVR_STYLE_CURRENT 46 Returns a smallint; indicates display style
override index in current zoom range, 0 means
no override.

LAYER_INFO_OVR_LBL_CURRENT 47 Returns a smallint; indicates label override index
in current zoom range, 0 means no override.

LAYER_INFO_OVR_LINE_COUNT 48 Returns a smallint; indicates the number of Pen
styles defined for displaying linear objects for the
layer's base set of properties.

Attribute Code ID LayerInfo() Return Value
MapBasic 11.0 370 Reference

Chapter 6:
LayerInfo() function
Hotlinks

For backwards compatibility, the original set of attributes before version 10.0 still work, and will
return the values for the layer's first hotlink definition. If no hotlinks are defined when the function is
called, then the following values are returned:

LAYER_INFO_HOTLINK_EXPR – empty string ("")
LAYER_INFO_HOTLINK_MODE – returns default value HOTLINK_MODE_LABEL
LAYER_INFO_HOTLINK_RELATIVE – returns default value FALSE

Example

Many of the settings that you can query using LayerInfo() only apply to conventional map layers (as
opposed to cosmetic map layers, thematic map layers, and map layers representing raster image
tables).

To determine whether a map layer is a conventional layer, use the LAYER_INFO_TYPE setting, as
shown below:

i_lay_type = LayerInfo(map_id, layer_number, LAYER_INFO_TYPE)

If i_lay_type = LAYER_INFO_TYPE_NORMAL Then
'
' ... then this is a "normal" layer
'

End If

See Also:

GroupLayerInfo function, LayerListInfo function, MapperInfo() function, Set Map statement

LAYER_INFO_OVR_PEN_COUNT 49 Returns a smallint; indicates the number of Pen
styles defined for displaying borders of filled
objects for the layer's base set of properties.

LAYER_INFO_OVR_BRUSH_COUNT 50 Returns a smallint; indicates the number of brush
styles defined for displaying filled objects for the
layer's base set of properties.

LAYER_INFO_OVR_SYMBOL_COUNT 51 Returns a smallint; indicates the number of
symbol styles defined for displaying point objects
for the layer's base set of properties.

LAYER_INFO_OVR_FONT_COUNT 52 Returns a smallint; indicates the number of font
styles defined for displaying text objects for the
layer's base set of properties. This always
returns 1, because font style is not supported by
stacked styles.

Attribute Code ID LayerInfo() Return Value
MapBasic 11.0 371 Reference

Chapter 6:
LayerListInfo function
LayerListInfo function

Purpose

This function helps to enumerate a map’s list of layers and can refer to both group and graphical
layers.

Syntax

LayerListInfo(map_window_id, numeric_counter, attribute)

map_window_id is a Map window identifier.

numeric_counter is value from zero (0) to MAPPER_INFO_ALL_LAYERS, which is the number
of layers in the Map window excluding the cosmetic layer. For details about
MAPPER_INFO_ALL_LAYERS, see MapperInfo() function.

attribute is a code indicating the type of information to return; see table below.

Return Value

Depends on the attribute parameter.

Description

This function can be used to iterate over all the components of the map’s layer list where
numeric_counter goes from zero (0) to MAPPER_INFO_ALL_LAYERS.

The attributes are:

Value of window_id, attribute ID Description

LAYERLIST_INFO_TYPE 1 The type of layer in the list:

• LAYERLIST_INFO_TYPE_LAYER (0)
• LAYERLIST_INFO_TYPE_GROUP (1)

LAYERLIST_INFO_NAME 2 Returns a string value, which is the name of the
layer or group layer.

LAYERLIST_INFO_LAYER_ID 3 Returns a numeric value, Layer-ID of the layer.
Use this value to query the layer further using
the LayerInfo() function.

LAYERLIST_INFO_GROUPLAYER_ID 4 Returns a numeric value, GroupLayer-ID of
GroupLayer. Use this value to query the group
layer further using the GroupLayerInfo
function.
MapBasic 11.0 372 Reference

Chapter 6:
LayerStyleInfo() function
If the type returns a graphical layer, then use LayerInfo to get attributes. If it is a group layer then use
GroupLayerInfo to get attributes. To loop through this flattened view of the layer list, use
MAPPER_INFO_ALL_LAYERS as the looping limit.

Specifying a map window ID of zero (0) returns information about the Cosmetic Layer.

See Also:

GroupLayerInfo function, LayerInfo() function, MapperInfo() function

LayerStyleInfo() function
Returns style information for a stacked style (a style composed of one or more style definitions).

Syntax

LayerStyleInfo (
window_id, layer_number, override_index, pass_index, attribute)

window_id is the integer window identifier of a Map window.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer);
to determine the number of layers in a Map window, call the MapperInfo() function.

override_index is an integer index (0-based, where 0 for the layer's base set of properties) and 1 or
higher is for a style override.

pass_index is an integer index (1-based) where the index corresponds to a pass within the stacked
style. The first pass is the part of the style drawn first, the second pass is the part of the style drawn
next, and so on.

attribute is a code indicating the type of information to return; see table below.

Return Value

Return value depends on attribute parameter.

Description

The LayerStyleInfo() function returns style information for a stacked style. A stacked style is made
up of one or more style definitions. For example, a line style drawn with two separate styles; a thin
light red line drawn on top of a thicker dark red line would be descried as follows using MapBasic
syntax:

Line (7,2,12582912), Line (3,2,16736352)
MapBasic 11.0 373 Reference

Chapter 6:
Layout statement
The thicker dark red line in this example is drawn first.

The layer_number must be a valid layer (1 is the topmost table layer, and so on). The attribute
parameter must be one of the codes from the following table; codes are defined in MAPBASIC.DEF.

Example

LayerStyleInfo(nMID, nLayer, nOverride, nPass, STYLE_OVR_INFO_PEN)

See Also:

StyleOverrideInfo() function, LabelOverrideInfo() function, Set Map statement, LayerInfo()
function

Layout statement

Purpose

Opens a new layout window. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Layout
[Position (x, y) [Units paperunits]]
[Width window_width [Units paperunits]]
[Height window_height [Units paperunits]]
[{ Min | Max }]

paperunits is a string representing the name of a paper unit (for example, “in” or “mm”).

x, y specifies the position of the upper left corner of the Layout, in paper units, where 0,0 represents
the upper-left corner of the MapInfo Professional window.

Attribute Code ID LayerStyleInfo() Return Value

STYLE_OVR _INFO_LINE 10 Pen style used for displaying the specified pass
for linear objects.

STYLE_OVR _INFO_PEN 11 Pen style used for displaying the specified pass
for the borders of filled objects.

STYLE_OVR_INFO_BRUSH 12 Brush style used for displaying the specified
pass for filled objects.

STYLE_OVR_INFO_SYMBOL 13 Symbol style used for displaying the specified
pass for point objects.

STYLE_OVR_INFO_FONT 14 Font style used for displaying the specified pass
for text objects.
MapBasic 11.0 374 Reference

Chapter 6:
LCase$() function
window_width and window_height dictate the size of the window, in Paper units.

Description

The Layout statement opens a new Layout window. If the statement includes the optional Min
keyword, the window is minimized before it is displayed. If the statement includes the optional Max
keyword, the window appears maximized, filling all of MapInfo Professional's screen space.

The Width and Height clauses control the size of the Layout window, not the size of the page layout
itself. The page layout size is controlled by the paper size currently in use and the number of pages
included in the Layout.

See Set Layout statement for more information on setting the number of pages in a Layout.

MapInfo Professional assigns a special hidden table name to each Layout window. The first Layout
window opened has the table name Layout1, the next Layout window that is opened has the table
name Layout2, etc.

A MapBasic program can create, select, or modify objects on a Layout window by issuing
statements which refer to these table names. For example, the following statement selects all
objects from a Layout window:

Select * From Layout1

Example

The following example creates a Layout window two inches wide by four inches high, located at the
upper-left corner of the MapInfo Professional workspace.

Layout Position (0, 0) Width 2 Height 4

See Also:

Open Window statement, Set Layout statement

LCase$() function

Purpose

Returns a lower-case equivalent of a string. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

LCase$(string_expr)

string_expr is a string expression.

Return Value

String
MapBasic 11.0 375 Reference

Chapter 6:
Left$() function
Description

The LCase$() function returns the string which is the lower-case equivalent of the string expression
string_expr.

Conversion from upper- to lower-case only affects alphabetic characters (A through Z); numeric
digits, and punctuation marks are not affected. Thus, the function call:

LCase$("A#12a")

returns the string value “a#12a”.

Example

Dim regular, lower_case As String
regular = "Los Angeles"
lower_case = LCase$(regular)
'
' Now, lower_case contains the value "los angeles"
'

See Also:

Proper$() function, UCase$() function

Left$() function

Purpose

Returns part or all of a string, beginning at the left end of the string. You can call this function from
the MapBasic Window in MapInfo Professional.

Syntax

Left$(string_expr, num_expr)

string_expr is a string expression.

num_expr is a numeric expression, zero or larger.

Return Value

String

Description

The Left$() function returns a string which consists of the leftmost num_expr characters of the
string expression string_expr.

The num_expr parameter should be an integer value, zero or larger. If num_expr has a fractional
value, MapBasic rounds to the nearest integer. If num_expr is zero, Left$() returns a null string. If
the num_expr parameter is larger than the number of characters in the string_expr string, Left$()
returns a copy of the entire string_expr string.
MapBasic 11.0 376 Reference

Chapter 6:
LegendFrameInfo() function
Example

Dim whole, partial As String
whole = "Afghanistan"
partial = Left$(whole, 6)

' at this point, partial contains the string: "Afghan"

See Also:

Mid$() function, Right$() function

LegendFrameInfo() function

Purpose

Returns information about a frame within a legend. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

LegendFrameInfo(window_id, frame_id, attribute)

window_id is a number that specifies which legend window you want to query.

frame_id is a number that specifies which frame within the legend window you want to query.
Frames are numbered 1 to n where n is the number of frames in the legend.

attribute is an integer code indicating which type of information to return.

Return Value

Depends on the attribute parameter.

Attribute codes ID LegendFrameInfo() Return Value

FRAME_INFO_TYPE 1 Returns one of the following predefined constant
indicating frame type:

• FRAME_TYPE_STYLE (1)
• FRAME_TYPE_THEME (2)

FRAME_INFO_MAP_LAYER_ID 2 Returns the ID of the layer to which the frame
corresponds.

FRAME_INFO_REFRESHABLE 3 Returns TRUE if the frame was created without the
Norefresh keyword. Always returns TRUE for theme
frames.
MapBasic 11.0 377 Reference

Chapter 6:
LegendInfo() function
LegendInfo() function

Purpose

Returns information about a legend. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

LegendInfo(window_id, attribute)

FRAME_INFO_POS_X 4 Returns the distance of the frame’s upper left corner
from the left edge of the legend canvas (in paper
units).

FRAME_INFO_POS_Y 5 Returns the distance of the frame's upper left corner
from the top edge of the legend canvas (in paper
units).

FRAME_INFO_WIDTH 6 Returns the width of the frame (in paper units).

FRAME_INFO_HEIGHT 7 Returns the height of the frame (in paper units).

FRAME_INFO_TITLE 8 Returns the title of a style frame or theme frame.

FRAME_INFO_TITLE_FONT 9 Returns the font of a style frame title. Returns the
default title font if the frame has no title or if it is a
theme frame.

FRAME_INFO_SUBTITLE 10 Returns the subtitle of a style frame or theme frame.

FRAME_INFO_SUBTITLE_FONT 11 Same as FRAME_INFO_TITLE_FONT (9)

FRAME_INFO_BORDER_PEN 12 Returns the pen used to draw the border.

FRAME_INFO_NUM_STYLES 13 Returns the number of styles in a frame. Zero if theme
frame.

FRAME_INFO_VISIBLE 14 Returns TRUE if the frame is visible (theme frames
can be invisible).

FRAME_INFO_COLUMN 15 Returns the legend attribute column name as a string
if there is one. Returns an empty string for a theme
frame.

FRAME_INFO_LABEL 16 Returns the label expression as a string if there is one.
Returns an empty string for a theme frame.

Attribute codes ID LegendFrameInfo() Return Value
MapBasic 11.0 378 Reference

Chapter 6:
LegendStyleInfo() function
window_id is a number that specifies which legend window you want to query.

attribute is an integer code indicating which type of information to return.

Return Value

Depends on the attribute parameter.

Example

LegendInfo(FrontWindow() LEGEND_INFO_STYLE_SAMPLE_SIZE)

See Also:

LegendStyleInfo() function

LegendStyleInfo() function

Purpose

Returns information about a style item within a legend frame. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

LegendStyleInfo(window_id, frame_id, style_id, attribute)

window_id is a number that specifies which legend window you want to query.

frame_id is a number that specifies which frame within the legend window you want to query.
Frames are numbered 1 to n where n is the number of frames in the legend.

Attribute Code ID LegendInfo() Return Value

LEGEND_INFO_MAP_ID 1 Returns the ID of the parent map window (can
also get this value by calling the
WindowInfo() function with the
WIN_INFO_TABLE code).

LEGEND_INFO_ORIENTATION 2 Returns predefined value to indicate the layout
of the legend:

• ORIENTATION_PORTRAIT (1)
• ORIENTATION_LANDSCAPE (2)
• ORIENTATION_CUSTOM (3)

LEGEND_INFO_NUM_FRAMES 3 Returns the number of frames in the legend.

LEGEND_INFO_STYLE_SAMPLE_SIZE 4 Returns 0 for small legend sample size style or
1 for large legend sample size style.
MapBasic 11.0 379 Reference

Chapter 6:
Len() function
style_id is a number that specifies which style within a frame you want to query. Styles are
numbered 1 to n where n is the number of styles in the frame.

attribute is an integer code indicating which type of information to return.

Return Value

Error Conditions

Generates an error when issued on a frame that has no styles (theme frame).

See Also:

LegendInfo() function

Len() function

Purpose

Returns the number of characters in a string or the number of bytes in a variable. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

Len(expr)

expr is a variable expression. expr cannot be a Pen, Brush, Symbol, Font, or Alias.

Return Value

SmallInt

Description

The behavior of the Len() function depends on the data type of the expr parameter.

If the expr expression represents a character string, the Len() function returns the number of
characters in the string.

Otherwise, if expr is a MapBasic variable, Len() returns the size of the variable, in bytes. Thus, if
you pass an integer variable, Len() will return the value 4 (because each integer variable occupies
4 bytes), while if you pass a SmallInt variable, Len() will return the value 2 (because each SmallInt
variable occupies 2 bytes).

Attribute Code ID LegendStyleInfo() Return Values

LEGEND_STYLE_INFO_TEXT 1 Returns the text of the style.

LEGEND_STYLE_INFO_FONT 2 Returns the font of the style.

LEGEND_STYLE_INFO_OBJ 3 Returns the object of the style.
MapBasic 11.0 380 Reference

Chapter 6:
LibraryServiceInfo() function
Example

Dim name_length As SmallInt
name_length = Len("Boswell")

' name_length now has the value: 7

See Also:

ObjectLen() function

LibraryServiceInfo() function

Purpose

Returns information about the Library Services, such as the current mode of operation, version, or
default URL for the Library Service. It also gives the list of CSW URL's exposed by the MapInfo
Manager sever.

Syntax

LibraryServiceInfo(attribute)

attribute is a code indicating the type of information to return; see table below.

Description

The LibraryServiceInfo() function returns one piece of information about the Library Services.

 The attribute parameter is a value from the table below. Codes in the left column are defined in
MAPBASIC.DEF.

attribute code ID LibraryServiceInfo() returns

LIBSRVC_INFO_LIBSRVCMODE 1 Integer result, indicating the current mode of
operation of the Library Service.

LIBSRVC_INFO_LIBVERSION 2 String result, indicating the version of the Library
Service. The default Library Service URL should be
set before calling this function.

LIBSRVC_INFO_DEFURLPATH 3 String result, indicating the default URL for the
Library Service. The default value for the Library
URL is an empty string.

LIBSRVC_INFO_LISTCSWURL 4 String result, gives the list of CSW URL's exposed by
the MapInfo Manager sever as a single string
delimited by a semi-colon (;).
MapBasic 11.0 381 Reference

Chapter 6:
Like() function
Example

The following example shows how to use this function:

include "mapbasic.def"
declare sub main
sub main
dim liburlpath as string
dim libversion as string
liburlpath = LibraryServiceInfo(LIBSRVC_INFO_DEFURLPATH)if
StringCompare(liburlpath, “”) == 0 then
Set LibraryServiceInfo URL
“http://localhost:8080/LibraryService/LibraryService”
endif
libversion = LibraryServiceInfo(LIBSRVC_INFO_LIBVERSION)
end sub

See Also:

Set LibraryServiceInfo statement

Like() function

Purpose

Returns TRUE or FALSE to indicate whether a string satisfies pattern-matching criteria. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

Like(string, pattern_string, escape_char)

string is a string expression to test.

pattern_string is a string that contains regular characters or special wild-card characters.

escape_char is a string expression defining an escape character. Use an escape character (for
example, “\”) if you need to test for the presence of one of the wild-card characters (“%” and “_”) in
the string expression. If no escape character is desired, use an empty string ("").

Return Value

Logical value (TRUE if string matches pattern_string).

Description

The Like() function performs string pattern-matching. This string comparison is case-sensitive; to
perform a comparison that is case-insensitive, use the Like operator.

The pattern_string parameter can contain the following wildcard characters:
MapBasic 11.0 382 Reference

Chapter 6:
Line Input statement
To search for instances of the underscore or percent characters, specify an escape_char parameter,
as shown in the table below.

See Also:

Len() function, StringCompare() function

Line Input statement

Purpose

Reads a line from a sequential text file into a variable.

Syntax

Line Input [#] filenum, var_name

filenum is an integer value, indicating the number of an open file.

var_name is the name of a string variable.

Description

The Line Input statement reads an entire line from a text file, and stores the results in a string
variable. The text file must already be open, in Input mode.

The Line Input statement treats each line of the file as one long string. If each line of a file contains
a comma-separated list of expressions, and you want to read each expression into a separate
variable, use the Input # statement instead of Line Input.

_ (underscore) matches a single character.

% (percent) matches zero or more characters.

To determine if a string… Specify these parameters:

starts with “South” Like(string_var, "South%", "")

ends with “America” Like(string_var, "%America", "")

contains “ing” at any point Like(string_var, "%ing%", "")

starts with an underscore Like(string_var, "_%", "\")
MapBasic 11.0 383 Reference

Chapter 6:
LocateFile$() function
Example

The following program opens an existing text file, reads the contents of the text file one line at a time,
and copies the contents of the file to a separate text file.

Dim str As String
Open File "original.txt" For Input As #1
Open File "copy.txt" For Output As #2

Do While Not EOF(1)
Line Input #1, str
If Not EOF(1) Then

Print #2, str
End If

Loop
Close File #1
Close File #2

See Also:

Input # statement, Open File statement, Print # statement

LocateFile$() function

Purpose

Return the path to one of the MapInfo application data files. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

LocateFile$(file_id)

file_id is one of the following values

Value ID Description

LOCATE_PREF_FILE 0 Preference file (MAPINFOW.PRF).

LOCATE_DEF_WOR 1 Default workspace file (MAPINFOW.WOR).

LOCATE_CLR_FILE 2 Color file (MAPINFOW.CLR).

LOCATE_PEN_FILE 3 Pen file (MAPINFOW.PEN).

LOCATE_FNT_FILE 4 Symbol file (MAPINFOW.FNT).

LOCATE_ABB_FILE 5 Abbreviation file (MAPINFOW.ABB).

LOCATE_PRJ_FILE 6 Projection file (MAPINFOW.PRJ).

LOCATE_MNU_FILE 7 Menu file (MAPINFOW.MNU).
MapBasic 11.0 384 Reference

Chapter 6:
LocateFile$() function
Return Value

String

Description

Given the ID of a MapInfo Professional application data file, this function returns the location where
MapInfo Professional found that file. MapInfo Professional installs these files under the user's
Application Data directory, but there are several valid locations for these files, including the program
directory. MapBasic applications should not assume the location of these files, instead
LocateFile$() should be used to determine the actual location.

Example

include "mapbasic.def"
declare sub main
sub main
dim sGraphLocations as string
sGraphLocations = LocateFile$(LOCATE_GRAPH_DIR)
Print sGraphLocations
end sub

See Also:

GetFolderPath$() function

LOCATE_CUSTSYMB_DIR 8 Custom symbol directory (CUSTSYMB).

LOCATE_THMTMPLT_DIR 9 Theme template directory (THMTMPL).

LOCATE_GRAPH_DIR 10 Graph support directory (GRAPHSUPPORT).

LOCATE_WMS_SERVERLIST 11 XML list of WMS servers
(MIWMSSERVERS.XML).

LOCATE_WFS_SERVERLIST 12 XML list of WFS servers
(MIWFSSERVERS.XML).

LOCATE_GEOCODE_SERVERLIST 13 XML list of geocode servers
(MIGEOCODESERVERS.XML).

LOCATE_ROUTING_SERVERLIST 14 XML list of routing servers
(MIROUTINGSERVERS.XML).

LOCATE_LAYOUT_TEMPLATE_DIR 15 Layout template directory (LAYOUTTEMPLATE)

Value ID Description
MapBasic 11.0 385 Reference

Chapter 6:
LOF() function
LOF() function

Purpose

Returns the length of an open file.

Syntax

LOF(filenum)

filenum is the number of an open file.

Return Value

Integer

Description

The LOF() function returns the length of an open file, in bytes.

The file parameter represents the number of an open file; this is the same number specified in the
As clause of the Open File statement.

Error Conditions

ERR_FILEMGR_NOTOPEN (366) error generated if the specified file is not open.

Example

Dim size As Integer
Open File "import.txt" For Binary As #1
size = LOF(1)
' size now contains the # of bytes in the file

See Also:

Open File statement

Log() function

Purpose

Returns the natural logarithm of a number. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Log(num_expr)

num_expr is a numeric expression.
MapBasic 11.0 386 Reference

Chapter 6:
LTrim$() function
Return Value

Float

Description

The Log() function returns the natural logarithm of the numeric expression specified by the
num_expr parameter.

The natural logarithm represents the number to which the mathematical value e must be raised in
order to obtain num_expr. e has a value of approximately 2.7182818.

The logarithm is only defined for positive numbers; accordingly, the Log() function will generate an
error if num_expr has a negative value.

You can calculate logarithmic values in other bases (for example, base 10) using the natural
logarithm. To obtain the base-10 logarithm of the number n, divide the natural log of n (Log(n)) by
the natural logarithm of 10 (Log(10)).

Example

Dim original_val, log_val As Float
original_val = 2.7182818
log_val = Log(original_val)

' log_val will now have a value of 1 (approximately),
' since E raised to the power of 1 equals
' 2.7182818 (approximately)

See Also:

Exp() function

LTrim$() function

Purpose

Trims space characters from the beginning of a string and returns the results. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

LTrim$(string_expr)

string_expr is a string expression.

Return Value

String
MapBasic 11.0 387 Reference

Chapter 6:
Main procedure
Description

The LTrim$() function removes any spaces from the beginning of the string_expr string, and returns
the resultant string.

Example

Dim name As String
name = " Mary Smith"
name = LTrim$(name)

' name now contains the string "Mary Smith"

See Also:

RTrim$() function

Main procedure

Purpose

The first procedure called when an application is run.

Syntax

Declare Sub Main
Sub Main

 statement_list
End Sub

statement_list is a list of statements to execute when an application is run.

Description

Main is a special-purpose MapBasic procedure name. If an application contains a sub procedure
called Main, MapInfo Professional runs that procedure automatically when the application is first
run. The Main procedure can then take actions (for example, issuing Call statements) to cause
other sub procedures to be executed.

However, you are not required to explicitly declare the Main procedure. Instead of declaring a
procedure named Main, you can simply place one or more statements at or near the top of your
program file, outside of any procedure declaration. MapBasic will then treat that group of statements
as if they were in a Main procedure. This is known as an “implicit” Main procedure (as opposed to
an “explicit” Main procedure).

Example

A MapBasic program can be as short as a single line. For example, you could create a MapBasic
program consisting only of the following statement:

Note "Testing, one two three."
MapBasic 11.0 388 Reference

Chapter 6:
MakeBrush() function
If the statement above comprises your entire program, MapBasic considers that program to be in an
implicit Main procedure. When you run that application, MapBasic will execute the Note statement.

Alternately, the following example explicitly declares the Main procedure, producing the same
results (for example, a Note statement).

Declare Sub Main
Sub Main

Note "Testing, one two three."
End Sub

The next example contains an implicit Main procedure, and a separate sub procedure called Talk.
The implicit Main procedure calls the Talk procedure through the Call statement.

Declare Sub Talk(ByVal msg As String)
Call Talk("Hello")
Call Talk("Goodbye")
Sub Talk(ByVal msg As String)

Note msg
End Sub

The next example contains an explicit Main procedure, and a separate sub procedure called Talk.
The Main procedure calls the Talk procedure through the Call statement.

Declare Sub Main
Declare Sub Talk(ByVal msg As String)

Sub Main
Call Talk("Hello")
Call Talk("Goodbye")

End Sub

Sub Talk(ByVal msg As String)
Note msg

End Sub

See Also:

EndHandler procedure, RemoteMsgHandler procedure, SelChangedHandler procedure,
Sub…End Sub statement, ToolHandler procedure, WinClosedHandler procedure

MakeBrush() function

Purpose

Returns a Brush value. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

MakeBrush(pattern, forecolor, backcolor)
MapBasic 11.0 389 Reference

Chapter 6:
MakeCustomSymbol() function
pattern is an integer value from 1 to 8 or from 12 to 71, dictating a fill pattern. See Brush clause for
a listing of the patterns.

forecolor is the integer RGB color value of the foreground of the pattern. See RGB() function for
details.

backcolor is the integer RGB color value of the background of the pattern. To make the background
transparent, specify -1 as the background color, and specify a pattern of 3 or greater.

Return Value

Brush

Description

The MakeBrush() function returns a Brush value. The return value can be assigned to a Brush
variable, or may be used as a parameter within a statement that takes a Brush setting as a
parameter (such as Create Ellipse, Set Map, Set Style, or Shade).

See Brush clause for more information about Brush settings.

Example

Include "mapbasic.def"
Dim b_water As Brush
b_water = MakeBrush(64, CYAN, BLUE)

See Also:

Brush clause, CurrentBrush() function, RGB() function, StyleAttr() function

MakeCustomSymbol() function

Purpose

Returns a Symbol value based on a bitmap file. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

MakeCustomSymbol(filename, color, size, customstyle)

filename is a string up to 31 characters long, representing the name of a bitmap file. The file must be
in the CustSymb directory inside the user's MapInfo directory.

color is an integer RGB color value; see RGB() function for details.

size is an integer point size, from 1 to 48.

customstyle is an integer code controlling color and background attributes. See table below.

Return Value

Symbol
MapBasic 11.0 390 Reference

Chapter 6:
MakeDateTime function
Description

The MakeCustomSymbol() function returns a Symbol value based on a bitmap file. See Symbol
clause for information about other symbol types.

The following table describes how the customstyle argument controls the symbol's style:

Example

Include "mapbasic.def"
Dim sym_marker As Symbol
sym_marker = MakeCustomSymbol("CAR1-64MP", BLUE, 18, 0)

See Also:

CurrentSymbol() function, MakeFontSymbol() function, MakeSymbol() function, StyleAttr()
function, Symbol clause

MakeDateTime function

Purpose

Returns a DateTime made from the specified Date and Time. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

MakeDateTime (Date, Time)

customstyle value Symbol Style

0 The Show Background, the Apply Color, and the Display at Actual Size
settings are off; the symbol appears in its default state at the point size
specified by the size parameter. White pixels in the bitmap are displayed as
transparent, allowing whatever is behind the symbol to show through.

1 The Show Background setting is on; white pixels in the bitmap are opaque.

2 The Apply Color setting is on; non-white pixels in the bitmap are replaced
with the symbol's color setting.

3 Both Show Background and Apply Color are on.

4 The Display at Actual Size setting is on; the bitmap image is rendered at its
native width and height in pixels.

5 The Show Background and Display at Actual Size settings are on.

7 The Show Background, the Apply Color, and the Display at Actual Size
settings are on.
MapBasic 11.0 391 Reference

Chapter 6:
MakeFont() function
Return Value

DateTime

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim tX as time
dim dX as date
dim dtX as datetime
tX = 105604123
dX = 20070908
dtX = MakeDateTime(dX,tX)
Print FormatDate$(GetDate(dtX))
Print FormatTime$(GetTime(dtX), "hh:mm:ss.fff tt")

MakeFont() function

Purpose

Returns a Font value. You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

MakeFont(fontname, style, size, forecolor, backcolor)

fontname is a text string specifying a font (for example, “Arial”). This argument is case sensitive.

style is a positive integer expression; 0 = plain text, 1 = bold text, etc. See Font clause for details.

size is an integer point size, one or greater.

forecolor is the RGB color value for the text. See RGB() function.

backcolor is the RGB color value for the background (or the halo color, if the style setting specifies a
halo). To make the background transparent, specify -1 as the background color.

Return Value

Font

Description

The MakeFont() function returns a Font value. The return value can be assigned to a Font variable,
or may be used as a parameter within a statement that takes a Font setting as a parameter (such as
Create Text statement or Set Style statement).

See Font clause for more information about Font settings.

Example

Include "mapbasic.def"
Dim big_title As Font
big_title = MakeFont("Arial", 1, 20,BLACK,WHITE)
MapBasic 11.0 392 Reference

Chapter 6:
MakeFontSymbol() function
See Also:

CurrentFont() function, Font clause, StyleAttr() function

MakeFontSymbol() function

Purpose

Returns a Symbol value, using a character from a TrueType font as the symbol. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

MakeFontSymbol(shape, color, size, fontname, fontstyle, rotation)

shape is a SmallInt value, 31 or larger (31 is invisible), specifying a character code from a TrueType
font.

color is an integer RGB color value; see RGB() function for details.

size is a SmallInt value from 1 to 48, dictating the point size of the symbol.

fontname is a string representing the name of a TrueType font (for example, “WingDings”). This
argument is case sensitive.

fontstyle is a numeric code controlling bold, outline, and other attributes; see below.

rotation is a floating-point number indicating the symbol's rotation angle, in degrees.

Return Value

Symbol

Description

The MakeFontSymbol() function returns a Symbol value based on a character in a TrueType font.
See Symbol clause for information about other symbol types.

The following table describes how the fontstyle parameter controls the symbol's style:

fontstyle value Symbol Style

0 Plain

1 Bold

16 Border (black outline)

32 Drop Shadow

256 Halo (white outline)
MapBasic 11.0 393 Reference

Chapter 6:
MakePen() function
To specify two or more style attributes, add the values from the left column. For example, to specify
both the Bold and the Drop Shadow attributes, use a fontstyle value of 33. Border and Halo are
mutually exclusive.

Example

Include "mapbasic.def"
Dim sym_marker As Symbol
sym_marker = MakeFontSymbol(65,RED,24,"WingDings",32,0)

See Also:

CurrentSymbol() function, MakeCustomSymbol() function, MakeSymbol() function,
StyleAttr() function, Symbol clause

MakePen() function

Purpose

Returns a Pen value. You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

MakePen(width, pattern, color)

width specifies a pen width.

pattern specifies a line pattern; see Pen clause for a listing.

color is the RGB color value; see RGB() function for details.

Return Value

Pen

Description

The MakePen() function returns a Pen value, which defines a line style. The return value can be
assigned to a Pen variable, or may be used as a parameter within a statement that takes a Pen
setting as a parameter (such as Create Line statement, Create Pline statement, Set Style
statement, or Set Map statement).

See Pen clause for more information about Pen settings.

Example

Include "mapbasic.def"
Dim p_bus_route As Pen
p_bus_route = MakePen(3, 9, RED)

See Also:

CurrentPen() function, Pen clause, StyleAttr() function, RGB() function
MapBasic 11.0 394 Reference

Chapter 6:
MakeSymbol() function
MakeSymbol() function

Purpose

Returns a Symbol value, using a character from the MapInfo 3.0 symbol set. The MapInfo 3.0
symbol set is the symbol set that was originally published with MapInfo for Windows 3.0 and has
been maintained in subsequent versions of MapInfo Professional. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

MakeSymbol(shape, color, size)

shape is a SmallInt value, 31 or larger (31 is invisible), specifying a symbol shape; standard symbol
set provides symbols 31 through 67; see Symbol clause for a listing.

color is an integer RGB color value; see RGB() function for details.

size is a SmallInt value from 1 to 48, dictating the point size of the symbol.

Return Value

Symbol

Description

The MakeSymbol() function returns a Symbol value. The return value can be assigned to a Symbol
variable, or may be used as a parameter within a statement that takes a Symbol clause as a
parameter (such as Create Point statement, Set Map statement, Set Style statement, or Shade
statement).

To create a symbol from a character in a TrueType font, call the MakeFontSymbol() function.

To create a symbol from a bitmap file, call the MakeCustomSymbol() function.

See Symbol clause for more information about Symbol settings.

Example

Include "mapbasic.def"
Dim sym_marker As Symbol
sym_marker = MakeSymbol(44, RED, 16)

See Also:

CurrentSymbol() function, MakeCustomSymbol() function, MakeFontSymbol() function,
StyleAttr() function, Symbol clause
MapBasic 11.0 395 Reference

Chapter 6:
Map statement
Map statement

Purpose

Opens a new Map window. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Map From item [, item ...]
[Position (x, y) [Units paperunits]]
[Width window_width [Units paperunits]]
[Height window_height [Units paperunits]]
[{ Min | Max }]

where item = table | [GroupLayer (“friendly_name” [, item …])

item is either the name of an open table, or a group layer

friendly_name for each group layer is required but does not have to be unique, group layers may
contain other group layers and/or tables, or be empty (no tables).

paperunits is the name of a paper unit (for example, “in”).

x, y specifies the position of the upper left corner of the Map window, in paper units.

window_width and window_height specify the size of the Map window, in paper units.

Description

The Map statement opens a new Map window. After you open a Map window, you can modify the
window by issuing Set Map statement.

A GroupLayer keyword has been added to create nested group layers. Group layers are a special
type of layer that allow users to organize other map layers into groups, similar to the way that folders
and subfolders allow users to organize files. Group layers will make it easier to manage maps that
have many layers. There are two main benefits to using groups:

1. Organizational benefits - layer lists are more manageable if they are organized into meaningful
groups.

2. Efficiency benefits - once layers are organized into groups, subsequent operations such as “turn
off all the street layers” can be performed in fewer clicks / fewer steps.

The table name specified must already be open. The table must also be mappable; in other words,
the table must be able to have graphic objects associated with the records. The table does not need
to actually contain any graphical objects, but the structure of the table must specify that objects may
be attached.

The Map statement must specify at least one table, regardless of whether it is part of a group layer
or not, since any Map window must contain at least one layer. Optionally, the Map statement can
specify multiple table names (separated by commas) to open a multi-layer Map window. The first
table name in the Map statement will be drawn last whenever the Map window is redrawn; thus, the
MapBasic 11.0 396 Reference

Chapter 6:
Map statement
first table in the Map statement will always appear on top. Typically, tables with point objects appear
earlier in Map statements, and tables with region (boundary) objects appear later in Map
statements.

The default size of the resultant Map window is roughly a quarter of the screen size; the default
position of the window depends on how many windows are currently on the screen. Optional
Position, Height, and Width clauses allow you to control the size and position of the new Map
window. The Height and Width clauses dictate the window size, in inches. Note that the Position
clause specifies a position relative to the upper left corner of the MapInfo Professional application,
not relative to the upper left corner of the screen.

If the Map statement includes the optional Max keyword, the new Map window is maximized, taking
up all of the screen space available to MapInfo Professional. Conversely, if the Map statement
includes the Min keyword, the window is minimized immediately.

Each Map window can have its own projection. MapInfo Professional decides a Map window's initial
projection based on the native projection of the first table mapped. A user can change a map's
projection by choosing the Map > Options command. A MapBasic program can change the
projection by issuing a Set Map statement.

Examples

The following example opens a Map window three inches wide by two inches high, inset one inch
from the upper left corner of the MapInfo Professional application. The map has two layers.

Open Table "world"
Open Table "cust1994" As customers
Map from customers, world

Position (1,1) Width 3 Height 2

The following example opens a Map window that has group layers, some of which are nested
(assume all tables have been opened first).

Map From
GroupLayer (

“Grid”,
GroupLayer (“Tropics”, Tropic_Of_Capricorn, Tropic_Of_Cancer),
Wgrid15

),
GroupLayer (

“World Places”, WorldPlaces, WorldPlacesMajor, WorldPlaces_Capitals
),
Airports,
GroupLayer (“World Boundaries”, world_Border),
GroupLayer (

“Roads”, Roads, US_Primary_Roads, US_Secondary_Roads, US_Major_Roads
),
GroupLayer (“Countries” Countries_small, Countries_large),
Ocean
MapBasic 11.0 397 Reference

Chapter 6:
Map statement
Groups layers have unique IDs like layers. Layer IDs may be numeric or table names. When
numeric, they represent the order (reverse draw order) of the layer in the list from the top down.
Group layers have numeric IDs that are part of a different sequence, but will also increase
sequentially from the top down. In the example above the group layer and layer IDs would be as
follows:

Group Layer Layer ID

GroupLayer “Grid” group 1

GroupLayer “Tropics” group 2

Tropic_Of_Capricorn layer 1

Tropic_Of_Cancer layer 2

Wgrid15 layer 3

GroupLayer “World Places” group 3

WorldPlaces layer 4

WorldPlacesMajor layer 5

WorldPlaces_Capitals layer 6

Airports layer 7

GroupLayer “World Boundaries” group 4

world_Border layer 8

GroupLayer “Roads” group 5

Roads layer 19

US_Primary_Roads layer 10

US_Secondary_Roads layer 11

US_Major_Roads layer 12

GroupLayer “Countries” group 6

Countries_small layer 13

Countries_large layer 14

Ocean layer 15
MapBasic 11.0 398 Reference

Chapter 6:
Map3DInfo() function
See Also:

Add Map statement, Remove Map statement, Set Map statement, Set Shade statement, Shade
statement

Map3DInfo() function

Purpose

Returns properties of a 3DMap window. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Map3DInfo(window_id, attribute)

window_id is an integer window identifier.

attribute is an integer code, indicating which type of information should be returned.

Return Value

Float, logical, or string, depending on the attribute parameter.

Description

The Map3DInfo() function returns information about a 3DMap window.

The window_id parameter specifies which 3DMap window to query. To obtain a window identifier,
call the FrontWindow() function immediately after opening a window, or call the WindowID()
function at any time after the window's creation.

There are several numeric attributes that Map3DInfo() can return about any given 3DMap window.
The attribute parameter tells the Map3DInfo() function which Map window statistic to return. The
attribute parameter should be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.

Attribute ID Return Value

MAP3D_INFO_SCALE 1 Float result representing the 3DMaps scale
factor.

MAP3D_INFO_RESOLUTION_X 2 Integer result representing the X resolution of the
grid(s) in the 3DMap window.

MAP3D_INFO_RESOLUTION_Y 3 Integer result representing the Y resolution of the
grid(s) in the 3DMap window.

MAP3D_INFO_BACKGROUND 4 Integer result representing the background color,
see the RGB function.
MapBasic 11.0 399 Reference

Chapter 6:
Map3DInfo() function
MAP3D_INFO_UNITS 5 String representing the map's abbreviated area
unit name, for example, “mi” for miles.

MAP3D_INFO_LIGHT_X 6 Float result representing the x-coordinate of the
Light in the scene.

MAP3D_INFO_LIGHT_Y 7 Float result representing the y-coordinate of the
Light in the scene.

MAP3D_INFO_LIGHT_Z 8 Float result representing the z-coordinate of the
Light in the scene.

MAP3D_INFO_LIGHT_COLOR 9 Integer result representing the Light color, see
RGB() function.

MAP3D_INFO_CAMERA_X 10 Float result representing the x-coordinate of the
Camera in the scene.

MAP3D_INFO_CAMERA_Y 11 Float result representing the y-coordinate of the
Camera in the scene.

MAP3D_INFO_CAMERA_Z 12 Float result representing the z-coordinate of the
Camera in the scene.

MAP3D_INFO_CAMERA_FOCAL_X 13 Float result representing the x-coordinate of the
Cameras FocalPoint in the scene.

MAP3D_INFO_CAMERA_FOCAL_Y 14 Float result representing the y-coordinate of the
Cameras FocalPoint in the scene.

MAP3D_INFO_CAMERA_FOCAL_Z 15 Float result representing the z-coordinate of the
Cameras FocalPoint in the scene.

MAP3D_INFO_CAMERA_VU_1 16 Float result representing the first value of the
ViewUp Unit Normal Vector.

MAP3D_INFO_CAMERA_VU_2 17 Float result representing the second value of the
ViewUp Unit Normal Vector.

MAP3D_INFO_CAMERA_VU_3 18 Float result representing the third value of the
ViewUp Unit Normal Vector.

MAP3D_INFO_CAMERA_VPN_1 19 Float result representing the first value of the
ViewPlane Unit Normal Vector.

MAP3D_INFO_CAMERA_VPN_2 20 Float result representing the second value of the
ViewPlane Unit Normal Vector.

Attribute ID Return Value
MapBasic 11.0 400 Reference

Chapter 6:
Map3DInfo() function
Example

Prints out all the state variables specific to the 3DMap window:

include "Mapbasic.def"
Print "MAP3D_INFO_SCALE: " + Map3DInfo(FrontWindow(), MAP3D_INFO_SCALE)
Print "MAP3D_INFO_RESOLUTION_X: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_RESOLUTION_X)
Print "MAP3D_INFO_RESOLUTION_Y: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_RESOLUTION_Y)
Print "MAP3D_INFO_BACKGROUND: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_BACKGROUND)
Print "MAP3D_INFO_UNITS: " + Map3DInfo(FrontWindow(), MAP3D_INFO_UNITS)
Print "MAP3D_INFO_LIGHT_X : " + Map3DInfo(FrontWindow(),
MAP3D_INFO_LIGHT_X)
Print "MAP3D_INFO_LIGHT_Y : " + Map3DInfo(FrontWindow(),
MAP3D_INFO_LIGHT_Y)
Print "MAP3D_INFO_LIGHT_Z: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_LIGHT_Z)
Print "MAP3D_INFO_LIGHT_COLOR: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_LIGHT_COLOR)
Print "MAP3D_INFO_CAMERA_X: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_X)
Print "MAP3D_INFO_CAMERA_Y : " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_Y)
Print "MAP3D_INFO_CAMERA_Z : " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_Z)
Print "MAP3D_INFO_CAMERA_FOCAL_X: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_FOCAL_X)
Print "MAP3D_INFO_CAMERA_FOCAL_Y: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_FOCAL_Y)
Print "MAP3D_INFO_CAMERA_FOCAL_Z: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_FOCAL_Z)
Print "MAP3D_INFO_CAMERA_VU_1: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VU_1)
Print "MAP3D_INFO_CAMERA_VU_2: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VU_2)
Print "MAP3D_INFO_CAMERA_VU_3: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VU_3)
Print "MAP3D_INFO_CAMERA_VPN_1: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VPN_1)

MAP3D_INFO_CAMERA_VPN_3 21 Float result representing the third value of the
ViewPlane Unit Normal Vector.

MAP3D_INFO_CAMERA_CLIP_NEAR 22 Float result representing the cameras near
clipping plane.

MAP3D_INFO_CAMERA_CLIP_FAR 23 Float result representing the cameras far clipping
plane.

Attribute ID Return Value
MapBasic 11.0 401 Reference

Chapter 6:
MapperInfo() function
Print "MAP3D_INFO_CAMERA_VPN_2: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VPN_2)
Print "MAP3D_INFO_CAMERA_VPN_3: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VPN_3)
Print "MAP3D_INFO_CAMERA_CLIP_NEAR: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_CLIP_NEAR)
Print "MAP3D_INFO_CAMERA_CLIP_FAR: " + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_CLIP_FAR)

See Also:

Create Map3D statement, Set Map3D statement

MapperInfo() function

Purpose

Returns coordinate or distance information about a Map window. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

MapperInfo(window_id, attribute)

window_id is an integer window identifier.

attribute is an integer code, indicating which type of information should be returned. See table below
for values.

Return Value

Float, logical, or string, depending on the attribute parameter.

Description

The MapperInfo() function returns information about a Map window.

The window_id parameter specifies which Map window to query. To obtain a window identifier, call
the FrontWindow() function immediately after opening a window, or call the WindowID()
function at any time after the window's creation.

There are several numeric attributes that MapperInfo() can return about any given Map window.
The attribute parameter tells the MapperInfo() function which Map window statistic to return. The
attribute parameter should be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.
MapBasic 11.0 402 Reference

Chapter 6:
MapperInfo() function
attribute setting ID MapperInfo() Return Value

MAPPER_INFO_ZOOM 1 The Map window's current zoom value (for example,
the East-West distance currently displayed in the
Map window), specified in MapBasic's current
distance units; see Set Distance Units statement.

MAPPER_INFO_SCALE 2 The Map window's current scale, defined in terms of
the number of map distance units (for example,
Miles) per paper unit (for example, Inches) displayed
in the window. This returns a value in MapBasic's
current distance units.

MAPPER_INFO_CENTERX 3 The x-coordinate of the Map window's center.

MAPPER_INFO_CENTERY 4 The y-coordinate of the Map window's center.

MAPPER_INFO_MINX 5 The smallest x-coordinate shown in the window.

MAPPER_INFO_MINY 6 The smallest y-coordinate shown in the window.

MAPPER_INFO_MAXX 7 The largest x-coordinate shown in the window.

MAPPER_INFO_MAXY 8 The largest y-coordinate shown in the window.

MAPPER_INFO_LAYERS 9 Returns number of layers in the Map window as a
SmallInt (excludes the cosmetic layer and group
layers).

MAPPER_INFO_EDIT_LAYER 10 A SmallInt indicating the number of the currently-
editable layer. A value of zero means that the
Cosmetic layer is editable. A value of -1 means that
no layer is editable.

MAPPER_INFO_XYUNITS 11 String representing the map's abbreviated coordinate
unit name, for example, “degree”.

MAPPER_INFO_DISTUNITS 12 String representing the map's abbreviated distance
unit name, for example, “mi” for miles.

MAPPER_INFO_AREAUNITS 13 String representing the map's abbreviated area unit
name, for example, “sq mi” for square miles.

MAPPER_INFO_SCROLLBARS 14 Logical value indicating whether the Map window
shows scrollbars.
MapBasic 11.0 403 Reference

Chapter 6:
MapperInfo() function
MAPPER_INFO_DISPLAY 15 Small integer, indicating what aspect of the map is
displayed on the status bar. Corresponds to Set Map
Display. Return value will be one of these:

• MAPPER_INFO_DISPLAY_SCALE (0)
• MAPPER_INFO_DISPLAY_ZOOM (1)
• MAPPER_INFO_DISPLAY_POSITION (2)

MAPPER_INFO_NUM_THEMATI
C

16 Small integer, indicating the number of thematic
layers in this Map window.

MAPPER_INFO_COORDSYS_CL
AUSE

17 string result, indicating the window's CoordSys
clause.

MAPPER_INFO_COORDSYS_NA
ME

18 String result, representing the name of the map's
CoordSys as listed in MAPINFOW.PRJ (but without
the optional “\p…” suffix that appears in
MAPINFOW.PRJ). Returns empty string if CoordSys
is not found in MAPINFOW.PRJ.

MAPPER_INFO_MOVE_DUPLICA
TE_NODES

19 Small integer, indicating whether duplicate nodes
should be moved when reshaping objects in this Map
window. If the value is 0, duplicate nodes are not
moved. If the value is 1, any duplicate nodes within
the same layer will be moved. To return to using the
default from the map preferences, call Set Map
Move Nodes Default.

MAPPER_INFO_DIST_CALC_TY
PE

20 Small integer, indicating type of calculation to use for
distance, length, perimeter, and area calculations for
mapper. Corresponds to Set Map Distance Type.
Return values include:

• MAPPER_INFO_DIST_SPHERICAL (0)
• MAPPER_INFO_DIST CARTESIAN (1)

attribute setting ID MapperInfo() Return Value
MapBasic 11.0 404 Reference

Chapter 6:
MapperInfo() function
MAPPER_INFO_DISPLAY_DMS 21 Small integer, indicating whether the map displays
coordinates in decimal degrees, DMS (degrees,
minutes, seconds), or Military Grid Reference
System or USNG (US National Grid) format. Return
value is one of the following:

• MAPPER_INFO_DISPLAY_DECIMAL (0)
• MAPPER_INFO_DISPLAY_DEGMINSEC (1)
• MAPPER_INFO_DISPLAY_MGRS (2)

Military Grid Reference System
• MAPPER_INFO_DISPLAY_USNG_WGS84 (3)

US National Grid NAD 83/WGS 84
• MAPPER_INFO_DISPLAY_USNG_NAD27 (4)

US National Grid NAD 27

MAPPER_INFO_COORDSYS_CL
AUSE_WITH_BOUNDS

22 String result, indicating the window's CoordSys
clause including the bounds.

MAPPER_INFO_CLIP_TYPE 23 The type of clipping being implemented. Choices
include:

• MAPPER_INFO_CLIP_DISPLAY_ALL (0)
• MAPPER_INFO_CLIP_DISPLAY_POLYOBJ (1)
• MAPPER_INFO_CLIP_OVERLAY (2)

MAPPER_INFO_CLIP_REGION 24 Returns a string to indicate if a clip region is enabled.
Returns the string “on” if a clip region is enabled in
the Mapper window. Otherwise, it returns the string
“off”.

MAPPER_INFO_REPROJECTION 25 String value indicating the current value of the
reprojection mode. The value can be either:

• None - Never reproject the map.
• Always - Always reproject the map.
• Auto - Optimize whether or not to reproject the

map; allow MapInfo Professional to decide.

MAPPER_INFO_RESAMPLING 26 String value indicating the method for calculating the
pixel values of the source image being reprojected.
The value can be either:

• CubicConvolution
• NearestNeighbor

MAPPER_INFO_MERGE_MAP 27 String value: the string of MapBasic statements that a
user needs to merge one map window into the
current map window.

attribute setting ID MapperInfo() Return Value
MapBasic 11.0 405 Reference

Chapter 6:
MapperInfo() function
When you call MapperInfo() to obtain coordinate values (for example, by specifying
MAPPER_INFO_CENTERX as the attribute), the value returned represents a coordinate in
MapBasic's current coordinate system, which may be different from the coordinate system of the
Map window. Use the Set CoordSys statement to specify a different coordinate system.

A setting for each Map window and providing MapBasic support to set and get the current setting for
each mapper. During Reshape, the move duplicate nodes can be set to none or move all duplicates
within the same layer.

Whenever a new Map window is created, the initial move duplicate nodes setting will be retrieved
from the mapper preference (Options / Preference / Map Window / Move Duplicate Nodes in).

An existing Map window can be queried for its current Move Duplicate Nodes setting using a new
attribute in MapperInfo() function.

The current state can be changed for a mapper window using the Set Map statement.

Coordinate Value Returns

MapperInfo() does not return coordinates (for example MINX, MAXX, MINY, MAXY) in the units set
for the map window. Instead, the coordinate values are returned in the units of the internal
coordinate system of the MapInfo Professional session or the MapBasic application that calls the
function (if the coordinate system was changed within the application). Also, the
MAPPER_INFO_XYUNITS attribute returns the units that are used to display the cursor location in
the Status Bar (set by using Set Map Window Frontwindow() XY Units).

Clip Region Information

Beginning with MapInfo Professional 6.0, there are three methods that are used for Clip Region
functionality. The MAPPER_INFO_CLIP_OVERLAY (2) method is the method that has been the
only option until MapInfo Professional 6.0. Using this method, the Overlap() function (Object >
Erase Outside) is used internally. Since the Overlap() function cannot produce result with Text
objects, text objects are never clipped. For Point objects, a simple point in region test is performed to

MAPPER_INFO_ALL_LAYERS 28 This will return the count of layers and group layers
(includes all nested layers and group layers)

MAPPER_INFO_GROUPLAYERS 29 This will return the count of all group layers (includes
nested group layers)

MAPPER_INFO_NUM_ADORNM
ENTS

200 This will return an integer representing the number of
adornments associated with a mapper. Use some
value suitably outside the normal range for
MapperInfo, such as 100.

MAPPER_INFO_ADORNMENT+n 200 This will return the WindowID of a given adornment
associated with the Mapper.

attribute setting ID MapperInfo() Return Value
MapBasic 11.0 406 Reference

Chapter 6:
Maximum() function
either include or exclude the Point. Label objects are treated similar to Point objects and are either
completely displayed (is the label point is inside the clip region object) or ignored. Since the clipping
is done at the spatial object level, styles (wide lines, symbols, text) are never clipped.

The MAPPER_INFO_CLIP_DISPLAY_ALL (0) method uses the Windows Display to perform the
clipping. All object types are clipped. Thematics, rasters, and grids are also clipped. Styles (wide
lines, symbols, text) are always clipped. This is the default clipping type.

The MAPPER_INFO_CLIP_DISPLAY_POLYOBJ (1) uses the Windows Display to selectively
perform clipping which mimics the functionality produced by MAPPER_INFO_CLIP_OVERLAY (2).
Windows Display Clipping is used to clip all Poly Objects (Regions and Polylines) and objects than
can be converted to Poly Objects (rectangles, rounded rectangles, ellipses, and arcs). These objects
will always have their symbology clipped. Points, Labels, and Text are treated as they would be in
the MAPPER_INFO_CLIP_OVERLAY (2) method. In general, this method should provide better
performance that the MAPPER_INFO_CLIP_OVERLAY (2) method.

Error Conditions

ERR_BAD_WINDOW (590) error generated if parameter is not a valid window number.

ERR_FCN_ARG_RANGE (644) error generated if an argument is outside of the valid range.

ERR_WANT_MAPPER_WIN (313) error generated if window id is not a Map window.

LayerInfo() function, Set Distance Units statement, Set Map statement

Maximum() function

Purpose

Returns the larger of two numbers. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

Maximum(num_expr, num_expr)

num_expr is a numeric expression.

Return Value

Float

Description

The Maximum() function returns the larger of two numeric expressions.

Example

Dim x, y, z As Float
x = 42
y = 27
z = Maximum(x, y)
MapBasic 11.0 407 Reference

Chapter 6:
MBR() function
' z now contains the value: 42

See Also:

Minimum() function

MBR() function

Purpose

Returns a rectangle object, representing the minimum bounding rectangle (MBR) of another object.
You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

MBR(obj_expr)

obj_expr is an object expression.

Return Value

Object (a rectangle)

Description

The MBR() function calculates the minimum bounding rectangle (MBR) which encompasses the
specified obj_expr object.

A minimum bounding rectangle is defined as being the smallest rectangle which is large enough to
encompass a particular object. In other words, the MBR of the United States extends east to the
eastern tip of Maine, south to the southern tip of Hawaii, west to the western tip of Alaska, and north
to the northern tip of Alaska.

The MBR of a point object has zero width and zero height.

Example

Dim o_mbr As Object
Open Table "world"
Fetch First From world
o_mbr = MBR(world.obj)

See Also:

Centroid() function, CentroidX() function, CentroidY() function
MapBasic 11.0 408 Reference

Chapter 6:
Menu Bar statement
Menu Bar statement

Purpose

Shows or hides the menu bar. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Menu Bar { Hide | Show }

Description

The Menu Bar statement shows or hides MapInfo Professional's menu bar. An application might
hide the menu bar in order to provide more screen room for windows.

Following a Menu Bar Hide statement, the menu bar remains hidden until a Menu Bar Show
statement is executed. Since users can be severely handicapped without the menu bar, you should
be very careful when using the Menu Bar Hide statement. Every Menu Bar Hide statement should
be followed (eventually) by a Menu Bar Show statement.

While the menu bar is hidden, MapInfo Professional ignores any menu-related hotkeys. For
example, an MapInfo Professional user might ordinarily press Ctrl-O to bring up the Open dialog
box; but while the menu bar is hidden, MapInfo Professional ignores the Ctrl-O hotkey.

See Also:

Alter Menu Bar statement, Create Menu Bar statement

MenuItemInfoByHandler() function

Purpose

Returns information about a MapInfo Professional menu item.

Syntax

MenuItemInfoByHandler(handler, attribute)

handler is either a string (containing the name of a handler procedure specified in a Calling clause)
or an integer (which was specified as a constant in a Calling clause).

attribute is an integer code indicating which attribute to return; see table below.

Description

The handler parameter can be an integer or a string. If you specify a string (a procedure name), and
if two or more menu items call that procedure, MapInfo Professional returns information about the
first menu item that calls the procedure. If you need to query multiple menu items that call the same
MapBasic 11.0 409 Reference

Chapter 6:
MenuItemInfoByHandler() function
handler procedure, give each menu item an ID number (for example, using the optional ID clause in
the Create Menu statement), and call MenuItemInfoByID() function instead of calling
MenuitemInfoByHandler().

The attribute parameter is a numeric code (defined in MAPBASIC.DEF) from the following table:

attribute setting ID Return value

MENUITEM_INFO_ENABLED 1 Logical: TRUE if the menu item is enabled.

MENUITEM_INFO_CHECKED 2 Logical: TRUE if the menu item is checkable and
currently checked; also return TRUE if the menu item
has alternate menu text (for example, if the menu item
toggles between Show… and Hide…), and the menu
item is in its “show” state. Otherwise, return FALSE.

MENUITEM_INFO_CHECKABLE 3 Logical: TRUE if this menu item is checkable
(specified by the “!” prefix in the menu text).

MENUITEM_INFO_SHOWHIDEA
BLE

4 Logical: TRUE if this menu item has alternate menu
text (for example, if the menu item toggles between
Show… and Hide…). An item has alternate text if it
was created with “!” at the beginning of the menu item
text (in a Create Menu statement or Alter Menu
statement) and it has a caret (^) in the string.

MENUITEM_INFO_ACCELERAT
OR

5 String: The code sequence for the menu item's
accelerator (for example, “/W^Z” or “/W#%119”) or an
empty string if the menu item has no accelerator. For
details on menu accelerators, see Create Menu
statement.

MENUITEM_INFO_TEXT 6 String: the full text used (for example, in a Create
Menu statement) to create the menu item.

MENUITEM_INFO_HELPMSG 7 String: the menu item's help message (as specified in
the HelpMsg clause in Create Menu statement) or
empty string if the menu item has no help message.
MapBasic 11.0 410 Reference

Chapter 6:
MenuItemInfoByID() function
See Also:

MenuItemInfoByID() function

MenuItemInfoByID() function

Purpose

Returns information about a MapInfo Professional menu item.

Syntax

MenuItemInfoByID(menuitem_ID, attribute)

menuitem_ID is an integer menu ID (specified in the ID clause in Create Menu).

attribute is an integer code indicating which attribute to return.

Description

This function is identical to the MenuItemInfoByHandler() function, except that the first argument
to this function is an integer ID.

Call this function to query the status of a menu item when you know the ID of the menu item you
need to query. Call the MenuItemInfoByHandler() function to query the status of a menu item if
you would rather identify the menu item by its handler.

The attribute argument is a code from MAPBASIC.DEF, such as MENUITEM_INFO_CHECKED (2).
For a listing of codes you can use, see MenuItemInfoByHandler() function.

See Also:

MenuItemInfoByHandler() function

MENUITEM_INFO_HANDLER 8 Integer: The menu item's handler number. If the menu
item's Calling clause specified a numeric constant (for
example, Calling M_FILE_SAVE), this call returns
the value of the constant. If the Calling clause
specified “OLE”, “DDE”, or the name of a procedure,
this call returns a unique integer (an internal handler
number) which can be used in subsequent calls to
MenuitemInfoByHandler() or in the Run Menu
Command statement.

MENUITEM_INFO_ID 9 Integer: The menu ID number (specified in the optional
ID clause in a Create Menu statement), or 0 if the
menu item has no ID.

attribute setting ID Return value
MapBasic 11.0 411 Reference

Chapter 6:
Metadata statement
Metadata statement

Purpose

Manages a table's metadata. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax 1

Metadata Table table_name
{ SetKey key_name To key_value |

DropKey key_name [Hierarchical] |
SetTraverse starting_key_name [Hierarchical]
Into ID traverse_ID_var }

table_name is the name of an open table.

key_name is a string, representing the name of a metadata key. The string must start with a
backslash (“\”), and it cannot end with a backslash.

key_value is a string up to 239 characters long, representing the value to assign to the key.

starting_key_name is a string representing the first key name to retrieve from the table. To set up the
traversal at the very beginning of the list of keys, specify “\” (backslash).

traverse_ID_var is the name of an integer variable; MapInfo Professional stores a traversal ID in the
variable, which you can use in subsequent Metadata Traverse… statements.

Syntax 2

Metadata Traverse traverse_ID
{ Next Into Key key_name_var In key_value_var |
 Destroy }

traverse_ID is an integer value (such as the value of the traverse_ID_var variable described above).

key_name_var is the name of a string variable; MapInfo Professional stores the fetched key's name
in this variable.

key_value_var is the name of a string variable; MapInfo Professional stores the fetched key's value
in this variable.

Description

The Metadata statement manages the metadata stored in MapInfo tables. Metadata is information
that is stored in a table's .TAB file, instead of being stored as rows and columns.

Each table can have zero or more keys. Each key represents an information category, such as an
author's name, a copyright notice, etc. Each key has a string value associated with it. For example,
a key called “\Copyright” might have the value “Copyright 2001 Pitney Bowes Software Inc.
Corporation.” For more information about Metadata, see the MapBasic User Guide.
MapBasic 11.0 412 Reference

Chapter 6:
Metadata statement
Modifying a Table's Metadata

To create, modify, or delete metadata, use Syntax 1. The following clauses apply:

SetKey

Assigns a value to a metadata key. If the key already exists, MapInfo Professional assigns it a new
value. If the key does not exist, MapInfo Professional creates a new key. When you create a new
key, the changes take effect immediately; you do not need to perform a Save operation.

MetaData Table Parcels SetKey "\Info\Date" To Str$(CurDate())

MapInfo Professional automatically creates a metadata key called “\IsReadOnly” (with a
default value of “FALSE”) the first time you add a metadata key to a table. The \IsReadOnly
key is a special key, reserved for internal use by MapInfo Professional.

DropKey

Deletes the specified key from the table. If you include the Hierarchical keyword, MapInfo
Professional deletes the entire metadata hierarchy at and beneath the specified key. For example, if
a table has the keys “\Info\Author” and “\Info\Date” you can delete both keys with the following
statement:

MetaData Table Parcels DropKey "\Info" Hierarchical

Reading a Table's Metadata

To read a table's metadata values, use the SetTraverse clause to initialize a traversal, and then use
the Next clause to fetch key values. After you are finished fetching key values, use the Destroy
clause to free the memory used by the traversal. The following clauses apply:

SetTraverse

Prepares to traverse the table's keys, starting with the specified key. To start at the beginning of the
list of keys, specify “\” as the starting key name. If you include the Hierarchical keyword, the
traversal can hierarchically fetch every key. If you omit the Hierarchical keyword, the traversal is
flat, meaning that MapInfo Professional will only fetch keys at the root level (for example, the
traversal will fetch the “\Info” key, but not the “\Info\Date” key).

Next Into Key… Into Value…

Attempts to read the next key. If there is a key to read, MapInfo Professional stores the key's name
in the key_name_var variable, and stores the key's value in the key_value_var variable. If there are
no more keys to read, MapInfo Professional stores empty strings in both variables.
MapBasic 11.0 413 Reference

Chapter 6:
Metadata statement
Destroy

Ends the traversal, and frees the memory that was used by the traversal.

A hierarchical metadata traversal can traverse up to ten levels of keys (for example,
“\One\Two\Three\Four\Five\Six\Seven\Eight\Nine\Ten”) if you begin the traversal at the root
level (“\”). If you need to retrieve a key that is more than ten levels deep, begin the traversal
at a deeper level (for example, begin the traversal at “\One\Two\Three\Four\Five”).

Example

The following procedure reads all metadata values from a table; the table name is specified by the
caller. This procedure prints the key names and key values to the Message window.

Sub Print_Metadata(ByVal table_name As String)
Dim i_traversal As Integer
Dim s_keyname, s_keyvalue As String

' Initialize the traversal:
Metadata Table table_name

SetTraverse "\" Hierarchical Into ID i_traversal

' Attempt to fetch the first key:
Metadata Traverse i_traversal
Next Into Key s_keyname Into Value s_keyvalue

' Now loop for as long as there are key values;
' with each iteration of the loop, retrieve
' one key, and print it to the Message window.
Do While s_keyname <> ""

Print " "
Print "Key name: " & s_keyname
Print "Key value: " & s_keyvalue

Metadata Traverse i_traversal
Next Into Key s_keyname Into Value s_keyvalue

Loop

' Release this traversal to free memory:
MetaData Traverse i_traversal Destroy

End Sub

See Also:

GetMetadata$() function, TableInfo() function
MapBasic 11.0 414 Reference

Chapter 6:
MGRSToPoint() function
MGRSToPoint() function

Purpose

Converts a string representing an MGRS (Military Grid Reference System) coordinate into a point
object in the current MapBasic coordinate system. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

MGRSToPoint(string)

string is a string expression representing an MGRS coordinate.

The default Longitude/Latitude coordinate system is used as the initial selection.

Return Value

Object

Description

The returned point will be in the current MapBasic coordinate system, which by default is Long/Lat
(no datum). For the most accurate results when saving the resulting points to a table, set the
MapBasic coordinate system to match the destination table's coordinate system before calling
MGRSToPoint(). This will prevent MapInfo Professional from doing an intermediate conversion to
the datumless Long/Lat coordinate system, which can cause a significant loss of precision.

Example

Example 1:

dim obj1 as Object
dim s_mgrs As String
dim obj2 as Object
obj1 = CreatePoint(-74.669, 43.263)
s_mgrs = PointToMGRS$(obj1)
obj2 = MGRSToPoint(s_mgrs)

Example 2:

Open Table "C:\Temp\MyTable.TAB" as MGRSfile
' When using the PointToMGRS$() or MGRSToPoint() functions,
' it is very important to make sure that the current MapBasic
' coordsys matches the coordsys of the table where the
' point object is being stored.
'Set the MapBasic coordsys to that of the table used
Set CoordSys Table MGRSfile
'Update a Character column (for example COL2) with MGRS strings from
'a table of points
Update MGRSfile

Set Col2 = PointToMGRS$(obj)
MapBasic 11.0 415 Reference

Chapter 6:
Mid$() function
'Update two float columns (Col3 & Col4) with
'CentroidX & CentroidY information
'from a character column (Col2) that contains MGRS strings.
Update MGRSfile

Set Col3 = CentroidX(MGRSToPoint(Col2))
Update mgrstestfile ' MGRSfile

Set Col4 = CentroidY(MGRSToPoint(Col2))
Commit Table MGRSfile
Close Table MGRSfile

See Also:

PointToMGRS$() function

Mid$() function

Purpose

Returns a string extracted from the middle of another string. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

Mid$(string_expr, position, length)

string_expr is a string expression.

position is a numeric expression, indicating a starting position in the string.

length is a numeric expression, indicating the number of characters to extract.

Return Value

String

Description

The Mid$() function returns a substring copied from the specified string_expr string.

Mid$() copies length characters from the string_expr string, starting at the character position
indicated by position. A position value less than or equal to one tells MapBasic to copy from the very
beginning of the string_expr string.

If the string_expr string is not long enough, there may not be length characters to copy; thus,
depending on all of the parameters, the Mid$() may or may not return a string length characters
long. If the position parameter represents a number larger than the number of characters in
string_expr, Mid$() returns a null string. If the length parameter is zero, Mid$() returns a null string.
If the length or position parameters are fractional, MapBasic rounds to the nearest integer.

Example

Dim str_var, substr_var As String
str_var = "New York City"
MapBasic 11.0 416 Reference

Chapter 6:
MidByte$() function
substr_var = Mid$(str_var, 10, 4)

' substr_var now contains the string "City"

See Also:

InStr() function, Left$() function, Right$() function

MidByte$() function

Purpose

Accesses individual bytes of a string on a system with a double-byte character system. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

MidByte$(string_expr, position, length)

string_expr is a string expression.

position is an integer numeric expression, indicating a starting position in the string.

length is an integer numeric expression, indicating the number of bytes to return.

Return Value

String

Description

The MidByte$() function returns individual bytes of a string.

Use the MidByte$() function when you need to extract a range of bytes from a string, and the
application is running on a system that uses a double-byte character set (DBCS systems). For
example, the Japanese version of Microsoft Windows uses a double-byte character system.

On systems with single-byte character sets, the results returned by the MidByte$() function are
identical to the results returned by the Mid$() function.

See Also:

InStr() function, Left$() function, Right$() function

Minimum() function

Purpose

Returns the smaller of two numbers. You can call this function from the MapBasic Window in
MapInfo Professional.
MapBasic 11.0 417 Reference

Chapter 6:
Minute function
Syntax

Minimum(num_expr, num_expr)

num_expr is a numeric expression.

Return Value

Float

Description

The Minimum() function returns the smaller of two numeric expressions.

Example

Dim x, y, z As Float
x = 42
y = -100
z = Minimum(x, y)

' z now contains the value: -100

See Also:

Maximum() function

Minute function

Purpose

Returns the minute component of a Time. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Minute (Time)

Return Value

Number

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim X as time
dim iMin as integer
X = CurDateTime()
iMin = Minute(X)
Print iMin
MapBasic 11.0 418 Reference

Chapter 6:
Month() function
Month() function

Purpose

Returns the month component (1 - 12) of a date value. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

Month(date_expr)

date_expr is a date expression.

Return Value

SmallInt value from 1 to 12, inclusive.

Description

The Month() function returns an integer, representing the month component (one to twelve) of the
specified date.

Examples

The following example shows how you can extract just the month component from a particular date
value, using the Month() function.

If Month(CurDate()) = 12 Then
'
' ... then it is December...
'

End If

You can also use the Month() function within the SQL Select statement. The following Select
statement extracts only particular rows from the Orders table. This example assumes that the
Orders table has a Date column, called Order_Date. The Select statement's Where clause tells
MapInfo Professional to only select the orders from December of 1993.

Open Table "orders"
Select *

From orders
Where Month(orderdate) = 12 And Year(orderdate) = 1993

See Also:

CurDate() function, Day() function, Weekday() function, Year() function
MapBasic 11.0 419 Reference

Chapter 6:
Nearest statement
Nearest statement

Purpose

Find the object in a table that is closest to a particular object. The result is a 2-point Polyline object
representing the closest distance. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Nearest [N | All]
From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min_value] [Max max_value]

Units unitname] [Data clause]

N is an optional parameter representing the number of “nearest” objects to find. The default is 1. If
All is used, then a distance object is created for every combination.

fromtable represents a table of objects that you want to find closest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the closest
distances from.

totable represents a table of objects that you want to find closest distances to.

intotable represents a table to place the results into.

min_value is the minimum distance to include in the results.

max_value is the maximum distance to include in the results.

unitname is string representing the name of a distance unit (for example, “km”) used for min_value
and/or max_value.

clause is an expression that specifies the tables that the results come from.

Description

The Nearest statement finds all the objects in the fromtable that are nearest to a particular object.
Every object in the fromtable is considered. For each object in the fromtable, the nearest object in
the totable is found. If N is defined, then the N nearest objects in totable are found. A two-point
Polyline object representing the closest points between the fromtable object and the chosen totable
object is placed in the intotable. If All is specified, then an object is placed in the intotable
representing the distance between the fromtable object and each totable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (for example, if N is greater
than 1), then objects of the same distance will fill subsequent slots. If the tie exists at the second
closest object, and three objects are requested, then the object will become the third closest object.
MapBasic 11.0 420 Reference

Chapter 6:
Nearest statement
The types of the objects in the fromtable and totable can be anything except Text objects. For
example, if both tables contain Region objects, then the minimum distance between Region objects
is found, and the two-point Polyline object produced represents the points on each object used to
calculate that distance. If the Region objects intersect, then the minimum distance is zero, and the
two-point Polyline returned will be degenerate, where both points are identical and represent a point
of intersection.

The distances calculated do not take into account any road route distance. It is strictly a “as the bird
flies” distance.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the
intotable or an error will occur. If the coordinate system of the intotable is NonEarth and the distance
method is Spherical, then an error will occur. If the coordinate system of the intotable is
Latitude/Longitude, and the distance method is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. One use of the Min
distance could be to eliminate distances of zero. This may be useful in the case of two point tables to
eliminate comparisons of the same point. For example, if there are two point tables representing
Cities, and we want to find the closest cities, we may want to exclude cases of the same city. The
entire Ignore clause is optional, as are the Min and Max subclauses within it.

The Max distance can be used to limit the objects to consider in the totable. This may be most useful
in conjunction with N or All. For example, we may want to search for the five airports that are closest
to a set of cities (where the fromtable is the set of cities and the totable is a set of airports), but we
don't care about airports that are farther away than 100 miles. This may result in less than five
airports being returned for a given city. This could also be used in conjunction with the All
parameter, where we would find all airports within 100 miles of a city. Supplying a Max parameter
can improve the performance of the Nearest statement, since it effectively limits the number of
totable objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min_value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Nearest statement.
For example, the first pass may return all objects between 0 and 100 miles, and the second pass
may return all objects between 100 and 200 miles, and the results should not contain duplicates (for
example, a distance of 100 should only occur in the first pass and never in the second pass).

Normally, if one object is contained within another object, the distance between the objects is zero.
For example, if the fromtable is WorldCaps and the totable is World, then the distance between
London and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause,
then the distance will not be automatically be zero. Instead, the distance from London to the
boundary of the United Kingdom will be returned. In effect, this will treat all closed objects, such as
regions, as polylines for the purpose of this operation.
MapBasic 11.0 421 Reference

Chapter 6:
Nearest statement
Data Clause

The Data clause can be used to mark which fromtable object and which totable object the result
came from.

Data IntoColumn1=column1, IntoColumn2=column2

The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals sign must be a valid column name from either totable or
fromtable. If the same column name exists in both totable and fromtable, then the column in totable
will be used (e.g., totable is searched first for column names on the right hand side of the equals
sign). To avoid any conflicts such as this, the column names can be qualified using the table alias:

Data name1=states.state_name, name2=county.state_name

To fill a column in the intotable with the distance, we can either use the Table > Update Column
functionality from the menu or use the Update statement.

Examples

Assume that we have a point table representing locations of ATM machines and that there are at
least two columns in this table: Business, which represents the name of the business which contains
the ATM; and Address, which represents the street address of that business. Assume that the
current selection represents our current location. Then the following will find the closest ATM to
where we currently are:

Nearest From Table selection To atm Into result Data
where=Business,address=Address

If we wanted to find the closest five ATM machines to our current location:

Nearest 5 From Table selection To atm Into result Data
where=Business,address=Address

If we want to find all ATM machines within a 5 mile radius:

Nearest All From Table selection To atm Into result Ignore Max 5 Units
"mi" Data where=buisness,address=address

Assume we have a table of house locations (the fromtable) and a table representing the coastline
(the totable). To find the distance from a given house to the coastline:

Nearest From Table customer To coastline Into result Data
who=customer.name,
where=customer.address,coast_loc=coastline.county,type=coastline.designat
ion

If we don't care about customer locations which are greater than 30 miles from any coastline:

Nearest From Table customer To coastline Into result Ignore Max 30 Units
"mi" Data who=customer.name,
where=customer.address,coast_loc=coastline.county,
type=coastline.designation
MapBasic 11.0 422 Reference

Chapter 6:
Note statement
Assume we have a table of cities (the fromtable) and another table of state capitals (the totable), and
we want to find the closest state capital to each city, but we want to ignore the case where the city in
the fromtable is also a state capital:

Nearest From Table uscty_1k To usa_caps Into result Ignore Min 0 Units
"mi" Data city=uscty_1k.name,capital=usa_caps.capital

See Also:

Farthest statement, CartesianObjectDistance() function, ObjectDistance() function,
SphericalObjectDistance() function, CartesianConnectObjects() function, ConnectObjects()
function, SphericalConnectObjects() function

Note statement

Purpose

Displays a simple message in a dialog box. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Note message

message is an expression to be displayed in a dialog box.

Description

The Note statement creates a dialog box to display a message. The dialog box contains an OK
button; the message dialog box remains on the screen until the user clicks the OK button.

The message expression does not need to be a string expression. If message is an object
expression, MapBasic will automatically produce an appropriate string (for example, “Region”) for
display in the Note dialog box. If the message expression is a string, the string can be up to 300
characters long, and can occupy up to 6 rows.

Example

Note "Total # of records processed: " + Str$(i_count)

See Also:

Ask() function, Dialog statement, Print statement

NumAllWindows() function

Purpose

Returns the number of windows owned by MapInfo Professional, including special windows such as
ButtonPads and the Info window. You can call this function from the MapBasic Window in MapInfo
Professional.
MapBasic 11.0 423 Reference

Chapter 6:
NumberToDate() function
Syntax

NumAllWindows()

Return Value

SmallInt

Description

The NumAllWindows() function returns the number of windows owned by MapInfo Professional.

To determine the number of document windows opened by MapInfo Professional (Map, Browse,
Graph, and Layout windows), call NumWindows().

See Also:

NumWindows() function, WindowID() function

NumberToDate() function

Purpose

Returns a Date value, given an integer. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

NumberToDate(numeric_date)

numeric_date is an eight-digit integer in the form YYYYMMDD (for example, 19951231).

Return Value

Date

Description

The NumberToDate() function returns a Date value represented by an eight-digit integer. For
example, the following function call returns a Date value of December 31, 2006:

NumberToDate(20061231)

Example

The following example subtracts one Date value from another Date. The result of the subtraction is
the number of days between the two dates.

Dim i_elapsed As Integer

i_elapsed = CurDate() - NumberToDate(20060101)

' i_elapsed now contains the number of days
' since January 1, 2006
MapBasic 11.0 424 Reference

Chapter 6:
NumberToDateTime function
See Also:

StringToDate() function

NumberToDateTime function

Purpose

Returns a DateTime value. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

NumberToDateTime(numeric_datetime)

numeric_datetime is an seventeen-digit integer in the form YYYYMMDDHHMMSSFFF. For
example, 20070301214237582 represents March 1, 2007 9:42:37.582 PM.

Return Value

Date/Time

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim fNum as float
dim Y as datetime
fNum = 20070301214237582
Y = NumbertoDateTime (fNum)
Print FormatDate$(Y)
Print FormatTime$(Y,"hh:mm:ss.fff tt")

NumberToTime function

Purpose

Returns a Time value. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

NumberToTime(numeric_time)

numeric_time is an nine-digit integer in the form HHMMSSFFF. For example, 214237582 represents
9:42:37.582 P.M.

Return Value

Time
MapBasic 11.0 425 Reference

Chapter 6:
NumCols() function
Example

Copy this example into the MapBasic window for a demonstration of this function.

dim fNum as float
dim Y as time
fNum = 214237582
Y = NumberToTime(fNum)
Print FormatTime$(Y,"hh:mm:ss.fff tt")

NumCols() function

Purpose

Returns the number of columns in a specified table. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

NumCols(table)

table is the name of an open table.

Return Value

SmallInt

Description

The NumCols() function returns the number of columns contained in the specified open table.

The number of columns returned by NumCols() does not include the special column known as
Object (or Obj for short), which refers to the graphical objects attached to mappable tables. Similarly,
the number of columns returned does not include the special column known as RowID.

If a table has temporary columns (for example, because of an Add Column statement), the
number returned by NumCols() includes the temporary column(s).

Error Conditions

ERR_TABLE_NOT_FOUND (405) error generated if the specified table is not available.

Example

Dim i_counter As Integer
Open Table "world"
i_counter = NumCols(world)

See Also:

ColumnInfo() function, NumTables() function, TableInfo() function
MapBasic 11.0 426 Reference

Chapter 6:
NumTables() function
NumTables() function

Purpose

Returns the number of tables currently open. You can call this function from the MapBasic Window
in MapInfo Professional.

Syntax

NumTables()

Return Value

SmallInt

Description

The NumTables() function returns the number of tables that are currently open.

A street-map table may consist of two “companion” tables. For example, when you open the
Washington, DC street map named DCWASHS, MapInfo Professional secretly opens the two
companion tables DCWASHS1.TAB and DCWASHS2.TAB. However, MapInfo Professional treats
the DCWASHS table as a single table; for example, the Layer Control window shows only the table
name DCWASHS. Similarly, the NumTables() function counts a street map as a single table,
although it may actually be composed of two companion tables.

Example

If NumTables() < 1 Then
Note "You must open a table before continuing."

End If

See Also:

Open Table statement, TableInfo() function, ColumnInfo() function

NumWindows() function

Purpose

Returns the number of open document windows (Map, Browse, Graph, Layout). You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

NumWindows()

Return Value

SmallInt
MapBasic 11.0 427 Reference

Chapter 6:
NumWindows() function
Description

The NumWindows() function returns the number of Map, Browse, Graph, and Layout windows that
are currently open. The result is independent of whether windows are minimized or not.

To determine the total number of windows opened by MapInfo Professional (including ButtonPads
and special windows such as the Info window), call NumAllWindows().

Example

Dim num_open_wins As SmallInt
num_open_wins = NumWindows()

See Also:

NumAllWindows() function, WindowID() function
MapBasic 11.0 428 Reference

Chapter 6:
NumWindows() function
MapBasic 11.0 429 Reference

Chapter 6:
NumWindows() function
MapBasic 11.0 430 Reference

Chapter 7:
ObjectDistance() function
ObjectDistance() function

Purpose

Returns the distance between two objects. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

ObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Return Value

Float

Description

ObjectDistance() returns the minimum distance between object1 and object2 using a spherical
calculation method with the return value in unit_name. If the calculation cannot be done using a
spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then a cartesian
distance method will be used.

ObjectGeography() function

Purpose

Returns coordinate or angle information describing a graphical object. You can call this function from
the MapBasic Window in MapInfo Professional.

Syntax

ObjectGeography(object, attribute)

object is an Object expression.

attribute is an integer code specifying which type of information should be returned.

Return Value

Float

Description

The attribute parameter controls which type of information will be returned. The table below
summarizes the different codes that you can use as the attribute parameter; codes in the left column
(for example, OBJ_GEO_MINX) are defined in MAPBASIC.DEF.
MapBasic 11.0 431 Reference

Chapter 7:
ObjectGeography() function
Some attributes apply only to certain types of objects. For example, arc objects are the only objects
with begin-angle or end-angle attributes, and text objects are the only objects with the text-angle
attribute. If an object does not support z- or m-values, or a z- or m-value for this node is not defined,
then an error is thrown.

attribute setting ID Return value (Float)

OBJ_GEO_MINX 1 Minimum x-coordinate of an object's minimum bounding
rectangle (MBR), unless the object is a line; if the object is
a line, returns same value as OBJ_GEO_LINEBEGX.

OBJ_GEO_MINY 2 Minimum y-coordinate of object's MBR. For lines, returns
OBJ_GEO_LINEBEGY value.

OBJ_GEO_MAXX 3 Maximum x-coordinate of object's MBR. Does not apply to
Point objects. For lines, returns OBJ_GEO_LINEENDX
value.

OBJ_GEO_MAXY 4 Maximum y-coordinate of the object's MBR. Does not
apply to Point objects. For lines, returns
OBJ_GEO_LINEENDY value.

OBJ_GEO_ARCBEGANGLE 5 Beginning angle of an Arc object.

OBJ_GEO_ARCENDANGLE 6 Ending angle of an Arc object.

OBJ_GEO_LINEBEGX 1 X-coordinate of the starting node of a Line object.

OBJ_GEO_LINEBEGY 2 Y-coordinate of the starting node of a Line object.

OBJ_GEO_LINEENDX 3 X-coordinate of the ending node of a Line object.

OBJ_GEO_LINEENDY 4 Y-coordinate of the ending node of a Line object.

OBJ_GEO_POINTX 1 X-coordinate of a Point object.

OBJ_GEO_POINTY 2 Y-coordinate of a Point object.

OBJ_GEO_POINTZ 8 Z-value of a Point object.

OBJ_GEO_POINTM 9 M-value of a Point object.

OBJ_GEO_ROUNDRADIUS 5 Diameter of the circle that defines the rounded corner of a
Rounded Rectangle object, expressed in terms of
coordinate units (for example, degrees).

OBJ_GEO_CENTROID 5 Returns a point object for centroid of regions, collections,
multipoints, and polylines. This is most commonly used
with the Alter Object statement.

OBJ_GEO_TEXTLINEX 5 X-coordinate of the end of a Text object's label line.
MapBasic 11.0 432 Reference

Chapter 7:
ObjectInfo() function
The ObjectGeography() function has been extended to support Multipoints and Collections. Both
types support attributes 1 - 4 (coordinates of object's minimum bounding rectangle (MBR).

.

Example

The following example reads the starting coordinates of a line object from the table City. A Set Map
statement then uses these coordinates to re-center the Map window.

Include "MAPBASIC.DEF"
Dim i_obj_type As Integer, f_x, f_y As Float
Open Table "city"
Map From city
Fetch First From city
' at this point, the expression:
' city.obj
' represents the graphical object that's attached
' to the first record of the CITY table.
i_obj_type = ObjectInfo(city.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_LINE Then

f_x = ObjectGeography(city.obj, OBJ_GEO_LINEBEGX)
f_y = ObjectGeography(city.obj, OBJ_GEO_LINEBEGY)
Set Map Center (f_x, f_y)

End If

See Also:

Centroid() function, CentroidX() function, CentroidY() function, ObjectInfo() function

ObjectInfo() function

Purpose

Returns Pen, Brush, or other values describing a graphical object. You can call this function from the
MapBasic Window in MapInfo Professional.

OBJ_GEO_TEXTLINEY 6 Y-coordinate of the end of a Text object's label line.

OBJ_GEO_TEXTANGLE 7 Rotation angle of a Text object.

attribute setting ID Return value (Float)

OBJ_GEO_MINX 1 Minimum x-coordinate of an object's MBR.

OBJ_GEO_MINY 2 Minimum y-coordinate of an object's MBR.

OBJ_GEO_MAXX 3 Maximum x-coordinate of an object's MBR.

OBJ GEO_MAXY 4 Maximum y-coordinate of an object's MBR.
MapBasic 11.0 433 Reference

Chapter 7:
ObjectInfo() function
Syntax

ObjectInfo(object, attribute)

object is an Object expression.

attribute is an integer code specifying which type of information should be returned.

Return Value

SmallInt, integer, string, float, Pen, Brush, Symbol, or Font, depending on the attribute parameter

OBJ_INFO_NPOLYGONS (21) is an integer that indicates the number of polygons (in the case of a
region) or sections (in the case of a polyline) which make up an object.

OBJ_INFO_NPOLYGONS+N (21) is an integer that indicates the number of nodes in the Nth
polygon of a region or the Nth section of a polyline.

With region objects, MapInfo Professional counts the starting node twice (once as the start
node and once as the end node). For example, ObjectInfo() returns a value of 4 for a
triangle-shaped region.

Description

The ObjectInfo() function returns general information about one aspect of a graphical object. The
first parameter should be an object value (for example, the name of an Object variable, or a table
expression of the form tablename.obj).

Each object has several attributes. For example, each object has a “type” attribute, identifying
whether the object is a point, a line, or a region, etc. Most types of objects have Pen and/or Brush
attributes, which dictate the object's appearance. The ObjectInfo() function returns one attribute of
the specified object. Which attribute is returned depends on the value used in the attribute
parameter. Thus, if you need to find out several pieces of information about an object, you will need
to call ObjectInfo() a number of times, with different attribute values in each call.

The table below summarizes the various attribute settings, and the corresponding return values.

attribute Setting ID Return Value

OBJ_INFO_TYPE 1 SmallInt, representing the object type; the return value is
one of the values listed in the table below (for example,
OBJ_TYPE_LINE). This attribute from the DEF file is 1
(ObjectInfo(Object, 1)).

OBJ_INFO_PEN 2 Pen style is returned; this query is only valid for the
following object types: Arc, Ellipse, Line, Polyline, Frame,
Regions, Rectangle, and Rounded Rectangle.

OBJ_INFO_BRUSH 3 Brush style is returned; this query is only valid for the
following object types: Ellipse, Frame, Region, Rectangle,
and Rounded Rectangle.
MapBasic 11.0 434 Reference

Chapter 7:
ObjectInfo() function
OBJ_INFO_TEXTFONT 2 Font style is returned; this query is only valid for Text
objects.

If the Text object is contained in a mappable table
(as opposed to a Layout window), the Font
specifies a point size of zero, and the text height is
controlled by the Map window's zoom distance.

OBJ_INFO_SYMBOL 2 Symbol style; this query is only valid for Point objects.

OBJ_INFO_NPNTS 20 Integer, indicating the total number of nodes in a polyline
or region object.

OBJ_INFO_SMOOTH 4 Logical, indicating whether the specified Polyline object is
smoothed.

OBJ_INFO_FRAMEWIN 4 Integer, indicating the window ID of the window attached
to a Frame object.

OBJ_INFO_FRAMETITLE 6 String, indicating a Frame object's title.

OBJ_INFO_NPOLYGONS 21 SmallInt, indicating the number of polygons (in the case of
a region) or sections (in the case of a polyline) which
make up an object.

OBJ_INFO_NPOLYGONS+N 21 Integer, indicating the number of nodes in the Nth polygon
of a region or the Nth section of a polyline.

With region objects, MapInfo Professional counts
the starting node twice (once as the start node and
once as the end node). For example, ObjectInfo()
returns a value of 4 for a triangle-shaped region.

OBJ_INFO_TEXTSTRING 3 String, representing the body of a Text object; if the object
has multiple lines of text, the string includes embedded
line-feeds (Chr$(10) values).

OBJ_INFO_TEXTSPACING 4 Float value of 1, 1.5, or 2, representing a Text object's line
spacing.

OBJ_INFO_TEXTJUSTIFY 5 SmallInt, representing justification of a Text object: 0 =
left, 1 = center, 2 = right.

OBJ_INFO_TEXTARROW 6 SmallInt, representing the line style associated with a Text
object: 0 = no line, 1 = simple line, 2 = arrow line.

attribute Setting ID Return Value
MapBasic 11.0 435 Reference

Chapter 7:
ObjectInfo() function
The codes in the left column (for example, OBJ_INFO_TYPE) are defined through the MapBasic
definitions file, MAPBASIC.DEF. Your program should Include “MAPBASIC.DEF” if you intend to
call the ObjectInfo() function.

Each graphic attribute only applies to some types of graphic objects. For example, point objects are
the only objects with Symbol attributes, and text objects are the only objects with Font attributes.
Therefore, the ObjectInfo() function cannot return every type of attribute setting for every type of
object.

OBJ_INFO_FILLFRAME 7 Logical: TRUE if the object is a frame that contains a Map
window, and the frame's “Fill Frame With Map” setting is
checked.

OBJ_INFO_NONEMPTY 11 Logical, returns TRUE if a Multipoint object has nodes, or
FALSE if the object is empty.

OBJ_INFO_REGION 8 Object value representing the region part of a collection
object. If the collection object does not have a region, it
returns an empty region. This query is valid only for
collection objects.

OBJ_INFO_PLINE 9 Object value representing polyline part of a collection
object. If the collection object does not have a polyline, it
returns an empty polyline object. This query is valid only
for collection objects.

OBJ_INFO_MPOINT 10 Object value representing the Multipoint part of a
collection object. If the collection object does not have a
Multipoint, it returns an empty Multipoint object. This
query is valid only for collection objects.

OBJ_INFO_Z_UNIT_SET 12 Logical, indicating whether z units are defined.

OBJ_INFO_Z_UNIT 13 String result: indicates distance units used for z-values.
Returns an empty string if units are not specified.

OBJ_INFO_HAS_Z 14 Logical, indicating whether the object has z-values.

OBJ_INFO_HAS_M 15 Logical, indicating whether the object has m-values.

attribute Setting ID Return Value
MapBasic 11.0 436 Reference

Chapter 7:
ObjectInfo() function
If you specify OBJ_INFO_TYPE as the attribute setting, the ObjectInfo() function returns one of the
object types listed in the table below.

Example

Include "MAPBASIC.DEF"
Dim counter, obj_type As Integer
Open Table "city"
Fetch First From city

' at this point, the expression: city.obj
' represents the graphical object that's attached
' to the first record of the CITY table.

obj_type = ObjectInfo(city.obj, OBJ_INFO_TYPE)
Do Case obj_type

Case OBJ_TYPE_LINE
Note "First object is a line."

Case OBJ_TYPE_PLINE
Note "First object is a polyline..."
counter = ObjectInfo(city.obj, OBJ_INFO_NPNTS)
Note " ... with " + Str$(counter) + " nodes."

Case OBJ_TYPE_REGION
Note "First object is a region..."
counter = ObjectInfo(city.obj, OBJ_INFO_NPOLYGONS)
Note ", made up of " + Str$(counter) + " polygons..."
counter = ObjectInfo(city.obj, OBJ_INFO_NPOLYGONS+1)

OBJ_INFO_TYPE values

OBJ_INFO_TYPE values ID Corresponding object type

OBJ_TYPE_ARC 1 Arc object

OBJ_TYPE_ELLIPSE 2 Ellipse / circle objects

OBJ_TYPE_LINE 3 Line object

OBJ_TYPE_PLINE 4 Polyline object

OBJ_TYPE_POINT 5 Point object

OBJ_TYPE_FRAME 6 Layout window Frame object

OBJ_TYPE_REGION 7 Region object

OBJ_TYPE_RECT 8 Rectangle object

OBJ_TYPE_ROUNDRECT 9 Rounded rectangle object

OBJ_TYPE_TEXT 10 Text object

OBJ_TYPE_MULTIPOINT 11 Collection point object

OBJ_TYPE_COLLECTION 12 Collection text object
MapBasic 11.0 437 Reference

Chapter 7:
ObjectLen() function
Note "The 1st polygon has" + Str$(counter) + " nodes"
End Case

See Also:

Alter Object statement, Brush clause, Font clause, ObjectGeography() function, Pen clause,
Symbol clause

ObjectLen() function

Purpose

Returns the geographic length of a line or polyline object. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

ObjectLen(expr, unit_name)

expr is an object expression.

unit_name is a string representing the name of a distance unit (for example, “mi” for miles).

Return Value

Float

Description

The ObjectLen() function returns the length of an object expression. Note that only line and polyline
objects have length values greater than zero; to measure the circumference of a rectangle, ellipse,
or region, use the Perimeter() function.

The ObjectLen() function returns a length measurement in the units specified by the unit_name
parameter; for example, to obtain a length in miles, specify “mi” as the unit_name parameter. See
Set Distance Units statement for the list of valid unit names.

For the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
Spherical operation is performed unless the coordinate system is nonEarth, in which case, a
Cartesian operation is performed.

Example

Dim geogr_length As Float
Open Table "streets"
Fetch First From streets
geogr_length = ObjectLen(streets.obj, "mi")
' geogr_length now represents the length of the
' street segment, in miles
MapBasic 11.0 438 Reference

Chapter 7:
ObjectNodeHasM() function
See Also:

Distance() function, Perimeter() function, Set Distance Units statement

ObjectNodeHasM() function

Purpose

Returns TRUE if a specific node in a region, polyline or multipoint object has an m-value. You can
call this function from the MapBasic Window in MapInfo Professional.

Syntax

ObjectNodeHasM(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive integer value indicating which node to read.

Return Value

Logical

Description

The ObjectNodeHasM() function returns TRUE if the specific node from a region, polyline, or
multipoint object has an m-value.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeHasM()
function supports Multipoint objects and returns TRUE if a specific node in a Multipoint object has an
m-value.

The node_num parameter must have a value of one or more; this tells MapBasic which of the
object's nodes should be queried. You can use the ObjectInfo() function to determine the number
of nodes in an object.

If the object does not support m-values or an m-value for this node is not defined, it returns FALSE.

Example

The following example queries the first graphic object in the table Routes. If the first object is a
polyline, the program queries if the first node in the object has z-coordinates or m-values and
queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float
hasZ, hasM as Logical

Open Table "routes"
Fetch First From routes
MapBasic 11.0 439 Reference

Chapter 7:
ObjectNodeHasZ() function
' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
If (ObjectNodeHasZ(routes.obj, 1, 1)) Then

z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
End If
If (ObjectNodeHasM(routes.obj, 1, 1)) Then

m = ObjectNodeM(routes.obj, 1, 1) ' read m-value
End If

End If

See Also:

Querying Map Objects, ObjectInfo() function

ObjectNodeHasZ() function

Purpose

Returns TRUE if a specific node in a region, polyline, or multipoint object has a z-coordinate. You
can call this function from the MapBasic Window in MapInfo Professional.

Syntax

ObjectNodeHasZ(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive integer value indicating which node to read.

Return Value

Logical

Description

The ObjectNodeHasZ() function returns TRUE if a specific node from a region, polyline, or
multipoint object has a z-coordinate. The polygon_num parameter must have a value of one or
more. This specifies which polygon (if querying a region) or which section (if querying a polyline)
should be queried. Call the ObjectInfo() function to determine the number of polygons or sections
in an object. The ObjectNodeHasZ() function supports Multipoint objects and returns TRUE if a
specific node in a Multipoint object has a z-coordinate.
MapBasic 11.0 440 Reference

Chapter 7:
ObjectNodeM() function
The node_num parameter must have a value of one or more; this tells MapBasic which of the
object's nodes should be queried. You can use the ObjectInfo() function to determine the number
of nodes in an object.

If object does not support z-coordinates or a z-coordinate for this node is not defined, it returns
FALSE.

Example

The following example queries the first graphic object in the table Routes. If the first object is a
polyline, the program queries if the first node in the object has z-coordinates or m-values and
queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float
hasZ, hasM as Logical

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
If (ObjectNodeHasZ(routes.obj, 1, 1)) Then

z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
End If
If (ObjectNodeHasM(routes.obj, 1, 1)) Then

m = ObjectNodeM(routes.obj, 1, 1) ' read m-value
End If

End If

See Also:

Querying Map Objects, ObjectInfo() function

ObjectNodeM() function

Purpose

Returns the m-value of a specific node in a region, polyline, or multipoint object. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

ObjectNodeM(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).
MapBasic 11.0 441 Reference

Chapter 7:
ObjectNodeM() function
node_num is a positive integer value indicating which node to read.

Return Value

Float

Description

The ObjectNodeM() function returns the m-value of a specific node from a region, polyline, or
multipoint object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region), or which section (if querying a polyline), should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeM()
function supports Multipoint objects and returns the m-value of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the
object's nodes should be queried. You can use the ObjectInfo() function to determine the number
of nodes in an object.

If an object does not support m-values, or an m-value for this node is not defined, then an error is
thrown.

Example

The following example queries the first graphic object in the table Routes. If the first object is a
polyline, the program queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM(routes.obj, 1, 1) ' read m-value

End If

See Also:

Querying Map Objects, ObjectInfo() function
MapBasic 11.0 442 Reference

Chapter 7:
ObjectNodeX() function
ObjectNodeX() function

Purpose

Returns the x-coordinate of a specific node in a region or polyline object. You can call this function
from the MapBasic Window in MapInfo Professional.

Syntax

ObjectNodeX(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive integer value indicating which node to read.

Return Value

Float

Description

The ObjectNodeX() function returns the x-value of a specific node from a region or polyline object.
The corresponding ObjectNodeY() function returns the y-coordinate value.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeX()
function supports Multipoint objects and returns the x-coordinate of a specific node in a Multipoint
object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the
object's nodes should be queried. You can use the ObjectInfo() function to determine the number
of nodes in an object. The ObjectNodeX() function returns the value in the coordinate system
currently in use by MapBasic; by default, MapBasic uses a Longitude/Latitude coordinate system.
See Set CoordSys statement for more information about coordinate systems.

Example

The following example queries the first graphic object in the table Routes. If the first object is a
polyline, the program queries the x- and y-coordinates of the first node in the polyline, then creates a
new Point object at the location of the polyline's starting node.

Dim i_obj_type As SmallInt, x, y As Float, new_pnt As Object
Open Table "routes"
Fetch First From routes
' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.
MapBasic 11.0 443 Reference

Chapter 7:
ObjectNodeY() function
i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then
' ... then the object is a polyline...

x = ObjectNodeX(routes.obj, 1, 1) ' read longitude
y = ObjectNodeY(routes.obj, 1, 1) ' read latitude
Create Point Into Variable new_pnt (x, y)
Insert Into routes (obj) Values (new_pnt)

End If

See Also:

Alter Object statement, ObjectGeography() function, ObjectInfo() function, ObjectNodeY()
function, Set CoordSys statement

ObjectNodeY() function

Purpose

Returns the y-coordinate of a specific node in a region or polyline object. You can call this function
from the MapBasic Window in MapInfo Professional.

Syntax

ObjectNodeY(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive integer value indicating which node to read.

Return Value

Float

Description

The ObjectNodeY() function returns the y-value of a specific node from a region or polyline object.
See ObjectNodeX() function for more information.

Example

See ObjectNodeX() function.

See Also:

Alter Object statement, ObjectGeography() function, ObjectInfo() function, Set CoordSys
statement
MapBasic 11.0 444 Reference

Chapter 7:
ObjectNodeZ() function
ObjectNodeZ() function

Purpose

Returns the z-value of a specific node in a region, polyline, or multipoint object.

Syntax

ObjectNodeZ(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive integer value indicating which node to read

Return Value

Float

Description

The ObjectNodeZ() function returns the z-value of a specific node from a region, polyline, or
multipoint object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeZ()
function supports Multipoint objects and returns the z-coordinate of a specific node in a Multipoint
object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the
object's nodes should be queried. You can use the ObjectInfo() function to determine the number
of nodes in an object.

If object does not support Z-values, or Z-value for this node is not defined, then an error is thrown.

Example

The following example queries the first graphic object in the table Routes. If the first object is a
polyline, the program queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then
MapBasic 11.0 445 Reference

Chapter 7:
Objects Check statement
' ... then the object is a polyline...
z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM(routes.obj, 1, 1) ' read m-value

End If

See Also:

Querying Map Objects, ObjectInfo() function

Objects Check statement

Purpose

Checks a given table for various aspects of incorrect data, or possible incorrect data, which may
cause problems and/or incorrect results in various operations. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Objects Check From tablename Into Table tablename
[SelfInt [Symbol Clause]]
[Overlap [Pen Clause] [Brush Clause]]
[Gap Area [Unit Units] [Pen Clause] [Brush Clause]]]

tablename is a string representing the name of a table.

Clause is an expression.

Units is a value of an area.

Description

Objects Check will check the table designated in the From clause for various aspects of bad data
which may cause problems or incorrect results with various operations. Only region objects will be
checked. The region objects will be optionally checked for self-intersections, and areas of overlap
and gaps.

Self-intersections may cause problems with various calculations, including the calculation for the
area of a region. They may also cause incorrect results from various object-processing operations,
such as combine, buffer, erase, erase outside, and split.

For any of these problems, a point object is created and placed into the output table. The output
table can be supplied through the Into Table clause. If no Into Table clause exists, the output data
is placed into the same table as the input table.

If the SelfInt option is included, then the table will be checked for self-intersections. Where found,
point objects are created using the style provided by the Symbol clause. By default, this is a 28-
point red pushpin.

Many region tables are designed to be boundary tables. The STATES.TAB and WORLD.TAB files
provided with the sample data are examples of boundary tables. In tables such as these, boundaries
should not overlap (for example, the state of Utah should not overlap with the state of Wyoming).
The Overlap option will check the table for places where regions overlap with other regions.
MapBasic 11.0 446 Reference

Chapter 7:
Objects Clean statement
Regions will be created in the output table representing any areas of overlap. These regions will be
created using the Brush clause to represent the interior of the regions, and the Pen clause to
represent the boundary of the regions. By default, these regions are drawn with solid yellow interiors
and thin black boundaries.

Gaps are enclosed areas where no region object currently exists. In a boundary table, most regions
abut other regions and share a common boundary. Just as there should be no overlaps between the
regions, there should also be no gaps between the regions. In some cases, these boundary gaps
are legitimate for the data. An example of this would be the Great Lakes in the World map, which
separate parts of Canada from the USA. Most gaps that are data problems occur because adjacent
boundaries do not have common boundaries that completely align. These gap areas are generally
small.

To help weed out the legitimate gap areas, such as the Great Lakes, from problem gap areas, a Gap
Area is used. Any potential gap that is larger than this gap area is discarded and not reported. The
units that the Gap Area is in is presented by the Units clause. If the Units sub-clause is not present,
then the Gap Area value will be interpreted in MapBasic's current area unit.

Gaps will be presented using the Pen clause and Brush clause that follow the Gap keyword. By
default, these regions are drawn with blue interiors and a thin black boundary.

Example

This example will run Objects Check on the table called TestFile and store the results in the table
called DumpFile. It will also use the Overlap keyword and change the default Point and Polygon
styles.

objects check from TestFile into table Dumpfile Overlap
Selfint Symbol (67,16711680,28)
Overlap Pen (1,2,0) Brush (2,16776960,0)
Gap 100000 Units "sq mi" Pen (1,2,0) Brush (2,255,0)

See Also:

Objects Enclose statement

Objects Clean statement

Purpose

Cleans the objects from the given table, and optionally removes overlaps and gaps between
regions. The table may be the Selection table. All objects to be cleaned must be closed object types
(for example, regions, rectangles, rounded rectangles, or ellipses). You can issue this statement
from the MapBasic Window in MapInfo Professional.

Syntax

Objects Clean From tablename
[Overlap]
[Gap Area [Unit Units]]

tablename is a string representing the name of a table.
MapBasic 11.0 447 Reference

Chapter 7:
Objects Clean statement
Units is a value of an area.

Description

The objects in the input tablename are first checked for various data problems and inconsistencies,
such as self-intersections, overlaps, and gaps. Self-intersecting regions in the form of a figure 8 will
be changed into a region containing two polygons that touch each other at a single point. Regions
containing spikes will have the spike portion removed. The resulting cleaned object will replace the
original input object.

If the Overlap keyword is included, then overlapping areas will be removed from regions. The
portion of the overlap will be removed from all overlapping regions except the one with the largest
area.

Objects Clean removes the overlap when one object is completely inside another. This is an
exception to the rule of “biggest object wins”. If one object is completely inside another
object, then the object that is inside remains, and a hole is punched in the containing object.
The result does not contain any overlaps.

Gaps are enclosed areas where no region object currently exists. In a boundary table, most regions
abut other regions and share a common boundary. Just as there should be no overlaps between the
regions, there should also be no gaps between the regions. In some cases, both these boundary
gaps and holes are legitimate for the data. An example of this would be the Great Lakes in the World
map, which separate parts of Canada from the USA. Most gaps that are data problems occur
because adjacent boundaries do not have common boundaries that completely align. These gap
areas are generally small.

To help weed out the legitimate gap areas, such as the Great Lakes, from problem gap areas, a Gap
Area is used. Any potential gap that is larger than this gap area is discarded and not reported. The
units of the Gap Area are indicated by the Units sub-clause. If the Units sub-clause is not present,
then the Gap Area value is interpreted in MapBasic's current area unit. Gaps that are found will be
removed by combining the area defining the gap to the region with the largest area that touches the
gap. To help determine a reasonable Gap Area, use the Objects Check statement. Any gaps that
the Objects Check statement flags will be removed with the Objects Clean statement.

Example

Open Table "STATES.TAB" Interactive
Map From STATES
Set Map Layer 1 Editable On
select * from STATES
Objects Clean From Selection Overlap Gap 10 Units "sq m"

See Also:

Create Object statement, Objects Disaggregate statement, Objects Check statement
MapBasic 11.0 448 Reference

Chapter 7:
Objects Combine statement
Objects Combine statement

Purpose

Combines objects in a table; corresponds to MapInfo Professional's Objects > Combine command.
You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Objects Combine
[Into Target]
[Data column = expression [, column = expression ...]]

column is a string representing the name of a column in the table being modified.

expression is an expression used to populate the column.

Description

Objects Combine creates an object representing the geographic union of the currently selected
objects. Optionally, Objects Combine can also perform data aggregation, calculating sums or
averages of the data values that are associated with the objects being combined.

The Objects Combine statement corresponds to MapInfo Professional's Objects > Combine menu
item. For an introduction to this operation, see the discussion of the Objects > Combine menu item
in the MapInfo Professional User Guide. To see a demonstration of the Objects Combine
statement, run MapInfo Professional, open the MapBasic Window, and use the Objects > Combine
command. Objects involved in the combine operation must either be all closed objects (for example,
regions, rectangles, rounded rectangles, or ellipses) or all linear objects (for example, lines,
polylines, or arcs). Mixed closed and linear objects as well as point and text objects are not allowed.

The optional Into Target clause is only valid if an editing target has been specified (either by the
user or through the Set Target statement), and only if the target consists of one object. If you
include the Into Target clause, MapInfo Professional combines the currently-selected objects with
the current target object. The object produced by the combine operation then replaces the object
that had been the editing target.

If you include the Into Target clause, and if the selected objects are from the same table as the
target object, MapInfo Professional deletes the rows corresponding to the selected objects.

If you include the Into Target clause, and if the selected objects are from a different table than the
target object, MapInfo Professional does not delete the selected objects. If you omit the Into Target
clause, MapInfo Professional combines the currently-selected objects without involving the current
editing target (if there is an editing target). The rows corresponding to the selected objects are
deleted, and a new row is added to the table, containing the object produced by the combine
operation.

The Data clause controls data aggregation. (For an introduction to data aggregation, see the
description of the Objects > Combine operation in the MapInfo Professional User Guide.) The Data
clause includes a comma-separated list of assignments. You can assign any expression to a
column, assuming the expression is of the correct data type (numeric, string, etc.).
MapBasic 11.0 449 Reference

Chapter 7:
Objects Disaggregate statement
The following table lists the more common types of column assignments:

The Data clause can contain an assignment for every column in the table. If the Data clause only
includes assignments for some of the columns, MapBasic assigns blank values to those columns
that are not listed in the Data clause. If you omit the Data clause entirely, but you include the Into
Target clause, then MapInfo Professional retains the target object's original column values.

If you omit both the Data clause and the Into Target clause, then the object produced by the
combine operation is stored in a new row, and MapInfo Professional assigns blank values to all of
the columns of the new row.

See Also:

Combine() function, Set Target statement

Objects Disaggregate statement

Purpose

Breaks an object into its component parts. You can issue this statement from the MapBasic Window
in MapInfo Professional.

Syntax

Objects Disaggregate [Into Table name]
[All | Collection]
[Data column_name = expression [, column_name = expression ...]

name is a string representing the name of a table to store the disaggregated objects.

Expression Description

col_name = col_name The column contents are not altered.

col_name = value MapBasic stores the hard-coded value in the column of
the result object.

col_name = Sum(col_name) Used only for numeric columns. The column in the result
object contains the sum of the column values of all
objects being combined.

col_name = Avg(col_name) Used only for numeric columns. The column in the result
object contains the average of column values of all
objects in the group.

col_name = WtAvg(colname,
wtcolname)

Used only for numeric columns. MapInfo Professional
performs weighted averaging, averaging all of the
col_name column values, and weighting the average
calculation based on the contents of the wt_colname
column.
MapBasic 11.0 450 Reference

Chapter 7:
Objects Disaggregate statement
column_name is a string representing the name of a column in the table being modified.

expression is an expression used to determine what is placed into the column_name columns.

Description

If an object contains multiple entities, then a new object is created in the output table for each entity.

By default, any multi-part object will be divided into its atomic parts. A Region object will be broken
down into some number of region objects, depending on the All flag. If the All flag is present, then
the Region will produce a series of single polygon Region objects, one object for each polygon
contained in the original object. Holes (interior boundaries) will produce solid single polygon Region
objects. If the All flag is not present, then Holes will be retained in the output objects. For example, if
an input Region contains three polygons, and one of those polygons is a Hole in another polygon,
then the output will be two Region objects, one of which will contain the hole.

Multiple-section Polyline objects will produce new single-section Polyline objects. Multipoint objects
will produce new Point objects, one Point object per node from the input Multipoint.

Collections will be treated recursively. If a Collection contains a Region, then new Region objects will
be produced as described above, depending on the All switch. If the Collection contains a Polyline
object, the new Polyline objects will be produced for each section that exists in the input object. If a
Collection contains a Multipoint, then new Point objects will be produced, one Point object for each
node in the Mutlipoint. All other object types, including Points, Lines, Arcs, Rectangles, Rounded
Rectangles, and Ellipses, which are already single component objects, will be moved to the output
unchanged.

If a Region contains a single polygon, it will be passed unchanged to the output. If a Polyline object
contains a single section, it will be passed unchanged to the output. If a Multipoint object contains a
single node, the output object will be changed into a Point object containing that node. Arcs,
Rectangles, Rounded Rectangles, and Ellipses will be passed unchanged to the output. Other
object types, such as Text, will not be accepted by the Objects Disaggregate statement, and will
produce an error.

The Collection keyword will only break up Collection objects. If a Collection object contains a
Region, then that Region will be a new object on output. If a Collection object contains a Polyline,
then that Polyline will be a new object in the output. If a Collection object contains a Multipoint, then
that Multipoint will be a new object in the output. This differs from the above functionality since the
output Region may contain multiple polygons, the output Polyline may contain multiple segments.
The functionality above will never produce a Multipoint object.

With the Collection keyword, all other object types, including Points, Multipoints, Lines, Polylines,
Arcs, Regions, Rectangles, Rounded Rectangles, and Ellipses, will be passed to the output
unchanged.

If no Into Table is provided, the currently editable table is used as the output table. The input objects
are taken from the current selection.
MapBasic 11.0 451 Reference

Chapter 7:
Objects Enclose statement
The optional Data clause controls what values are stored in the columns of the target objects. The
Data clause can contain a comma-separated list of column assignments. Each column assignment
can take one of the forms listed in the following table:

The Data clause can contain an assignment for every column in the table. If the Data clause only
specifies assignments for some of the columns, blank values are assigned to those columns that are
not listed in the Data clause. If you omit the Data clause entirely, all columns are blanked out of the
target objects, storing zero values in numeric columns and blank values in character columns.

Example

Open Table "STATES.TAB" Interactive
Map From STATES
Set Map Layer 1 Editable On
select * from STATES
Objects Disaggregate Into Table STATES

See Also:

Create Object statement

Objects Enclose statement

Purpose

Creates regions that are formed from collections of polylines; corresponds to MapInfo Professional's
Objects > Enclose menu item. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Objects Enclose
[Into Table tablename]
[Region]

tablename is a string representing the name of the table you want to place objects in.

Assignment Effect

col_name = col_name Does not alter the value stored in the column.

col_name = value Stores a specific value in the column. If the
column is a character column, the value can be a
string. If the column is a numeric column, the
value can be a number.

col_name = Proportion(col_name) Used only for numeric columns; reduces the
number stored in the column in proportion to how
much of the object's area was erased.
MapBasic 11.0 452 Reference

Chapter 7:
Objects Erase statement
Description

Objects Enclose creates objects representing closures linear objects (lines, polylines, and arcs). A
new region is created for each enclosed polygonal area. Input objects are obtained from the current
selection. Unlike the Objects Combine statement, the Objects Enclose statement does not
remove the original input objects. No data aggregation is done.

The optional Region clause allows closed objects (regions, rectangles, rounded rectangles, and
ellipses) to be used as input to the Objects Enclose statement. The input regions will be converted
to Polylines for the purpose of this operation. The effects are identical to first converting any closed
objects to Polyline objects, and then performing the Objects Enclose operation. All input objects
must be linear or closed, and any other objects (for example, points, multipoints, collections, and
text) will cause the operation to produce an error. If closed objects exist in the selection, and the
Region keyword is not present, then those objects will be ignored.

The Objects Enclose statement corresponds to MapInfo Professional’s Objects > Enclose menu
item. For an introduction to this operation, see the discussion of the Objects > Enclose menu item
in the MapInfo Professional User Guide. To see a demonstration of the Objects Enclose statement,
run MapInfo Professional, open the MapBasic Window, and use the Objects > Combine command.

The optional Into Table clause places the objects created by this command into the table.
Otherwise, the output objects are placed in the same table that contains the input objects.

Example

This will select all the objects in a table called testfile, performs an Objects Enclose and stores the
resulting objects in a table called dump_file.

select * from testfile
Objects Enclose Into Table dump_file

See Also:

Objects Check statement, Objects Combine statement

Objects Erase statement

Purpose

Erases any portions of the target object(s) that overlap the selection; corresponds to choosing
Objects > Erase. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Objects Erase Into Target
[Data column_name = expression [, column_name = expression ...]

column_name is a string representing the name of a column in the table being modified.

expression is an expression used to determine what is erased from the column_name columns.
MapBasic 11.0 453 Reference

Chapter 7:
Objects Erase statement
Description

The Objects Erase statement erases part of (or all of) the objects that are currently designated as
the editing target. Using the Objects Erase statement is equivalent to choosing MapInfo
Professional's Objects > Erase menu item. For an introduction to using Objects > Erase, see the
MapInfo Professional User Guide.

Objects Erase erases any parts of the target objects that overlap the currently selected objects. To
erase only the parts of the target objects that do not overlap the selection, use the Objects Intersect
statement.

Before you call Objects Erase, one or more closed objects (regions, rectangles, rounded
rectangles, or ellipses) must be selected, and an editing target must exist. The editing target may
have been set by the user choosing Objects > Set Target, or it may have been set by the MapBasic
Set Target statement.

For each Target object, one object will be produced for that portion of the target that lies outside all
cutter objects. If the Target lies inside cutter objects, then no object is produced for output.

The optional Data clause controls what values are stored in the columns of the target objects. The
Data clause can contain a comma-separated list of column assignments.

Each column assignment can take one of the forms listed in the following table:

The Data clause can contain an assignment for every column in the table. If the Data clause only
specifies assignments for some of the columns, MapBasic assigns blank values to those columns
that are not listed in the Data clause.

If you omit the Data clause entirely, MapBasic blanks out all columns of the target object, storing
zero values in numeric columns and blank values in character columns.

Assignment Effect

col_name = col_name MapBasic does not alter the value stored in the
column.

col_name = value MapBasic stores a specific value in the column. If
it is a character column, the value can be a string;
if it is a numeric column, the value can be a
number.

col_name = Proportion(col_name) Used only for numeric columns; MapBasic
reduces the number stored in the column in
proportion to how much of the object's area was
erased. So, if the operation erases half of an
area's object, the object's column value is
reduced by half.
MapBasic 11.0 454 Reference

Chapter 7:
Objects Intersect statement
Example

In the following example, the Objects Erase statement does not include a Data clause. As a result,
MapBasic stores blank values in the columns of the target object(s). This example assumes that one
or more target objects have been designated, and one or more objects have been selected.

Objects Erase Into Target

In the next example, the Objects Erase statement includes a Data clause, which specifies
expressions for three columns (State_Name, Pop_1990, and Med_Inc_80). This operation assigns
the string “area remaining” to the State_Name column and specifies that the Pop_1990 column
should be reduced in proportion to the amount of the object that is erased. The Med_Inc_80 column
retains the value it had before the Objects Erase statement. The target objects' other columns are
blanked out.

Objects Erase Into Target
Data

State_Name = "area remaining",
Pop_1990 = Proportion(Pop_1990),
Med_Inc_80 = Med_Inc_80

See Also:

Erase() function, Objects Intersect statement

Objects Intersect statement

Purpose

Erases any portions of the target object(s) that do not overlap the selection; corresponds to choosing
Objects > Erase Outside. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Objects Intersect Into Target
[Data column_name = expression [, column_name = expression ...]]

column_name is a string representing the name of a column in the table being modified.

expression is an expression used to determine what is erased from the column_name columns.

Description

The Objects Intersect statement erases part or all of the object(s) currently designated as the
editing target. Using the Objects Intersect statement is equivalent to choosing MapInfo
Professional's Objects > Erase Outside menu item. For an introduction to using Objects > Erase
Outside, see the MapInfo Professional User Guide.
MapBasic 11.0 455 Reference

Chapter 7:
Objects Intersect statement
The optional Data clause controls what values are stored in the columns of the target objects. The
Data clause can contain a comma-separated list of column assignments. Each column assignment
can take one of the forms listed in the following table:

The Data clause can contain an assignment for every column in the table. If the Data clause only
specifies assignments for some of the columns, MapBasic assigns blank values to those columns
that are not listed in the Data clause. If you omit the Data clause entirely, MapBasic blanks out all
columns of the target objects, storing zero values in numeric columns and blank values in character
columns.

The Objects Intersect statement is very similar to the Objects Erase statement, with one
important difference: Objects Intersect erases the parts of the target objects(s) that do not overlap
the current selection, while the Objects Erase statement erases the parts of the target object. For
each Target object, a new object is created for each area that intersects a cutter object. For
example, if a target object is intersected by three cutter objects, then three new objects will be
created. The parts of the target that lie outside all cutter objects will be discarded. For more
information, see Objects Erase statement.

Example

Objects Intersect Into Target
Data

Field2=Proportion(Field2)

See Also:

Create Object statement, Overlap() function, Objects Erase statement

Assignment Effect

col_name = col_name MapBasic does not alter the value stored in the
column.

col_name = value MapBasic stores a specific value in the column. If
the column is a character column, the value can
be a string; if the column is a numeric column, the
value can be a number.

col_name = Proportion(col_name) Used only for numeric columns; MapBasic
reduces the number stored in the column in
proportion to how much of the object's area was
erased. Thus, if the operation erases half of the
area of an object, the object's column value is
reduced by half.
MapBasic 11.0 456 Reference

Chapter 7:
Objects Move statement
Objects Move statement

Purpose

Moves the objects obtained from the current selection within the input table. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Objects Move
Angle angle
Distance distance
[Units unit]
[Type { Spherical | Cartesian }]

angle is a value representing the angle to move the selected object.

distance is a number representing the distance to move the selected object.

unit is the distance unit of distance.

Description

Objects Move moves the objects within the input table. The source objects are obtained from the
current selection. The resulting objects replace the input objects. No data aggregation is performed
or necessary, since the data associated with the original source objects is unchanged.

The object is moved in the direction represented by angle, measured from the positive X-axis (east)
with positive angles being counterclockwise, and offset at a distance given by the distance
parameter. The distance is in the units specified by unit parameter, if present. If the Units clause is
not present, then the current distance unit is the default. By default, MapBasic uses miles as the
distance unit; to change this unit, use the Set Distance Units statement.

The optional Type sub-clause lets you specify the type of distance calculation used to create the
offset. If Spherical type is specified, then the calculation is done by mapping the data into a
Latitude/Longitude On Earth projection and using distance measured using Spherical distance
calculations. If Cartesian is specified, then the calculation is done by considering the data to be
projected to a flat surface and distances are measured using Cartesian distance calculations. If the
Type sub-clause is not present, then the Spherical distance calculation type is used. If the data is in
a Latitude/Longitude Projection, then Spherical calculations are used regardless of the Type setting.
If the data is in a NonEarth Projection, the Cartesian calculations are used regardless of the Type
setting.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees,
and the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into
the coordinate system's units. If the coordinate system is Lat/Long, the conversion to degrees uses
MapBasic 11.0 457 Reference

Chapter 7:
Objects Offset statement
the fixed point. The actual converted distance measurement could vary at different locations on the
object. The distance from the input object and the new offset object is only guaranteed to be exact at
the single fixed point used.

Example

Objects Move Angle 45 Distance 100 Units "mi" Type Spherical

See Also:

Objects Offset statement

Objects Offset statement

Purpose

Copies objects, obtained from the current selection, offset from the original objects. You can issue
this statement from the MapBasic Window in MapInfo Professional.

Syntax

Objects Offset
[Into Table intotable]
Angle angle
Distance distance
[Units unit]
[Type { Spherical | Cartesian }]
[Data column = expression [, column = expression ...]]

intotable is a string representing the table that the new values are copied to.

angle is a value representing the angle which to offset the selected objects.

distance is a number representing the distance to offset the selected objects.

unit is the distance unit of distance.

column is a string representing the column on which to perform the offset.

expression is an expression to calculate the offset for the column.

Description

Objects Offset makes a new copy of objects offset from the original source objects. The source
objects are obtained from the current selection. The resulting objects are placed in the intotable, if
the Into clause is present. Otherwise, the objects are placed into the same table as the input objects
are obtained from (for example, the base table of the selection).

The object is moved in the direction represented by angle, measured from the positive X-axis (east)
with positive angles being counterclockwise, and offset at a distance given by the distance
parameter. The distance is in the units specified by the unit parameter. If the Units clause is not
present, then the current distance unit is the default. By default, MapBasic uses miles as the
distance unit; to change this unit, use the Set Distance Units statement.
MapBasic 11.0 458 Reference

Chapter 7:
Objects Overlay statement
The optional Type sub-clause lets you specify the type of distance calculation used to create the
offset. If Spherical type is specified, then the calculation is done by mapping the data into a
Latitude/Longitude On Earth projection and using distance measured using Spherical distance
calculations. If Cartesian is specified, then the calculation is done by considering the data to be
projected to a flat surface and distances are measured using Cartesian distance calculations. If the
Type sub-clause is not present, then the Spherical distance calculation type is used. If the data is in
a Latitude/Longitude Projection, then Spherical calculations are used regardless of the Type setting.
If the data is in a NonEarth Projection, the Cartesian calculations are used regardless of the Type
setting.

If you specify a Data clause, the application performs data aggregation.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees,
and the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into
the coordinate system's units. If the coordinate system is Lat/Long, the conversion to degrees uses
the fixed point. The actual converted distance measurement could vary at different locations on the
object. The distance from the input object and the new offset object is only guaranteed to be exact at
the single fixed point used.

Example

Objects Offset Into Table c:\temp\table1.tbl Angle 45 Distance 100 Units
"mi" Type Spherical

See Also:

Offset() function

Objects Overlay statement

Purpose

Adds nodes to the target objects at any places where the target objects intersect the currently
selected objects; corresponds to choosing Objects > Overlay Nodes. You can issue this statement
from the MapBasic Window in MapInfo Professional.

Syntax

Objects Overlay Into Target

Description

Before you call Objects Overlay, one or more objects must be selected, and an editing target must
exist. The editing target may have been set by the user choosing Objects > Set Target, or it may
have been set by the MapBasic Set Target statement. For more information, see the discussion of
Overlay Nodes in the MapInfo Professional Reference.
MapBasic 11.0 459 Reference

Chapter 7:
Objects Pline statement
See Also:

OverlayNodes() function, Set Target statement

Objects Pline statement

Purpose

Splits a single section polyline into two polylines. You issue call this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Objects Pline Split At Node index
[Into Table name]
[Data column_name = expression [, column_name = expression ...]]

index is an integer of the index number of the node to split.

name is a string representing the name of the table to hold the new objects.

column_name is a string representing the name of the column where the new values are stored.

expression is an expression which is used to assign values to column_name.

Description

If an object is a single section polyline, then two new single section polyline objects are created in
the output table name. The Node index should be a valid MapBasic index for the polyline to be split.
If Node is a start or end node for the polyline, the operation is cancelled and an error message is
displayed.

The optional Data clause controls what values are stored in the columns of the output objects. The
Data clause can contain a comma-delimited list of column assignments. Each column assignment
can take one of the forms listed in the following table:

The Data clause can contain an assignment for every column in the table. If the Data clause
specifies assignments for only some of the columns, blank values are assigned to those columns
that are not listed in the Data clause.

If you omit the Data clause entirely, all columns are blanked out of the target objects, storing zero
values in numeric columns and blank values in character columns.

Assignment Effect

col_name = col_name Does not alter the value stored in the column.

col_name = value Stores a specific value in the column. If the column is a character
column the value can be a string; if the column is a numeric column,
the value can be a number.
MapBasic 11.0 460 Reference

Chapter 7:
Objects Snap statement
Example

In the following partial example, the selected polyline is split at the specified node (node index of 12).
The unchanged values from each record of the selected polyline are inserted into the new records
for the split polyline.

Objects Pline Split At Node 12 Into Table WORLD Data
Country=Country,Capital=Capital,Continent=Continent,Numeric_code=Numeric_
code,FIPS=FIPS,ISO_2=ISO_2,ISO_3=ISO_3,Pop_1994=Pop_1994,Pop_Grw_Rt=Pop_G
rw_Rt,Pop_Male=Pop_Male,Pop_Fem=Pop_Fem...

See Also:

ObjectLen() function, ObjectNodeX() function, ObjectNodeY() function, Objects
Disaggregate statement

Objects Snap statement

Purpose

Cleans the objects from the given table, and optionally performs various topology-related operations
on the objects, including snapping nodes from different objects that are close to each other into the
same location and generalization/thinning. The table may be the Selection table. All of the objects to
be cleaned must either be all linear (for example, polylines and arcs) or all closed (for example,
regions, rectangles, rounded rectangles, or ellipses). Mixed linear and closed objects cannot be
cleaned in one operation, and an error will result. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Objects Snap From tablename
[Tolerance [Node node_distance][Vector vector_distance]

[Units unit_string]]
[Thin [Bend bend_distance][Distance spacing_distance]

[Units unit_string]]
[Cull Area cull_area [Units unit_string]]]

tablename is a string representing the name of the table of the objects to be checked.

node_distance is a number representing a radius around the end points nodes of a polyline.

vector_distance is a number representing a radius used for internal nodes of polylines.

bend_distance is a number representing the co-linear tolerance of a series of nodes.

spacing_distance is a number representing the minimum distance a series of nodes in the same
object can be to each other without being removed.

unit_string is a string representing the distance units to be used.

cull_area is a number representing the threshold area within which polygons are culled.

unit_string is a string representing the area units to be used.
MapBasic 11.0 461 Reference

Chapter 7:
Objects Snap statement
Description

The objects from the input tablename are checked for various data problems and inconsistencies,
such as self-intersections. Self-intersecting regions in the form of a figure 8 will be changed into a
region containing two polygons that touch each other at a single point. Regions containing spikes
have the spike portion removed. The resulting cleaned object replaces the original input object. If
any overlaps exist between the objects they are removed. Removal of overlaps generally consists of
cutting the overlapping portion out of one of the objects, while leaving it in the other object. The
region that contains the originally overlapping section consists of multiple polygons. One polygon
represents the non-overlapping portion, and a separate polygon represents each overlapping
section.

The Node and Vector Tolerances values snap nodes from different objects together, and can be
used to eliminate small overlaps and gaps between objects. The Units sub-clause of Tolerances
lets you specify a distance measurement name (such as “km” for kilometers) to apply to the Node
and Vector values. If the Units sub-clause is not present, then the Node and Vector values are
interpreted in MapBasic's current distance unit. By default, MapBasic uses miles as the distance
units; to change this unit, use the Set Distance Units statement.

The Node tolerance is a radius around the end point nodes of a polyline. If there are nodes from
other objects within this radius, then one or both of the nodes will be moved such that they will be in
the same location (for example, they will be snapped together).

The Vector tolerance is a radius used for internal nodes of polylines. Its purpose is the same as the
Node tolerance, except it is used only for internal (non-end point) nodes of a polyline. Note that for
Region objects, there is no explicit concept of end point nodes, since the nodes form a closed loop.
For Region objects, only the Vector tolerance is used, and it is applied to all nodes in the object. The
Node tolerance is ignored for Region objects. For Polyline objects, the Node tolerance must be
greater than or equal to the Vector tolerance.

The Bend and Distance values can be used to help thin or generalize the input objects. This
reduces the number of nodes used in the object while maintaining the general shape of the object.
The Units sub-clause of Thin lets you specify a distance measurement name (such as “km” for
kilometers) to apply to the Bend and Distance values. If the Units sub-clause is not present, then
the Bend and Distance values are interpreted in MapBasic's current distance unit.

The Bend tolerance is used to control how co-linear a series of nodes can be. Given three nodes,
connect all of the nodes in a triangle. Measure the perpendicular distance from the second node to
the line connecting the first and third nodes. If this distance is less than the Bend tolerance, then the
three nodes are considered co-linear, and the second node is removed from the object.

The Distance tolerance is used to eliminate nodes within the same object that are close to each
other. Measure the distance between two successive nodes in an object. If the distance between
them is less than the Distance tolerance, then one of the nodes can be removed.
MapBasic 11.0 462 Reference

Chapter 7:
Objects Split statement
The Cull Area value is used to eliminate polygons from regions that are smaller than the threshold
area. The Units sub-clause of Cull lets you specify an area measurement name (such as “sq km” for
square kilometers) to apply to the Area value. If the Units sub-clause is not present, then the Area
value is interpreted in MapBasic's current area unit. By default, MapBasic uses square miles as the
area unit; to change this unit, use the Set Area Units statement.

For all of the distance and area values mentioned above, the type of measurement used is
always Cartesian. Please keep in mind the coordinate system that your data is in. A length
and area calculation in Longitude/Latitude calculated using the Cartesian method is not
mathematically precise. Ensure that you are working in a suitable coordinate system (a
Cartesian system) before applying the tolerance values.

Example

Open Table "STATES.TAB" Interactive
Map From STATES
Set Map Layer 1 Editable On
select * from STATES
Objects Snap From Selection Tolerance Node 3 Vector 3 Units "mi" Thin Bend
0.5 Distance 1 Units "mi" Cull Area 10 Units "sq mi"

See Also:

Create Object statement, Overlap() function

Objects Split statement

Purpose

Splits target objects, using the currently-selected objects as a “cookie cutter”; corresponds to
choosing Objects > Split. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Objects Split Into Target
[Data column_name = expression [, column_name = expression ...]

column_name is a string representing the name of the column where the new values are stored.

expression is an expression which is used to assign values to column_name.

Description

Use the Objects Split statement to split each of the target objects into multiple objects. Using
Objects Split is equivalent to choosing MapInfo Professional's Objects > Split menu item. For
more information on split operations, see the MapInfo Professional Reference.
MapBasic 11.0 463 Reference

Chapter 7:
Objects Split statement
Before you call Objects Split, one or more closed objects (regions, rectangles, rounded rectangles,
or ellipses) must be selected, and an editing target must exist. The editing target may have been set
by the user choosing Objects > Set Target, or it may have been set by the MapBasic Set Target
statement.

For each target object, a new object is created for each area that intersects a cutter object. For
example, if a target object is intersected by three cutter objects, then three new objects will be
created. In addition, a single object will be created for all parts of the target object that lie outside all
cutter objects. This is equivalent to performing both an Objects Erase statement and an Objects
Intersect statement (Objects > Erase Outside).

The optional Data clause controls what values are stored in the columns of the target objects. The
Data clause can contain a comma-separated list of column assignments. Each column assignment
can take one of the forms listed in the following table:

The Data clause can contain an assignment for every column in the table. If the Data clause only
specifies assignments for some of the columns, MapBasic assigns blank values to those columns
that are not listed in the Data clause.

If you omit the Data clause entirely, MapBasic blanks out all columns of the target objects, storing
zero values in numeric columns and blank values in character columns.

Example

In the following example, the Objects Split statement does not include a Data clause. As a result,
MapBasic stores blank values in the columns of the target object(s).

Objects Split Into Target

Assignment Effect

col_name = col_name MapBasic does not alter the value stored in the
column; each object resulting from the split
operation retains the original column value.

col_name = value MapBasic stores a specific value in the column.
If the column is a character column, the value
can be a string; if the column is a numeric
column, the value can be a number. Each object
resulting from the split operation retains the
specified value.

col_name = Proportion(col_name) Used only for numeric columns; MapInfo
Professional divides the original target object's
column value among the graphical objects
resulting from the split. Each object receives
“part of” the original column value, with larger
objects receiving larger portions of the numeric
values.
MapBasic 11.0 464 Reference

Chapter 7:
Offset() function
In the next example, the statement includes a Data clause, which specifies expressions for three
columns (State_Name, Pop_1990, and Med_Inc_80). This first part of the Data clause assigns the
string “sub-division” to the State_Name column; as a result, “sub-division” will be stored in the
State_Name column of each object produced by the split. The next part of the Data clause specifies
that the target object's original Pop_1990 value should be divided among the objects produced by
the split. The third part of the Data clause specifies that each of the new objects should retain the
original value from the Med_Inc_80 column.

Objects Split Into Target
Data

State_Name = "sub-division",
Pop_1990 = Proportion(Pop_1990),
Med_Inc_80 = Med_Inc_80

See Also:

Alter Object statement

Offset() function

Purpose

Returns a copy of the input object offset by the specified distance and angle. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

Offset(object, angle, distance, units)

object is the object being offset.

angle is the angle to offset the object.

distance is a number representing the distance to offset the object.

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

Offset() produces a new object that is a copy of the input object offset by distance along angle (in
degrees with horizontal in the positive X-axis being 0 and positive being counterclockwise). The
units string, similar to that used for the ObjectLen() function or Perimeter() function, is the unit
for the distance value. The distance type used is Spherical unless the Coordinate System is
NonEarth. For NonEarth, Cartesian distance type is automatically used. The coordinate system
used is the coordinate system of the input object.
MapBasic 11.0 465 Reference

Chapter 7:
OffsetXY() function
There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees,
and the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into
the coordinate system's units. If the coordinate system is Lat/Long, the conversion to degrees uses
the fixed point. The actual converted distance measurement could vary at different locations on the
object. The distance from the input object and the new offset object is only guaranteed to be exact at
the single fixed point used.

Example

Offset(Rect, 45, 100, "mi")

See Also:

Objects Offset statement, OffsetXY() function

OffsetXY() function

Purpose

Returns a copy of the input object offset by the specified X and Y offset values. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

OffsetXY(object, xoffset, yoffset, units)

object is the object being offset.

xoffset and yoffset are numbers representing the distance along the x and y axes to offset the object.

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

OffsetXY() produces a new object that is a copy of the input object offset by xoffset along the X-axis
and yoffset along the Y-axis. The units string, similar to that used for the ObjectLen() function or
Perimeter() function, is the unit for the distance values. The distance type used is Spherical unless
the coordinate system is NonEarth. For NonEarth, the Cartesian distance type is automatically used.
The coordinate system used is the coordinate system of the input object.
MapBasic 11.0 466 Reference

Chapter 7:
OnError statement
There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees,
and the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into
the coordinate system's units. If the coordinate system is Lat/Long, the conversion to degrees uses
the fixed point. The actual converted distance measurement could vary at different locations on the
object. The distance from the input object and the new offset object is only guaranteed to be exact at
the single fixed point used.

Example

OffsetXY(Rect, 92, -22, "mi")

See Also:

Offset() function

OnError statement

Purpose

Enables an error-handling routine.

Syntax

OnError Goto{ label | 0 }

label is a string representing a label within the same procedure or function.

Restrictions

You cannot issue an OnError statement through the MapBasic window.

Description

The OnError statement either enables an error-handling routine, or disables a previously enabled
error-handler. (An error-handler is a group of statements executed in the event of an error).

BASIC programmers should note that in the MapBasic syntax, OnError is a single word.

An OnError Goto label statement enables an error-handling routine. Following such an OnError
statement, if the application generates an error, MapBasic jumps to the label line specified. The
statements following the label presumably correct the error condition, warn the user about the error
condition, or both. Within the error-handling routine, use a Resume statement to resume program
execution.
MapBasic 11.0 467 Reference

Chapter 7:
OnError statement
Once you have inserted error-handling statements in your program, you may need to place a flow-
control statement (for example, Exit Sub statement or End Program statement) immediately
before the error handler's label. This prevents the program from unintentionally “falling through” to
the error handling statements, but it does not prevent MapBasic from calling the error handler in the
event of an error. See the example below.

An OnError Goto 0 statement disables the current error-handling routine. If an error occurs while
there is no error-handling routine, MapBasic displays an error dialog box, then halts the application.

Each error handler is local to a particular function or procedure. Thus, a sub procedure can define an
error handler by issuing a statement such as:

OnError Goto recover

(assuming that the same procedure contains a label called “recover”). If, after executing the above
OnError statement, the procedure issues a Call statement to call another sub procedure, the
“recover” error handler is suspended until the program returns from the Call statement. This is
because each label (for example, “recover”) is local to a specific procedure or function. With this
arrangement, each function and each sub procedure can have its own error handling.

If an error occurs within an error-handling routine, your MapBasic program halts.

Example

OnError GoTo no_states
Open Table "states"

OnError GoTo no_cities
Open Table "cities"

Map From cities, states

after_mapfrom:
OnError GoTo 0
'
' ...
'

End Program

no_states:
Note "Could not open table States... no Map used."
Resume after_mapfrom

no_cities:
Note "City data not available..."
Map From states
Resume after_mapfrom

See Also:

Err() function, Error statement, Error$() function, Resume statement
MapBasic 11.0 468 Reference

Chapter 7:
Open Connection statement
Open Connection statement

Purpose

Creates a connection to an external geocode or Isogram service provided by a MapMarker or
Envinsa server. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Open Connection Service
Geocode [MapMarker | Envinsa] | Isogram URL URLstring
[User name_string [Password pwd_string]]
[Interactive [On | Off]]
 into variable var_name

URLString is a string representing a valid URL. URLString must be a valid URL to a routing service if
you are specifying Isogram, or to a geocoding service if you are specifying Geocode.

name_string is a string representing the user name for an Envinsa or MapMarker installation.

pwd_string is a string representing the password corresponding to user_name.

var_name is a integer representing the variable which will hold the returned connection number.

Description

The Open Connection statement creates a connection to a Geocode or Isogram service. Each
statement must specify a service and provider to which the connection is being established. Since
the Isogram service is only provided by Envinsa no provider can be specified. If the service is
Geocode and no service provider is specified, Envinsa is assumed.

The Into variable keywords are required as var_name is the variable that holds the returned
connection number that is then passed to other statements, such as the Set Connection Geocode
statement, the Geocode statement, the Set CoordSys statement, and the Create Object
Isogram statement.

Interactive determines whether a username/password dialog box is shown if and only if the
credentials passed in for authentication are not adequate. With Interactive specified to Off, no
dialog box is displayed and the command fails if the authentication fails. With Interactive specified
as On, the dialog box appears if the authentication fails.

The default for the command is Interactive Off. That is, if the Interactive keyword is not used at all,
it is the same as Interactive Off. However, if Interactive is specified, it is equivalent to Interactive
On.

Examples

All examples without the keyword MapMarker assume Envinsa.

The following example opens a geocoding connection without Interactive specified. Interactive is
set to Off by default.
MapBasic 11.0 469 Reference

Chapter 7:
Open File statement
Open Connection Into Variable CnctNum Service Geocode URL
"http://EnvinsaServices/LocationUtility/services/LocationUtility"

This example opens a geocode connection and specifies Interactive as On.

Open Connection Into Variable CnctNum Service Geocode URL
"http://EnvinsaServices/LocationUtility/services/LocationUtility"
Interactive On

This example opens a geocode connection with a server that requires authentication.

dim baseURLVariable as String
baseURLVariable = "http://EnvinsaServices/”
Open Connection Service Geocode URL baseURLVariable +
"LocationUtility/services/LocationUtility" User "geocodeuser" Password
"GeoMe" Into Variable CnctNum

This example opens an Isogram connection with a server that requires authentication.

dim baseURLVariable as String
baseURLVariable = "http://EnvinsaServices/”
Open Connection Service IsoGram URL baseURLVariable +
"Route/services/Route" User "isogramuser" Password "ISOMe" Into Variable
CnctNum

See Also:

Close Connection statement, Set Connection Geocode statement, Set Connection Isogram
statement

Open File statement

Purpose

Opens a file for input/output.

Syntax

Open File filespec
[For { Input | Output | Append | Random | Binary }]
[Access { Read | Write | Read Write }]
As [#] filenum
[Len = recordlength]
[ByteOrder { LOWHIGH | HIGHLOW }]
[CharSet char_set]

filespec is a string representing the name of the file to be opened.

filenum is an integer number to associate with the open file; this number is used in subsequent
operations (for example, Get statement or Put statement).

recordlength identifies the number of characters per record, including any end-of-line markers used;
applies only to Random access.

char_set is the name of a character set; see CharSet clause.
MapBasic 11.0 470 Reference

Chapter 7:
Open File statement
Restrictions

You cannot issue an Open File statement through the MapBasic window.

Description

The Open File statement opens a file, so that MapBasic can read information from and/or write
information to the file.

In MapBasic, there is an important distinction between files and tables. MapBasic provides one set
of statements for using tables (for example, Open Table statement, Fetch statement, and Select
statement) and another set of statements for using other files in general (for example, Open File,
Get statement, Put statement, Input # statement, Print # statement).

The For clause specifies what type of file i/o to perform: Sequential, Random, or Binary. Each type
of i/o is described below. If you omit the For clause, the file is opened in Random mode.

Sequential File I/O

If you are going to read a text file that is variable-length (for example, one line is 55 characters long,
and the next is 72 characters long, etc.), you should specify a Sequential mode: Input, Output, or
Append.

If you specify the For Input clause, you can read from the file by issuing an Input # statement and
a Line Input # statement.

If you specify the For Output clause or the For Append clause, you can write to the file by issuing a
Print # statement and a Write # statement.

If you specify For Input, the Access clause may only specify Read; conversely, if you specify For
Output, the Access clause may only specify Write.

Do not specify a Len clause for files opened in any of the Sequential modes.

Random File I/O

If the text file you are going to read is fixed-length (for example, every line is 80 characters long), you
can access the file in Random mode, by specifying the clause: For Random.

When you open a file in Random mode, you must provide a Len = recordlength clause to specify
the record length. The recordlength value should include any end-of-line designator, such as a
carriage-return line-feed sequence.

When using Random mode, you can use the Access clause to specify whether you intend to Read
from the file, Write to the file, or do both (Read Write). After opening a file in Random mode, use
the Get statement and the Put statement to read from, and write to, the file.

Binary File I/O

In Binary access, MapBasic converts MapBasic variables to binary values when writing, and
converts from binary values when reading. Storing numerical data in a Binary file is more compact
than storing Binary data in a text file; however, Binary files cannot be displayed or printed directly, as
can text files.
MapBasic 11.0 471 Reference

Chapter 7:
Open Report statement
To open a file in Binary mode, specify the clause: For Binary.

When using Binary mode, you can use the Access clause to specify whether you intend to Read
from the file, Write to the file, or do both (Read Write). After opening a file in Binary mode, use the
Get statement and the Put statement to read from, and write to, the file.

Do not specify a Len clause or a CharSet clause for files opened in Binary mode.

Controlling How the File Is Interpreted

The CharSet clause specifies a character set. The char_set parameter should be a string constant,
such as “WindowsLatin1”. If you omit the CharSet clause, MapInfo Professional uses the default
character set for the hardware platform that is in use at run-time. Note that the CharSet clause only
applies to files opened in Input, Output, or Random modes. See CharSet clause for more
information.

If you open a file for Random or Binary access, the ByteOrder clause specifies how numbers are
stored within the file.

If your application only runs on one hardware platform, you do not need to be concerned with byte
order; MapBasic simply uses the byte-order scheme that is “native” to that platform. However, if you
intend to read and write binary files, and you need to transport the files across multiple hardware
platforms, you may need to use the ByteOrder clause.

Examples

Open File "cxdata.txt" For INPUT As #1
Open File "cydata.txt" For RANDOM As #2 Len=42
Open File "czdata.bin" For BINARY As #3

See Also:

Close File statement, EOF() function, Get statement, Input # statement, Open Table
statement, Print # statement, Put statement, Write # statement, CharSet clause

Open Report statement

Purpose

Loads a report into the Crystal Report Designer module. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Open Report reportfilespec

reportfilespec is a string representing a full path and file name for an existing report file.

See Also:

Create Report From Table statement
MapBasic 11.0 472 Reference

Chapter 7:
Open Table statement
Open Table statement

Purpose

Opens a MapInfo Professional table for input/output. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Open Table filename [As tablename]
[Hide] [ReadOnly] [Interactive] [Password pwd]
[NoIndex] [View Automatic] [DenyWrite]
[VMGrid | VMRaster | VMDefault]

filename is a string which specifies which MapInfo table to open.

tablename is a string representing an “alias” name by which the table should be identified.

pwd is a string representing the database-level password for the database, to be specified when
database security is turned on. Applies to Access tables only.

VMGrid treats all VM GRD files as Grid Layers when opened.

VMRaster treats all VM GRD files as Raster Layers when opened.

VMDefault treats GRD as Raster or Grid depending on existence of RasterStyle 6 1 tag in TAB file.

Description

The Open Table statement opens an existing table. The effect is comparable to the effect of an end-
user choosing File > Open and selecting a table to open. A table must be opened before MapInfo
Professional can process that table in any way.

The name of the file to be opened (specified by the filespec parameter) must correspond to a
table which already exists; to create a new table from scratch, use the Create Table
statement. The Open Table statement only applies to MapInfo tables; to use files that are in
other formats, use the Register Table statement and the Open File statement.

If the statement includes an As clause, MapInfo Professional opens the table under the “alias” table
name indicated by the tablename parameter, rather than by the actual table name. This affects the
way the table name appears in lists, such as the list that appears when a user chooses File > Close.
Furthermore, when an Open Table statement specifies an alias table name, subsequent MapBasic
table operations (for example, a Close Table statement) must refer to the alias table name, rather
than the permanent table name. An alias table name remains in effect until the table is closed.
Opening a table under an alias does not have the effect of permanently renaming the table.

If the statement includes the Hide clause, the table will not appear in any dialog boxes that display
lists of open tables (for example, the File > Close dialog box). Use the Hide clause if you need to
open a table that should remain hidden to the user. If the statement includes the ReadOnly clause,
the user is not allowed to edit the table.
MapBasic 11.0 473 Reference

Chapter 7:
Open Table statement
The optional Interactive keyword tells MapBasic to prompt the user to locate the table if it is not
found at the specified path. The Interactive keyword is useful in situations where you do not know
the location of the user's files. If the statement includes the NoIndex keyword, the MapInfo index will
not be re-built for an MS Access table when opened.

View Automatic is an optional clause to the Open Table statement that allows the MapInfo table,
workspace or application file associated with a hotlink object to launch in the currently running
instance of MapInfo Professional or start a new instance if none is running. If View Automatic is
present, after opening the table, MapInfo Professional will either add it to an existing mapper, open a
new mapper, or open a browser. This is especially useful with the HotLinks feature.

DenyWrite is an optional clause for MS Access tables only, If it is specified, other users will not be
able to edit the table. If another user already has read-write access to the table, the Open Table
command will fail.

Attempting to open two tables that have the same name

MapInfo Professional can open two separate tables that have the same name. In such cases,
MapInfo Professional needs to open the second table under a special name, to avoid conflicts.
Depending on whether the Open Table statement includes the Interactive keyword, MapBasic
either assigns the special table name automatically, or displays a dialog box to let the user select a
special table name.

For example, a user might keep two copies of a table called “Sites”, one copy in a directory called
2006 (for example, “C:\2006\SITES.TAB”) and another, perhaps newer copy of the table in a
different directory (for example, “C:\2005\SITES.TAB”). When the user (or an application) opens the
first Sites table, MapInfo Professional opens the table under its default name (“Sites”). If an
application issues an Open Table statement to open the second Sites table, MapInfo Professional
automatically opens the second table under a modified name (for example, “Sites_2”) to distinguish
it from the first table. Alternately, if the Open Table statement includes the Interactive clause,
MapInfo Professional displays a dialog box to let the user select the alternate name.

Regardless of whether the Open Table statement specifies the Interactive keyword, the result is
that a table may be opened under a non-default name. Following an Open Table statement, issue
the function call TableInfo(0, TAB_INFO_NAME) to determine the name with which MapInfo
Professional opened the table.

Attempting to open a table that is already open

If a table is already open, and an Open Table As statement tries to re-open the same table under a
new name, MapBasic generates an error code. A single table may not be open under two different
names simultaneously.

However, if a table is already open, and then an Open Table statement tries to re-open that table
without specifying a new name, MapBasic does not generate an error code. The table simply
remains open under its current name.
MapBasic 11.0 474 Reference

Chapter 7:
Open Window statement
Example

The following example opens the table STATES.TAB, then displays the table in a Map window.
Because the Open Table statement uses an As clause to open the table under an alias (USA), the
Map window's title bar will say “USA Map” rather than “States Map.”

Open Table "States" As USA
Map From USA

The next example follows an Open Table statement with a TableInfo() function call. In the unlikely
event that a separate table by the same name (States) is already open when you run the program
below, MapBasic will open “C:STATES.TAB” under a special alias (for example, “STATES_2”). The
TableInfo() function call returns the alias under which the “C:STATES.TAB” table was opened.

Include "MAPBASIC.DEF"
Dim s_tab As String
Open Table "C:states"
s_tab = TableInfo(0, TAB_INFO_NAME)
Browse * From s_tab
Map From s_tab

See Also:

Close Table statement, Create Table statement, Delete statement, Fetch statement, Insert
statement, TableInfo() function, Update statement

Open Window statement

Purpose

Opens or displays a window. You can issue this statement in the MapBasic Window in MapInfo
Professional.

Syntax

Open Window window_name

window_name is a string representing a window name (for example, Ruler) or window code (for
example, WIN_RULER).

Description

The Open Window statement displays an MapInfo Professional window. For example, the following
statement displays the statistics window, as if the user had chosen Options > Show Statistics
Window.

Open Window Statistics
MapBasic 11.0 475 Reference

Chapter 7:
Overlap() function
The window_name parameter should be one of the window names from the table below.

You cannot open a document window (Map, Graph, Browse, Layout) through the Open Window
statement. There is a separate statement for opening each type of document window (see the Map
statement, Graph statement, Browse statement, Layout statement, and Create Redistricter
statement).

See Also:

Close Window statement, Print statement, Set Window statement

Overlap() function

Purpose

Returns an object representing the geographic intersection of two objects; produces results similar
to MapInfo Professional's Objects > Erase Outside command. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

Overlap(object1, object2)

object1 is an object; it cannot be a point or text object.

object2 is an object; it cannot be a point or text object.

Window Name Window Description

MapBasic The MapBasic window. You also can refer to this window by its define code
from MAPBASIC.DEF (WIN_MAPBASIC).

Statistics The Statistics window (WIN_STATISTICS).

Legend The Theme Legend window (WIN_LEGEND).

Info The Info tool window (WIN_INFO).

Ruler The Ruler tool window (WIN_RULER).

Help The Help window (WIN_HELP).

Message The Message window used by the Print statement (WIN_MESSAGE).

TableList A dialog box that displays a list of currently opened tables.

This dialog box is not strictly a window so does not have an entry in
MAPBASIC.DEF
MapBasic 11.0 476 Reference

Chapter 7:
OverlayNodes() function
Return Value

An object that is the geographic intersection of object1 and object2.

Description

The Overlap() function calculates the geographic intersection of two objects (the area covered by
both objects), and returns an object representing that intersection.

MapBasic retains all styles (color, etc.) of the original object1 parameter; then, if necessary,
MapBasic applies the current drawing styles.

If one of the objects is linear (for example, a polyline) and the other object is closed (for example, a
region), Overlap() returns the portion of the linear object that is covered by the closed object.

See Also:

AreaOverlap() function, Erase() function, Objects Intersect statement

OverlayNodes() function

Purpose

Returns an object based on an existing object, with new nodes added at points where the object
intersects a second object. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

OverlayNodes(input_object, overlay_object)

input_object is an object whose nodes will be included in the output object; it may not be a point or
text object.

overlay_object is an object that will be intersected with input_object; it may not be a point or text
object.

Return Value

A region object or a polyline object.

Description

The OverlayNodes() function returns an object that contains all the nodes in input_object plus
nodes at all locations where the input_object intersects with the overlay_object.

If the input_object is a closed object (region, rectangle, rounded rectangle, or ellipse),
OverlayNodes() returns a region object. If input_object is a linear object (line, polyline, or arc),
OverlayNodes() returns a polyline.

The object returned retains all styles (color, etc.) of the original input_object.
MapBasic 11.0 477 Reference

Chapter 7:
Pack Table statement
To determine whether the OverlayNodes() function added any nodes to the input_object, use the
ObjectInfo() function to count the number of nodes (OBJ_INFO_NPNTS). Even if two objects do
intersect, the OverlayNodes() function does not add any nodes if input_object already has nodes at
the points of intersection.

See Also:

Objects Overlay statement

Pack Table statement

Purpose

Provides the functionality of MapInfo Professional's Table > Maintenance > Pack Table command.
You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Pack Table table { Graphic | Data | Graphic Data } [Interactive]

table is a string representing the name of an open table that does not have unsaved changes.

Description

To pack a table's data, include the optional Data keyword. When you pack a table's data, MapInfo
Professional physically deletes any rows that had been flagged as “deleted.”

To pack a table's graphical objects, include the optional Graphic keyword. Packing the graphical
objects removes empty space from the map file, resulting in a smaller table. However, packing a
table's graphical objects may cause editing operations to be slower.

The Pack Table statement can include both the Graphic keyword and the Data keyword, and it
must include at least one of the keywords.

A Pack Table statement may cause map layers to be removed from a Map window, possibly
causing the loss of themes or cosmetic objects.

If you include the Interactive keyword, MapInfo Professional prompts the user to save themes
and/or cosmetic objects (if themes or cosmetic objects are about to be lost). This statement cannot
pack linked tables. Also, this statement cannot pack a table that has unsaved edits. To save edits,
use the Commit Table statement.

Packing a table can invalidate custom labels that are stored in workspaces. Suppose you
create custom labels and save them in a workspace. If you delete rows from your table and
pack the table, you may get incorrect labels the next time you load the workspace. (Within a
workspace, custom labels are stored with respect to row ID numbers; when you pack a table,
you change the table's row ID numbers, possibly invalidating custom labels stored in
workspaces.) If you only delete rows from the end of the table (for example, from the bottom
of the Browser window), packing will not invalidate the custom labels.
MapBasic 11.0 478 Reference

Chapter 7:
PathToDirectory$() function
Packing Access Tables

The Pack Table statement saves a copy of the original Microsoft Access table without the column
types that MapInfo Professional does not support. If a Microsoft Access table has MEMO, OLE, or
LONG BINARY type columns, those columns are lost during a pack.

Example

Pack Table parcels Data

See Also:

Open Table statement

PathToDirectory$() function

Purpose

Returns only the specified file's directory. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

PathToDirectory$(filespec)

filespec is a string expression representing a full file specification.

Return Value

String

Description

The PathToDirectory$() function returns just the “directory” component from a full file specification.

A full file specification can include a directory and a filename. The file specification
C:\MAPINFO\DATA\WORLD.TAB includes the directory “C:\MAPINFO\DATA\”.

Example

Dim s_filespec, s_filedir As String
s_filespec = "C:\MAPINFO\DATA\STATES.TAB"
s_filedir = PathToDirectory$(s_filespec)

' s_filedir now contains the string "C:\MAPINFO\DATA\"

See Also:

PathToFileName$() function, PathToTableName$() function
MapBasic 11.0 479 Reference

Chapter 7:
PathToFileName$() function
PathToFileName$() function

Purpose

Returns just the file name from a specified file. You can call this function from the MapBasic Window
in MapInfo Professional.

Syntax

PathToFileName$(filespec)

filespec is a string expression representing a full file specification.

Return Value

String

Description

The PathToFileName$() function returns just the “filename” component from a full file specification.

A full file specification can include a directory and a filename. The PathToFileName$() function
returns the file's name, including the file extension if there is one.

The file specification C:\MAPINFO\DATA\WORLD.TAB includes a directory (“C:\MAPINFO\DATA\”)
and a filename (“WORLD.TAB”).

Example

Dim s_filespec, s_filename As String
s_filespec = "C:\MAPINFO\DATA\STATES.TAB"
s_filename = PathToFileName$(s_filespec)

' filename now contains the string "STATES.TAB"

See Also:

PathToDirectory$() function, PathToTableName$() function

PathToTableName$() function

Purpose

Returns a string representing a table alias (such as “_1995_Data”) from a complete file specification
(such as “C:\MapInfo\Data\1995 Data.tab”). You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

PathToTableName$(filespec)

filespec is a string expression representing a full file specification.
MapBasic 11.0 480 Reference

Chapter 7:
Pen clause
Return Value

String, up to 31 characters long.

Description

Given a full file name that identifies a table's .TAB file, this function returns a string that represents
the table's alias. The alias is the name by which a table appears in the MapInfo Professional user
interface (for example, on the title bar of a Browser window).

To convert a file name to a table alias, MapInfo Professional removes the directory path from the
beginning of the string and removes “.TAB” from the end of the string. Any special characters (for
example, spaces or punctuation marks) are replaced with the underscore character (_). If the table
name starts with a number, MapInfo Professional inserts an underscore at the beginning of the alias.
If the resulting string is longer than 31 characters, MapInfo Professional trims characters from the
end; aliases cannot be longer than 31 characters.

Note that a table may sometimes be open under an alias that differs from its default alias. For
example, the following Open Table statement uses the optional As clause to force the World table
to use the alias “Earth”:

Open Table "C:\MapInfo\Data\World.tab" As Earth

Furthermore, if the user opens two tables that have identical names but different directory locations,
MapInfo Professional assigns the second table a different alias, so that both tables can be open at
once. In either of these situations, the “default alias” returned by PathToTableName$() might not
match the alias under which the table is currently open. To determine the alias under which a table
was actually opened, call the TableInfo() function with the TAB_INFO_NAME code.

Example

Dim s_filespec, s_tablename As String
s_filespec = "C:\MAPINFO\DATA\STATES.TAB"
s_tablename = PathToTableName$(s_filespec)
' s_tablename now contains the string "STATES"

See Also:

PathToDirectory$() function, PathToFileName$() function, TableInfo() function

Pen clause

Purpose

Specifies a line style for graphic objects. You can use this clause in the MapBasic Window in
MapInfo Professional.

Syntax

Pen pen_expr

pen_expr is a Pen expression, for example, MakePen(width, pattern, color)
MapBasic 11.0 481 Reference

Chapter 7:
Pen clause
Description

The Pen clause specifies a line style—in other words, a set of thickness, pattern, and color settings
that dictate the appearance of a line or polyline object.

The Pen clause is not a complete MapBasic statement. Various object-related statements, such as
the Create Line statement, let you include a Pen clause to specify an object's line style. The
keyword Pen may be followed by an expression which evaluates to a Pen value. This expression
can be a Pen variable:

Pen pen_var

or a call to a function (for example, the CurrentPen() function or the MakePen() function) which
returns a Pen value:

Pen MakePen(1, 2, BLUE)

You can create an interleaved line style by adding 128 to the pattern value. The following example
draws a two (2) pixel cyan colored line using pattern 101 in an interleaved style (101+128=229):

Pen MakePen(2, 229, CYAN)

With some MapBasic statements (for example, the Set Map statement), the keyword Pen can be
followed immediately by the three parameters that define a Pen style (width, pattern, and color)
within parentheses:

Pen(1, 2, BLUE)

Some MapBasic statements take a Pen expression as a parameter (for example, the name of a Pen
variable), rather than a full Pen clause (the keyword Pen followed by the name of a Pen variable).
The Alter Object statement is one example.

The following table summarizes the components that define a Pen:

Component Description

width Integer value, usually from 1 to 7, representing the thickness of the line (in
pixels). To create an invisible line style, specify a width of zero, and use a
pattern value of 1 (one).

To specify a width using points, calculate the pen width from a point size using
the PointsToPenWidth() function. This calculation multiplies the point size by
10 and then adds 10 to the result, so the pen width is always larger than 10.

pattern Integer value from 1 to 118; see table below. Pattern 1 is invisible.

To specify an interleaved line style, add 128 to the pattern. However, not all
patterns benefit from an interleaved line style.

color Integer RGB color value; see RGB() function.
MapBasic 11.0 482 Reference

Chapter 7:
Pen clause
The available pen patterns appear in the figure below.

Examples

Include "MAPBASIC.DEF"
Dim cable As Object
Create Line

Into Variable cable
(73.5, 42.6) (73.67, 42.9)
Pen MakePen(1, 2, BLACK)

Apply line styles to a layer in a map as a layer style override: Pen width = 5 points; Line style B17 in
line style picker; penpattern = 66.

Set Map Window <windowid>
Layer 1 Display Global
MapBasic 11.0 483 Reference

Chapter 7:
PenWidthToPoints() function
Global Line (60,194,16711680)
' Interleave: 194 = 66 + 128

Set Map Window 234499920
Layer 1 Display Global
Global Line MakePen(PointsToPenWidth(5),66,16711680)
' 5 point line, non-interleaved

See Also:

Alter Object statement, CreateLine() function, Create Pline statement, CurrentPen()
function, IsPenWidthPixels() function, MakePen() function, PointsToPenWidth() function,
PenWidthToPoints() function, RGB() function, Set Style statement

PenWidthToPoints() function

Purpose

Returns the point size for a given pen width. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

PenWidthToPoints(penwidth)

penwidth is an integer greater than 10 representing the pen width.

Return Value

Float

Description

The PenWidthToPoints() function takes a pen width and returns the point size for that pen. The
pen width for a line style may be returned by the StyleAttr() function. The pen width returned by
the StyleAttr() function may be in points or pixels. Pen widths of less than ten are in pixels. Any
pen width of ten or greater is in points. PenWidthToPoints() only returns values for pen widths that
are in points. To determine if pen widths are in pixels or points, use the IsPenWidthPixels()
function.

Example

Include "MAPBASIC.DEF"
Dim CurPen As Pen
Dim Width As Integer
Dim PointSize As Float
CurPen = CurrentPen()
Width = StyleAttr(CurPen, PEN_WIDTH)
If Not IsPenWidthPixels(Width) Then

PointSize = PenWidthToPoints(Width)
End If
MapBasic 11.0 484 Reference

Chapter 7:
Perimeter() function
See Also:

CurrentPen() function, IsPenWidthPixels() function, MakePen() function, Pen clause,
PointsToPenWidth() function, StyleAttr() function

Perimeter() function

Purpose

Returns the perimeter of a graphical object. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

Perimeter(obj_expr, unit_name)

obj_expr is an object expression.

unit_name is a string representing the name of a distance unit (for example, “km”).

Return Value

Float

Description

The Perimeter() function calculates the perimeter of the obj_expr object. The Perimeter() function
is defined for the following object types: ellipses, rectangles, rounded rectangles, and polygons.
Other types of objects have perimeter measurements of zero.

The Perimeter() function returns a length measurement in the units specified by the unit_name
parameter; for example, to obtain a length in miles, specify “mi” as the unit_name parameter. See
Set Distance Units statement for the list of valid unit names.

The Perimeter() function returns approximate results when used on rounded rectangles. MapBasic
calculates the perimeter of a rounded rectangle as if the object were a conventional rectangle. For
the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
spherical operation is performed unless the coordinate system is nonEarth, in which case, a
Cartesian operation is performed.

Example

The following example shows how you can use the Perimeter() function to determine the perimeter
of a particular geographic object.

Dim perim As Float
Open Table "world"
Fetch First From world
perim = Perimeter(world.obj, "km")
' The variable perim now contains
' the perimeter of the polygon that's attached to
' the first record in the World table.
MapBasic 11.0 485 Reference

Chapter 7:
PointsToPenWidth() function
You can also use the Perimeter() function within the Select statement. The following Select
statement extracts information from the States table, and stores the results in a temporary table
called Results.

Because the Select statement includes the Perimeter() function, the Results table will include a
column showing each state's perimeter.

Open Table "states"
Select state, Perimeter(obj, "mi")

From states
Into results

See Also:

Area() function, ObjectLen() function, Set Distance Units statement

PointsToPenWidth() function

Purpose

Returns a pen width for a given point size. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

PointsToPenWidth(pointsize)

pointsize is a float value in tenths of a point.

Return Value

SmallInt

Description

The PointsToPenWidth() function takes a value in tenths of a point and converts that into a pen
width.

Example

Include "MAPBASIC.DEF"
Dim Width As Integer
Dim p_bus_route As Pen
Width = PointsToPenWidth(1.7)
p_bus_route = MakePen(Width, 9, RED)

See Also:

CurrentPen() function, IsPenWidthPixels() function, MakePen() function, Pen clause,
PenWidthToPoints() function, StyleAttr() function
MapBasic 11.0 486 Reference

Chapter 7:
PointToMGRS$() function
PointToMGRS$() function

Purpose

Converts an object value representing a point into a string representing an MGRS (Military Grid
Reference System) coordinate. Only point objects are supported. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

PointToMGRS$(inputobject)

inputobject is an object expression representing a point.

Description

MapInfo Professional automatically converts the input point from the current MapBasic coordinate
system to a Long/Lat (WGS84) datum before performing the conversion to an MGRS string.
However, by default, the MapBasic coordinate system is Long/Lat (no datum); using this as an
intermediate coordinate system can cause a significant loss of precision in the final output, since
datumless conversions are much less accurate. As a rule, the MapBasic coordinate system should
be set to either Long/Lat (WGS84) or to the coordinate system of the source data table, so that no
unnecessary intermediate conversions are performed. See Example 2 below.

Return Value

String

Examples

The following examples illustrate the use of both the MGRSToPoint() and PointToMGRS$()
functions.

Example 1:
dim obj1 as Object
dim s_mgrs As String
dim obj2 as Object

obj1 = CreatePoint(-74.669, 43.263)
s_mgrs = PointToMGRS$(obj1)
obj2 = MGRSToPoint(s_mgrs)

Example 2:
Open Table "C:\Temp\MyTable.TAB" as MGRSfile

' When using the PointToMGRS$() or MGRSToPoint() functions,
' it is very important to make sure that the current MapBasic
' coordsys matches the coordsys of the table where the
' point object is being stored.

'Set the MapBasic coordsys to that of the table used
MapBasic 11.0 487 Reference

Chapter 7:
PointToUSNG$(obj, datumid)
Set CoordSys Table MGRSfile

'Update a Character column (e.g. COL2) with MGRS strings from
'a table of points

Update MGRSfile
Set Col2 = PointToMGRS$(obj)

'Update two float columns (Col3 & Col4) with
'CentroidX & CentroidY information
'from a character column (Col2) that contains MGRS strings.

Update MGRSfile
Set Col3 = CentroidX(MGRSToPoint(Col2))

Update mgrstestfile ' MGRSfile
Set Col4 = CentroidY(MGRSToPoint(Col2))

 Table MGRSfile
Close Table MGRSfile

See Also:

MGRSToPoint() function

PointToUSNG$(obj, datumid)

Purpose

Converts an object value representing a point into a string representing an USNG (United States
National Grid) coordinate. Only point objects are supported. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

PointToUSNG$(obj, datumid)

obj is an object expression representing the point to be converted. It must evaluate to a point object.

datumid is a numeric expression representing the datum id. It must evaluate to one of the following
values.

DATUMID_NAD27 (62)
DATUMID_NAD83 (74)
DATUMID_WGS84 (104)

DATUMID_* are defines in MapBasic.def. WGS84 and NAD83 are treated as equivalent.
MapBasic 11.0 488 Reference

Chapter 7:
PointToUSNG$(obj, datumid)
Description

MapInfo Professional automatically converts the input point from the current MapBasic coordinate
system to a Long/Lat (WGS84 and NAD27) datum before performing the conversion to an USNG
string. However, by default, the MapBasic coordinate system is Long/Lat (no datum); using this as
an intermediate coordinate system can cause a significant loss of precision in the final output, since
datumless conversions are much less accurate. As a rule, the MapBasic coordinate system should
be set to either Long/Lat (WGS84 and NAD27) or to the coordinate system of the source data table,
so that no unnecessary intermediate conversions are performed.

Return Value

String

Example 1

The following example illustrates the use of USNGToPoint() and PointToUSNG$() functions.

dim obj1 as Object
dim s_USNG As String
dim obj2 as Object

obj1 = CreatePoint(-74.669, 43.263)
s_USNG = PointToUSNG$(obj1)
obj2 = USNGToPoint(s_USNG)

Example 2

Open Table "C:\Temp\MyTable.TAB" as USNGfile

' When using the PointToUSNG$() or USNGToPoint() functions,
' it is very important to make sure that the current MapBasic
' coordsys matches the coordsys of the table where the
' point object is being stored.

'Set the MapBasic coordsys to that of the table used
Set CoordSys Table USNGfile

'Update a Character column (e.g. COL2) with USNG strings from
'a table of points

Update USNGfile
Set Col2 = PointToUSNG$(obj)

'Update two float columns (Col3 & Col4) with
'CentroidX & CentroidY information
'from a character column (Col2) that contains USNG strings.

Update USNGfile
Set Col3 = CentroidX(USNGToPoint(Col2))

Update USNGtestfile ' USNGfile
Set Col4 = CentroidY(USNGToPoint(Col2))
MapBasic 11.0 489 Reference

Chapter 7:
Print statement
 Table USNGfile
Close Table USNGfile

See Also:

USNGToPoint(string)

Print statement

Purpose

Prints a prompt or a status message in the Message window. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Print message

message is a string expression.

Description

The Print statement prints a message to the Message window. The Message window is a special
window which does not appear in MapInfo's standard user interface. The Message window lets you
display custom messages that relate to a MapBasic program. You could use the Message window to
display status messages (“Record deleted”) or prompts for the user (“Select the territory to
analyze.”). To set the font for the Message window, use the Set Window statement. A MapBasic
program can explicitly open the Message window through the Open Window statement.

If a Print statement occurs while the Message window is closed, MapBasic opens the Message
window automatically. The Print statement is similar to the Note statement, in that you can use
either statement to display status messages or debugging messages. However, the Note statement
displays a dialog box, pausing program execution until the user clicks OK. The Print statement
simply prints text to a window, without pausing the program. Each Print statement is printed to a
new line in the Message window. After you have printed enough messages to fill the Message
window, scroll buttons appear at the right edge of the window, to allow the user to scroll through the
messages.

To clear the Message window, print a string which includes the form-feed character (code 12):

Print Chr$(12) 'This statement clears the Message window

By embedding the line-feed character (code 10) in a message, you can force a single message to be
split onto two or more lines. The following Print statement produces a two-line message:

Print "Map Layers:" + Chr$(10) + " World, Capitals"

The Print statement converts each Tab character (code 09) to a space (code 32).
MapBasic 11.0 490 Reference

Chapter 7:
Print # statement
Example

The next example displays the Message window, sets the window's size (three inches wide by one
inch high), sets the window's font (Arial, bold, 10-point), and prints a message to the window.

Include "MAPBASIC.DEF" ' needed for color name 'BLUE'
Open Window Message ' open Message window
Set Window Message

Font ("Arial", 1, 10, BLUE) ' Arial bold...
Position (0.25, 0.25) ' place in upper left
Width 3.0 ' make window 3" wide
Height 1.0 ' make window 1" high

Print "MapBasic Dispatcher now on line"

The buffer size for message window text has been doubled to 8191 characters.

See Also:

Ask() function, Close Window statement, Note statement, Open Window statement, Set
Window statement

Print # statement

Purpose

Writes data to a file opened in a Sequential mode (Output or Append).

Syntax

Print # file_num [, expr]

file_num is the number of a file opened through the Open File statement.

expr is an expression to write to the file.

Description

The Print # statement writes data to an open file. The file must be open and in a sequential mode
which allows output (Output or Append).

The file_num parameter corresponds to the number specified in the As clause of the Open File
statement.

MapInfo Professional writes the expression expr to a line of the file. To store a comma-separated list
of expressions in each line of the file, use the Write # statement instead of Print #.

See Also:

Line Input statement, Open File statement, Write # statement
MapBasic 11.0 491 Reference

Chapter 7:
PrintWin statement
PrintWin statement

Purpose

Prints an existing window. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

PrintWin [Window window_id][Interactive][File output_filename]
[Overwrite]

window_id is a window identifier.

output_filename is a string representing the name of an output file. If the output file already exists, an
error will occur, unless the Overwrite keyword is specified.

Description

The PrintWin statement prints a window.

If the statement includes the optional Window clause, MapBasic prints the specified window;
otherwise, MapBasic prints the active window.

The window_id parameter represents a window identifier; see the FrontWindow() function and the
WindowInfo() function for more information about obtaining window identifiers.

If you include the Interactive keyword, MapInfo Professional displays the Print dialog box. If you
omit the Interactive keyword, MapInfo Professional prints the window automatically, without
displaying the dialog box.

Examples

Example 1
Dim win_id As Integer
Open Table "world"
Map From world
win_id = FrontWindow()
'
' knowing the ID of the Map window,
' the program could now print the map by
' issuing the statement:
'
PrintWin Window win_id Interactive

Example 2
PrintWin Window FrontWindow() File "c:\output\file.plt"

See Also:

FrontWindow() function, Run Menu Command statement, WindowInfo() function
MapBasic 11.0 492 Reference

Chapter 7:
PrismMapInfo() function
PrismMapInfo() function

Purpose

Returns properties of a Prism Map window. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

PrismMapInfo(window_id, attribute)

window_id is an integer window identifier.

attribute is an integer code, indicating which type of information should be returned.

Return Value

Float, logical, or string, depending on the attribute parameter.

Description

The PrismMapInfo() function returns information about a Prism Map window.

The window_id parameter specifies which Prism Map window to query. To obtain a window
identifier, call the FrontWindow() function immediately after opening a window, or call the
WindowID() function at any time after the window's creation.

There are several numeric attributes that PrismMapInfo() can return about any given Prism Map
window. The attribute parameter tells the PrismMapInfo() function which Map window statistic to
return. The attribute parameter should be one of the codes from the following table; codes are
defined in MAPBASIC.DEF.

Attribute ID Return Value

PRISMMAP_INFO_SCALE 1 Float result representing the PrismMaps scale
factor.

PRISMMAP_INFO_BACKGROUND 4 Integer result representing the background
color, see RGB() function.

PRISMMAP_INFO_LIGHT_X 6 Float result representing the x-coordinate of the
light in the scene.

PRISMMAP_INFO_LIGHT_Y 7 Float result representing the y-coordinate of the
Light in the scene.

PRISMMAP_INFO_LIGHT_Z 8 Float result representing the z-coordinate of the
Light in the scene.

PRISMMAP_INFO_LIGHT_COLOR 9 Integer result representing the Light color, see
RGB() function.
MapBasic 11.0 493 Reference

Chapter 7:
PrismMapInfo() function
Example

This example prints out all the state variables specific to the PrismMap window:

include "Mapbasic.def"

PRISMMAP_INFO_CAMERA_X 10 Float result representing the x-coordinate of the
Camera in the scene.

PRISMMAP_INFO_CAMERA_Y 11 Float result representing the y-coordinate of the
Camera in the scene.

PRISMMAP_INFO_CAMERA_Z 12 Float result representing the z-coordinate of the
Camera in the scene.

PRISMMAP_INFO_CAMERA_FOCAL_
X

13 Float result representing the x-coordinate of the
Cameras FocalPoint in the scene.

PRISMMAP_INFO_CAMERA_FOCAL_
Y

14 Float result representing the y-coordinate of the
Cameras FocalPoint in the scene.

PRISMMAP_INFO_CAMERA_FOCAL_
Z

15 Float result representing the z-coordinate of the
Camera's FocalPoint in the scene.

PRISMMAP_INFO_CAMERA_VU_1 16 Float result representing the first value of the
ViewUp Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VU_2 17 Float result representing the second value of
the ViewUp Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VU_3 18 Float result representing the third value of the
ViewUp Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VPN_1 19 Float result representing the first value of the
View Plane Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VPN_2 20 Float result representing the second value of
the ViewPlane Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VPN_3 21 Float result representing the third value of the
ViewPlane Unit Normal Vector.

PRISMMAP_INFO_CAMERA_CLIP_NE
AR

22 Float result representing the cameras near
clipping plane.

PRISMMAP_INFO_CAMERA_CLIP_FA
R

23 Float result representing the cameras far
clipping plane.

PRISMMAP_INFO_INFOTIP_EXPR 24 String for Infotip. Not previously documented.

Attribute ID Return Value
MapBasic 11.0 494 Reference

Chapter 7:
PrismMapInfo() function
Print "PRISMMAP_INFO_SCALE: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_SCALE)
Print "PRISMMAP_INFO_BACKGROUND: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_BACKGROUND)
Print "PRISMMAP_INFO_UNITS: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_UNITS)
Print "PRISMMAP_INFO_LIGHT_X : " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_LIGHT_X)
Print "PRISMMAP_INFO_LIGHT_Y : " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_LIGHT_Y)
Print "PRISMMAP_INFO_LIGHT_Z: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_LIGHT_Z)
Print "PRISMMAP_INFO_LIGHT_COLOR: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_LIGHT_COLOR)
Print "PRISMMAP_INFO_CAMERA_X: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_X)
Print "PRISMMAP_INFO_CAMERA_Y : " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_Y)
Print "PRISMMAP_INFO_CAMERA_Z : " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_Z)
Print "PRISMMAP_INFO_CAMERA_FOCAL_X: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_FOCAL_X)
Print "PRISMMAP_INFO_CAMERA_FOCAL_Y: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_FOCAL_Y)
Print "PRISMMAP_INFO_CAMERA_FOCAL_Z: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_FOCAL_Z)
Print "PRISMMAP_INFO_CAMERA_VU_1: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VU_1)
Print "PRISMMAP_INFO_CAMERA_VU_2: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VU_2)
Print "PRISMMAP_INFO_CAMERA_VU_3: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VU_3)
Print "PRISMMAP_INFO_CAMERA_VPN_1: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VPN_1)
Print "PRISMMAP_INFO_CAMERA_VPN_2: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VPN_2)
Print "PRISMMAP_INFO_CAMERA_VPN_3: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VPN_3)
Print "PRISMMAP_INFO_CAMERA_CLIP_NEAR: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_CLIP_NEAR)
Print "PRISMMAP_INFO_CAMERA_CLIP_FAR: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_CLIP_FAR)

See Also:

Create PrismMap statement, Set PrismMap statement
MapBasic 11.0 495 Reference

Chapter 7:
ProgramDirectory$() function
ProgramDirectory$() function

Purpose

Returns the directory path to where the MapInfo Professional software is installed. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

ProgramDirectory$()

Return Value

String

Description

The ProgramDirectory$() function returns a string representing the directory path where the
MapInfo Professional software is installed.

Example

Dim s_prog_dir As String
s_prog_dir = ProgramDirectory$()

See Also:

HomeDirectory$() function, SystemInfo() function

ProgressBar statement

Purpose

Displays a dialog box with a Cancel button and a horizontal progress bar.

Syntax

ProgressBar status_message
Calling handler
[Range n]

status_message is a string value displayed as a message in the dialog box.

handler is the name of a Sub procedure.

n is a number at which the job is finished.

Restrictions

You cannot issue the ProgressBar statement through the MapBasic window.
MapBasic 11.0 496 Reference

Chapter 7:
ProgressBar statement
Description

The ProgressBar statement displays a dialog box with a horizontal progress bar and a Cancel
button. The bar indicates the percentage of completion of a lengthy operation. The user can halt the
operation by clicking the Cancel button. Following the ProgressBar statement, a MapBasic
program can call CommandInfo(CMD_INFO_DLG_OK) to determine whether the operation finished
or whether the user cancelled first (see below). Where CMD_INFO_DLG_OK (1).

The status_message parameter is a string value, such as “Processing data…”, which is displayed in
the dialog box.

The handler parameter is the name of a sub procedure in the same MapBasic program. As
described below, the sub procedure must perform certain actions in order for it to interact with the
ProgressBar statement.

The n parameter is a number, representing the count value at which the operation will be finished.
For example, if an operation needs to process 7,000 rows of a table, the ProgressBar statement
might specify 7000 as the n parameter. If no Range n clause is specified, the n parameter has a
default value of 100.

When a program issues a ProgressBar statement, MapBasic calls the specified handler sub
procedure. The sub procedure should perform a small amount of processing, specifically a few
seconds' worth of processing at most, and then it should end. At that time, MapBasic checks to see
if the user clicked the Cancel button. If the user did click Cancel, MapBasic removes the dialog box,
and proceeds with the statements which follow the ProgressBar statement (and thus, the lengthy
operation is never completed). Alternately, if the user did not click Cancel, MapBasic automatically
calls the handler sub procedure again. If the user never clicks Cancel, the ProgressBar statement
repeatedly calls the procedure until the operation is finished.

The handler procedure must be written in such a way that each call to the procedure performs only a
small percent of the total job. Once a ProgressBar statement has been issued, MapBasic will
repeatedly call the handler procedure until the user clicks Cancel or until the handler procedure
indicates that the procedure is finished. The handler indicates the job status by assigning a value to
the special MapBasic variable, also named ProgressBar.

If the handler assigns a value of negative one to the ProgressBar variable (ProgressBar = -1)
then MapBasic detects that the operation is finished, and accordingly halts the ProgressBar loop
and removes the dialog box. Alternately, if the handler procedure assigns a value other than
negative one to the ProgressBar variable (ProgressBar = 50) then MapBasic re-displays the
dialog box's “percent complete” horizontal bar, to reflect the latest figure of percent completion.
MapBasic calculates the current percent of completion by dividing the current value of the
ProgressBar variable by the Range setting, n. For example, if the ProgressBar statement specified
the Range clause Range 400 and if the current value of the ProgressBar variable is 100, then the
current percent of completion is 25%, and MapBasic will display the horizontal bar as being 25%
filled.

The statements following the ProgressBar statement often must determine whether the
ProgressBar loop halted because the operation was finished, or because the user clicked the
Cancel button. Immediately following the ProgressBar statement, the function call
CommandInfo(CMD_INFO_DLG_OK) returns TRUE if the operation was complete, or FALSE if the
operation halted because the user clicked cancel. Where CMD_INFO_DLG_OK (1).
MapBasic 11.0 497 Reference

Chapter 7:
ProgressBar statement
Example

The following example demonstrates how a procedure can be written to work in conjunction with the
ProgressBar statement. In this example, we have an operation involving 600 iterations; perhaps we
have a table with 600 rows, and each row must be processed in some fashion. The main procedure
issues the ProgressBar statement, which then automatically calls the sub procedure, write_out.
The write_out procedure processes records until two seconds have elapsed, and then returns (so
that MapBasic can check to see if the user pressed Cancel). If the user does not press Cancel,
MapBasic will repeatedly call the write_out procedure until the entire task is done.

Include "mapbasic.def"
Declare Sub Main
Declare Sub write_out

Global next_row As Integer

Sub Main
next_row = 1
ProgressBar "Writing data..." Calling write_out Range 600
If CommandInfo(CMD_INFO_STATUS) Then

Note "Operation complete! Thanks for waiting."
Else

Note "Operation interrupted!"
End If

End Sub
Sub write_out

Dim start_time As Float
start_time = Timer()
' process records until either (a) the job is done,
' or (b) more than 2 seconds elapse within this call
Do While next_row <= 600 And Timer() - start_time < 2

''
''' Here, we would do the actual work '''
''' of processing the file. '''
''
next_row = next_row + 1

Loop

' Now figure out why the Do loop terminated: was it
' because the job is done, or because more than 2
' seconds have elapsed within this iteration?
If next_row > 600 Then

ProgressBar = -1 'tell caller "All Done!"
Else

ProgressBar = next_row 'tell caller "Partly done"
End If

End Sub

See Also:

CommandInfo() function, Note statement, Print statement
MapBasic 11.0 498 Reference

Chapter 7:
Proper$() function
Proper$() function

Purpose

Returns a mixed-case string, where only the first letter of each word is capitalized. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

Proper$(string_expr)

string_expr is a string expression.

Return Value

String

Description

The Proper$() function first converts the entire string_expr string to lower case, and then capitalizes
only the first letter of each word in the string, thus producing a result string with “proper”
capitalization. This style of capitalization is appropriate for proper names.

Example

Dim name, propername As String

name = "ed bergen"
propername = Proper$(name)
' propername now contains the string "Ed Bergen"

name = "ABC 123"
propername = Proper$(name)
' propername now contains the string "Abc 123"

name = "a b c d"
propername = Proper$(name)
' propername now contains the string "A B C D"

See Also:

LCase$() function, UCase$() function

ProportionOverlap() function

Purpose

Returns a number that indicates what percentage of one object is covered by another object. You
can call this function from the MapBasic Window in MapInfo Professional.
MapBasic 11.0 499 Reference

Chapter 7:
Put statement
Syntax

ProportionOverlap(object1, object2)

object1 is the bottom object, and it is a closed object.

object2 is the top object, and it is a closed object.

Return Value

A float value equal to AreaOverlap(object1, object2) / Area(object1).

Restrictions

ProporationOverlap() only works on closed objects. If both objects are not closed (such as points
and lines), then you may see an error message. Closed objects are objects that can produce an
area, such as regions (polygons).

See Also:

AreaOverlap() function

Put statement

Purpose

Writes the contents of a MapBasic variable to an open file.

Syntax

Put [#] filenum, [position,] var_name

filenum is the number of a file opened through an Open File statement.

position is the file position to write to (does not apply to sequential file access).

var_name is the name of a variable which contains the data to be written.

Description

The Put statement writes to an open file.

If the Open File statement specified a sequential access mode (Output or Append), use
the Print # statement or the Write # statement instead of Put.

If the Open File statement specified Random file access, the Put statement's Position clause can
be used to indicate which record in the file to overwrite. When the file is opened, the file position
points to the first record of the file (record 1). If the Open File statement specified Binary file access,
one variable can be written at a time. The byte sequence written to the file depends on whether the
hardware platform's byte ordering; see the ByteOrder clause of the Open File statement. The
number of bytes written depends on the variable type, as summarized below:
MapBasic 11.0 500 Reference

Chapter 7:
Randomize statement
The Position parameter sets the file pointer to a specific offset in the file. When the file is opened,
the position is initialized to 1 (the start of the file). As a Put is done, the position is incremented by
the number of bytes written. If the Position clause is not used, the Put simply writes to the current
file position. If the file was opened in Binary mode, the Put statement cannot specify a variable-
length string variable; any string variable used in a Put statement must be fixed-length. If the file was
opened in Random mode, the Put statement cannot specify a fixed-length string variable which is
longer than the record length of the file.

See Also:

EOF() function, Get statement, Open File statement, Print # statement, Write # statement

Randomize statement

Purpose

Initializes MapBasic's random number function. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Randomize [With seed]

seed is an integer expression.

Description

The Randomize statement “seeds” the random number generator so that later calls to the Rnd()
function produce random results. Without this statement before the first call to the Rnd() function,
the actual series of random numbers will follow a standard list. In other words, unless the program
includes a Randomize statement, the sequence of values returned by the Rnd() function will
follow the same pattern each time the application is run.

The Randomize statement is only needed once in a program and should occur prior to the first call
to the Rnd() function.

Variable Type Storage In File

Logical One byte, either 0 or non-zero.

SmallInt Two byte integer

Integer Four byte integer

Float Eight byte IEEE format

String Length of string plus a byte for a 0 string terminator

Date Four bytes: Small integer year, byte month, byte day

Other Variable types Cannot be written.
MapBasic 11.0 501 Reference

Chapter 7:
RasterTableInfo() function
If you include the With clause, the seed parameter is used as the seed value for the pseudo-random
number generator. If you omit the With clause, MapBasic automatically seeds the pseudo-random
number generator using the current system clock. Use the With clause if you need to create
repeatable test scenarios, where your program generates repeatable sequences of “random”
numbers.

Example

Randomize

See Also:

Rnd() function

RasterTableInfo() function

Purpose:

Returns information about a Raster or Grid Table. (WMS, Tile Server, and Seamless Raster tables
not supported).

Syntax:

RasterTableInfo(table_id, attribute)

table_id is a string representing a table name, a positive integer table number, or 0 (zero). The table
must be a raster or grid table.

attribute is an integer code indicating which aspect of the raster table to return.

Return Value

String, SmallInt, Integer or Logical, depending on the attribute parameter specified.

The attribute parameter can be any value from the table below. Codes in the left column (for
example, RASTER_TAB_INFO_IMAGE_NAME) are defined in MAPBASIC.DEF.

attribute code ID RasterTableInfo() returns

RASTER_TAB_INFO_IMAGE_NAME 1 String result, representing the image file name
associated with this raster table.

RASTER_TAB_INFO_WIDTH 2 Integer result, representing the width of the
image, in pixels

RASTER_TAB_INFO_HEIGHT 3 Integer result, representing the height of the
image, in pixels
MapBasic 11.0 502 Reference

Chapter 7:
RasterTableInfo() function
RASTER_TAB_INFO_IMAGE_TYPE 4 SmallInt result, representing the type of image:

• IMAGE_TYPE_RASTER (0)
for raster images

• IMAGE_TYPE_GRID (1)
for grid images

RASTER_TAB_INFO_BITS_PER_PIXE
L

5 SmallInt result, representing the number of
bits/pixel for the raster data

RASTER_TAB_INFO_IMAGE_CLASS 6 SmallInt result, representing the image class:

• IMAGE_CLASS_PALETTE (2)
for palette images

• IMAGE_CLASS_GREYSCALE (1)
for greyscale images

• IMAGE_CLASS_RGB (3)
for RGB images

• IMAGE_CLASS_BILEVEL (0)
for 2 color bilevel images

RASTER_TAB_INFO_NUM_CONTROL
_POINTS

7 SmallInt result, representing the number of
control points. Use RasterControlPointInfo()
and GeoControlPointInfo() to get specific
control points.

RASTER_TAB_INFO_BRIGHTNESS 8 SmallInt result, representing the brightness as
a percentage (0-100%)

RASTER_TAB_INFO_CONTRAST 9 SmallInt result, representing the contrast of the
image as a percentage (0-100%)

RASTER_TAB_INFO_GREYSCALE 10 Logical result, representing if the image display
should display as greyscale instead of the
default image mode

RASTER_TAB_INFO_DISPLAY_TRAN
SPARENT

11 Logical result, representing if the image should
display with a transparent color. If TRUE,
RASTER_TAB_INFO_TRANSPARENT_COL
OR represents the color that will be made
transparent.

RASTER_TAB_INFO_TRANSPARENT_
COLOR

12 Integer result, represent the color of the
transparent pixels, as BGR.

RASTER_TAB_INFO_ALPHA 13 SmallInt result, representing the alpha factor
for the translucency of the image (0-255)

attribute code ID RasterTableInfo() returns
MapBasic 11.0 503 Reference

Chapter 7:
RegionInfo() function
RegionInfo() function

Purpose:

This function was created to determine the orientation of points in polygons -- whether they are
ordered clockwise, or counter-clockwise. The only attribute the function reports on is the
'direction' of the points in a specified polygon. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax:

RegionInfo(object, REGION_INFO_IS_CLOCKWISE, polygon_num)

Where:

REGION_INFO_IS_CLOCKWISE 1

object refers to the object that is the subject of the function

REGION_INFO_IS_CLOCKWISE indicates whether the object is oriented in a clockwise or
counterclockwise direction. A parameter of 1 indicates that the object is oriented in a clockwise
order.

polygon_num indicates the polygon that is the subject of the function when an object contains more
than one polygon.

Example:

If you were to select the state of Utah from States mapper and issued the following command in the
MapBasic window, you would get a result of F or False, since the nodes in the single region of Utah
are drawn in counter-clockwise order. Colorado's nodes are drawn in clockwise order and return T
or True.

print RegionInfo(selection.obj,1,1)

ReadControlValue() function

Purpose

Reads the current status of a control in the active dialog box.

Syntax

ReadControlValue(id_num)

id_num is an integer value indicating which control to read.

Return Value

Integer, logical, string, Pen, Brush, Symbol, or Font, depending on the type of control
MapBasic 11.0 504 Reference

Chapter 7:
ReadControlValue() function
Description

The ReadControlValue() function returns the current value of one of the controls in an active dialog
box. A ReadControlValue() function call is only valid while there is an active dialog box; thus, you
may only call the ReadControlValue() function from within a dialog box control's handler
procedure.

The integer id_num parameter specifies which control MapBasic should read. If the id_num
parameter has a value of -1 (negative one), the ReadControlValue() function returns the value of
the last control which was operated by the user. To explicitly specify which control you want to read,
pass ReadControlValue() an integer ID that identifies the appropriate control.

A dialog box control does not have a unique ID unless you include an ID clause in the Dialog
statement’s Control clause. Some types of dialog box controls have no readable values (for
example, static text labels).

The table below summarizes what types of values will be returned by various controls. Note that
special processing is required for handling MultiListBox controls: since the user can select more
than one item from a MultiListBox control, a program may need to call ReadControlValue() multiple
times to obtain a complete list of the selected items.

Control Type ReadControlValue() Return Value

EditText String, up to 32,767 bytes long, representing the current contents of the text
box; if the EditText is tall enough to accommodate multiple lines of text, the
string may include Chr$(10) values, indicating that the user entered line-
feeds (for example, in Windows, by pressing Ctrl-Enter).

CheckBox TRUE if the check box is currently selected, FALSE otherwise.

DocumentWindow Integer that represents the HWND for the window control. This HWND
should be passed as the parent window handle in the Set Next Document
statement.

RadioGroup SmallInt value identifying which button is selected (1 for the first button).

PopupMenu SmallInt value identifying which item is selected (1 for the first item).

ListBox SmallInt value identifying the selected list item (1 for the first, 0 if none).

BrushPicker Brush value.

FontPicker Font value.

PenPicker Pen value.
MapBasic 11.0 505 Reference

Chapter 7:
ReadControlValue() function
Error Conditions

ERR_FCN_ARG_RANGE (644) error is generated if an argument is outside of the valid range.

ERR_INVALID_READ_CONTROL (842) error is generated if the ReadControlValue() function is
called when no dialog box is active.

Example

The following example creates a dialog box that asks the user to type a name in a text edit box. If the
user clicks OK, the application calls ReadControlValue() to read in the name that was typed.

Declare Sub Main
Declare Sub okhandler
Sub Main

Dialog
Title "Sign in, Please"

Control OKButton
Position 135, 120 Width 50
Title "OK"
Calling okhandler

Control CancelButton
Position 135, 100 Width 50
Title "Cancel"

Control StaticText
Position 5, 10
Title "Please enter your name:"

Control EditText
Position 55, 10 Width 160
Value "(your name here)"
Id 23 'arbitrary ID number

End Sub
Sub okhandler

' this sub is called when/if the user

SymbolPicker Symbol value.

MultiListBox Integer identifying one of the selected items. The user can select one or
more of the items in a MultiListBox control. Since ReadControlValue() can
only return one piece of information at a time, your program may need to call
ReadControlValue() multiple times in order to determine how many items
are selected.

The first call to ReadControlValue() returns the number of the first selected
list item (1 if the first list item is selected); the second call will return the
number of the second selected list item, etc. When ReadControlValue()
returns zero, the list of selected items has been exhausted. Subsequent calls
to ReadControlValue() then begin back at the top of the list of selected
items. If ReadControlValue() returns zero on the first call, none of the list
items are selected.

Control Type ReadControlValue() Return Value
MapBasic 11.0 506 Reference

Chapter 7:
ReDim statement
' clicks the OK control
Note "Welcome aboard, " + ReadControlValue(23) + "!"

End Sub

See Also:

Alter Control statement, Dialog statement, Dialog Preserve statement, Dialog Remove
statement

ReDim statement

Purpose

Re-sizes an array variable.

Syntax

ReDim var_name (newsize) [, ...]

var_name is a string representing the name of an existing local or global array variable.

newsize is an integer value dictating the new array size. The maximum value is 32,767.

Description

The ReDim statement re-sizes (or “re-dimensions”) one or more existing array variables. The
variable identified by var_name must have already been defined as an array variable through a Dim
statement or a Global statement.

The ReDim statement can increase or decrease the size of an existing array. If your program no
longer needs a given array variable, the ReDim statement can re-size that array to have zero
elements (this minimizes the amount of memory required to store variables).

Unlike some BASIC languages, MapBasic does not allow custom subscript settings for arrays; a
MapBasic array's first element always has a subscript of one.

If you store values in an array, and then enlarge the array through the ReDim statement, the values
you stored in the array remain intact.

Example

Dim names_list(10) As String, cur_size As Integer
' The following statements determine the current
' size of the array, and then ReDim the array to
' a size 10 elements larger

cur_size = UBound(names_list)
ReDim names_list(cur_size + 10)

' The following statement ReDims the array to a
' size of zero elements. Presumably, this array
' is no longer needed, and it is resized to zero
' for the sake of saving memory.
MapBasic 11.0 507 Reference

Chapter 7:
Register Table statement
ReDim names_list(0)

As shown below, the ReDim statement can operate on arrays of custom Type variables, and also on
arrays that are Type elements.

Type customer
name As String
serial_nums(0) As Integer

End Type

Dim new_customers(1) As customer

' First, redimension the "new_customers" array,
' making it five items deep:

ReDim new_customers(5)

' Now, redimension the "serial_nums" array element
' of the first item in the "new_customers" array:

ReDim new_customers(1).serial_nums(10)

See Also:

Dim statement, Global statement, UBound() function

Register Table statement

Purpose

The Register Table statement builds a MapInfo Professional table from a spreadsheet, database,
text file, raster, or grid image. Issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Register Table source_file {
Type NATIVE |
Type DBF [Charset char_set] |
Type ASCII [Delimiter delim_char][Titles][CharSet char_set] |
Type WKS [Titles] [Range range_name] |
Type WMS Coordsys...
Type WFS [Charset char_set] Coordsys... [Symbol...]

[Linestyle Pen(...)] [Regionstyle Pen(...) Brush(...)]
[Editable]

Type XLS [Titles] [Range range_name] [Interactive] |
Type ACCESS Table table_name [Password pwd] [CharSet char_set]}
Type ODBC

Connection { Handle connection_number | connection_string }
Toolkit toolkit_name
Cache { ON | OFF }
MapBasic 11.0 508 Reference

Chapter 7:
Register Table statement
[Autokey { ON | OFF }]
Table SQLQuery
[Versioned { ON | OFF }]
[Workspace Workspace_name]
[ParentWorkspace ParentWorkspace_name]

Type GRID | Type RASTER
[ControlPoints (MapX1, MapY1) (RasterX1, RasterY1),

(MapX2, MapY2) (RasterX2, RasterY2),
(MapX3, MapY3) (RasterX3, RasterY3)
[, ...]

]
[CoordSys ...]

Type FME [Charset char_set]
 CoordSys...
 Format format_type
 Schema feature_type
[Use Color]
[Database]
[SingleFile]
[Symbol...]
[Linestyle Pen(...)]
[Regionstyle Pen(...) Brush(...)]
[Font ...]
 Settings string1 [, string2 ..]

 Type SHAPEFILE [Charset char_set] CoordSys auto
[PersistentCache { ON | OFF }]
[Symbol...] [Linestyle Pen(...)]
[Regionstyle Pen(...) Brush(...)]
[into destination_file]

}

source_file is a string that represents the name of an existing database, spreadsheet, text file,
raster, or grid image. If you are registering an Access table, this argument must identify a valid
Access database.

char_set is the name of a character set; see CharSet clause. If not specified, then the system
character set is used.

delim_char specifies the character used as a column delimiter. If the file uses Tab as the delimiter,
specify 9. If the file uses commas, specify 44.

range_name is a string indicating a named range (for example, “MyTable”) or a cell range (for
example, an Excel range can be specified as “Sheet1!R1C1:R9C6” or as “Sheet1!A1:F9”).

Interactive is optional for XLS, Grid, or Raster types. Specifying this for Grid or Raster types
prompts the user for any missing control point or projection information. Not specifying this
generates a .TAB file without user input, as when the user selects “Display” when opening a raster
image from the File > Open dialog box. Interactive is not a valid parameter for registering shape
(SHP) files.

Specifying the Interactive keyword for the XLS type, instructs the interface to display the
Set Field Properties window when importing Excel files.
MapBasic 11.0 509 Reference

Chapter 7:
Register Table statement
CoordSys is required for WMS and Shapefiles, the compiler indicates an error if it is missing. For
other types, the CoordSys clause is optional. If CoordSys is specified, it overrides and replaces
any coordinate system associated with the image. This is useful when registering a raster image that
has an associated World file. For details, see CoordSys clause.

Symbol the symbol style to use for a point object created from a shapefile, see Symbol clause.

Pen the line style to use for a line object type created from a shapefile, see Pen clause.

Regionstyle Pen Brush the line style and fill style to be used for a region object type created from a
shapefile, see the Pen clause and Brush clause.

table_name is a string that identifies an Access table.

pwd is the database-level password for the database, to be specified when database security is
turned on.

connection_number is an integer value that identifies an existing connection to an ODBC database.

connection_string is a string used to connect to a database server. See Server_ConnectInfo()
function.

toolkit_name is “ODBC” or “ORAINET.”

If Autokey is set ON, the table is registered with key auto-increment option. If Autokey is set OFF or
this option is ignored, the table is registered without key auto-increment.

SQLQuery is the SQL query used to define the MapInfo table.

Versioned indicates if the table to be opened is a version-enabled (ON) table or not (OFF).

Workspace_name is the name of the current workspace in which the table will be operated. The
name is case sensitive.

ParentWorkspace_name is the name of parent workspace of the current workspace.

ControlPoints are optional, but can be specified if the type is Grid or Raster. If the ControlPoints
keyword is specified, it must be followed by at least 3 pairs of Map and Raster coordinates which are
used to georegister an image. If the ControlPoints are specified, they will override and replace any
control points associated with the image or an associated World file.

format_type formattype is a string that is used by FME to identify format that is opened.

feature_type specifies a featuretype (essentially schema name).

Use Color specifies if color information from dataset is used.

Database specifies if referenced datasource is from a database.

SingleFile specifies if referenced datasource consist of a single file.

string1 [, string2 ..] These are Safe Software FME-specific settings that vary depending upon the
format and settings options the user selects.

auto use this option if the Shapefile dataset has a .PRJ file, rather than specifying the coordinate
system in the statement. If the .PRJ file does not exist or the coordinate system is not converted to a
MapInfo coordinate system, the command will fail and the application will post an error message.
MapBasic 11.0 510 Reference

Chapter 7:
Register Table statement
PersistentCache ON specifies if .MAP and .ID files generated during the opening of Shapefiles are
saved on hard disk after closing a table. If PersistentCache is set to OFF, then these .MAP and .ID
files are deleted after closing a table and are be generated each time the table is opened.

destination_file specifies the name to give to the MapInfo table (.TAB file). This string may include a
path; if it does not include a path, the file is built in the same directory as the source file.

Description

Before you can use a non-native file (for example, a dBASE file) in MapInfo, you must register the
file. The Register Table statement tells MapInfo Professional to examine a non-native file (for
example, FILENAME.DBF) and build a corresponding table file (filename.TAB). Once the Register
Table operation has built a table file, you can access the file as an MapInfo table.

The Register Table statement does not copy or alter the original data file. Instead, it scans the data,
determines the datatypes of the columns, and creates a separate table file. The table is not opened
automatically. To open the table, use an Open Table statement.

Each data file need only be registered once. Once the Register Table operation has built the
appropriate table file, subsequent MapInfo Professional sessions simply Open the table,
rather than repeat the Register Table operation.

The Type clause specifies where the file came from originally. This consists of the keyword Type,
followed by one of the following character constants: NATIVE, DBF, ASCII, WKS, WMS, WFS, XLS,
ACCESS, ODBC, GRID, RASTER, FME, or SHAPEFILE. The other information is necessary for
preparing certain types of tables. If the type of file being registered is a grid, the coordsys string is
read from the grid file and a MapInfo .TAB file is created. If a raster file is being registered, the .TAB
file that is generated is the same as if the user selected “Display” when opening a raster image from
the File > Open dialog box.

If the type of file being registered is a GRID, the coordsys string is read from the grid file and a
MapInfo .TAB file is created. If a raster file is being registered, the .TAB file that is generated
depends upon if georegistration information can be found in the image file or associated World file.

The CharSet clause specifies a character set. The char_set parameter should be a string such as
“WindowsLatin1”. If you omit the CharSet clause, MapInfo Professional uses the default character
set for the hardware platform that is in use at run-time. See CharSet clause for more information.

The Delimiter clause is followed by a string containing the delimiter character. The default delimiter
is a TAB. The Titles clause indicates that the row before the range of data in the worksheet should
be used as column titles. The Range clause allows the specification of a named range to use. The
into clause is used to override the table name or location of the .TAB file. By default, it will be named
the same as the data file, and stored in the same directory. However, when reading a read-only
device such as a CD-ROM, you need to store the .TAB file on a volume that is not read-only.

Registering Access Tables

When you register an Access table, MapInfo Professional checks for a counter column with a unique
index. If there is already a counter column, MapInfo Professional registers that column in the .TAB
file. The column is read-only.
MapBasic 11.0 511 Reference

Chapter 7:
Register Table statement
If the Access table does not have a counter column, MapInfo Professional modifies the Access table
by adding a column called MAPINFO_ID with the counter datatype. In this case, the counter column
does not display in MapInfo.

Do not alter the counter column in any way. It must be exclusively maintained automatically
by MapInfo Professional.

Access datatypes are translated into the closest MapInfo datatypes. Special Access datatypes, such
as OLE objects and binary fields, are not editable in MapInfo Professional.

Registering ODBC Tables

Before accessing a table live from a remote database, it is highly recommended that you first open a
map table (for example, CANADA.TAB) for the database table. If you don't open a map table, the
entire database table will be downloaded all at once, which could take a long time.

Open a map table and zoom in to an area that corresponds to a subset of rows you wish to see from
the database table. For example, if you want to download rows pertaining to Ontario, zoom in to
Ontario on the map. As a result, when you open the database table, only rows within the map
window's MBR (minimum bounding rectangle), in this case Ontario, will be downloaded.

The following is a list of known problems/issues with live access:

• Every table must have a single unique key column.
• FastEdit is not supported.
• With MS ACCESS if the key is character, it does not display rows where the key value is less

than the full column width for example, if the key is char(5) the value 'aaaa' will look like a
deleted row.

• For Live Access, the ReadOnly checkbox on the save table dialog box is grayed out.
• Changes made by another user are not visible until a browser is scrolled or somehow refreshed.

Inserts by another user are not seen until either: 1). An MBR search returns the row or 2). PACK
command is issued in addition if cache is on another users updates may not appear until the
cache is invalidated by a pan or zooming out.

• There will be a problem if a client-side join (through the SQL Select menu item or MapBasic) is
done against two or more SPATIALWARE tables that are stored in different coordinate systems.
This is not an efficient thing to do (it is better to do the join in the SQL statement that defines the
table) but it is a problem in the current build.

• Oracle 7 tables that are indexed on a decimal field larger than 8 bytes will cause MapInfo
Professional to crash when editing.

• If the server is Oracle, Autokey is the indicator to tell if the new feature, key auto-increment, will
be used or not.

• If the Cache OFF statement is before the connection string an error will be generated at compile
time.
MapBasic 11.0 512 Reference

Chapter 7:
Register Table statement
Registering Shapefiles

When you register shapefiles, they can be opened in MapInfo Professional with read-only access.
Since a shapefile itself does not contain projection information, you must specify a CoordSys
clause. It is also possible to set styles that will be used when shapefile objects are displayed in
MapInfo Professional. Projection and style information is stored as metadata in the TAB file.

Interactive is not a valid parameter to use when registering SHP files.

Example: DBF

Register Table "c:\mapinfo\data\rpt23.dbf"
Type DBF
Into "Report23"

Open Table "c:\mapinfo\data\Report23"

Example: ODBC

Open Table "C:\Data\CANADA\Canada.tab" Interactive
Map From Canada
set map redraw off
Set Map Zoom 1000 Units "mi"
set map redraw on
Register Table "odbc_cancaps"

TYPE ODBC
TABLE "Select * From schemaname.can_caps"
CONNECTION

DSN=dsnname;UID=username;PWD=password;DATABASE=dbname
SERVER=servername

Into
"D:\MI\odbc_cancaps.TAB"

Open Table "D:\MI\odbc_cancaps.TAB" Interactive
Map From odbc_cancaps

Example: RASTER

Registering a completely georeferenced raster image (the raster handler can return at least three
control points and a projection).

Register Table "GeoRef.tif" type RASTER into "GeoRef.TAB"

Registering a raster image that has an associated World file containing control point information, but
no projection.

Register Table "RasterWithWorld.tif" type RASTER coordsys earth projection
9, 62, "m", -96, 23, 29.5, 45.5, 0, 0 into "RasterWithWorld.TAB"

Registering a raster image that has no control point or projection information.

Register Table "NoRegistration.BMP" type RASTER controlpoints (1000,2000)
(1,2), (2000,3000) (2, 3), (5000,6000) (5,6) coordsys earth projection 9,
62, "m", -96, 23, 29.5, 45.5, 0, 0 into "NoRegistration.tab"
MapBasic 11.0 513 Reference

Chapter 7:
Register Table statement
Example: SHAPEFILE

The following example registers a shapefile.

Register Table "C:\Shapefiles\CNTYLN.SHP" TYPE SHAPEFILE Charset
"WindowsLatin1" CoordSys Earth Projection 1, 33 PersistentCache Off
linestyle Pen (2,26,16711935) Into "C:\Temp\CNTYLN.TAB"
Open Table "C:\Temp\CNTYLN.TAB" Interactive
Map From CNTYLN

Example: ODBC

The following example creates a tab file and then opens the tab file.

Register Table "SMALLINTEGER" TYPE ODBC
TABLE "Select * From ""MIPRO"".""SMALLINTEGER"""
CONNECTION "SRVR=scout;UID=mipro;PWD=mipro "
toolkit "ORAINET"
Autokey ON
Into
"C:\projects\data\testscripts\english\remote\SmallIntEGER.TAB"

Open Table "C:\Projects\Data\TestScripts\English\remote\SmallIntEGER.TAB"
Interactive
Map From SMALLINTEGER

The following example creates a tab file and then opens the tab file. This example uses a
workspace.

Register Table "Gwmusa" TYPE ODBC
 TABLE "Select * From ""MIUSER"".""GWMUSA"""
 CONNECTION "SRVR=troyny;UID=miuser;PWD=miuser"
 toolkit "ORAINET"
 Versioned On
 Workspace "MIUSER"
 ParentWorkspace "LIVE"
 Into "C:\projects\data\testscripts\english\remote\Gwmusa.tab"

Open Table "C:\Projects\Data\TestScripts\English\remote\Gwmusa.TAB"
Interactive Map From Gwmusa

Example: FME (Universal Data)

Register Table "D:\MUT\DWG\Data\africa_miller.DWG" Type FME
CoordSys Earth Projection 11, 104, "m", 0 Format "ACAD" Schema
"africa_miller" Use Color SingleFile Symbol (35,0,16) Linestyle Pen
(1,2,0) RegionStyle Pen (1,2,0) Brush (2,16777215,16777215) Font
("Arial",0,9,0) Settings
"RUNTIME_MACROS","METAFILE,acad,_EXPAND_BLOCKS,yes,ACAD_IN_USE_BLOCK_HEAD
ER_LAYER,yes,ACAD_IN_RESOLVE_ENTITY_COLOR,yes,_EXPAND_VISIBLE,yes,_BULGES
_AS_ARCS,no,_STORE_BULGE_INFO,no,_READ_PAPER_SPACE,no,ACAD_IN_READ_GROUPS
,no,_IGNORE_UCS,no,_ACADPreserveComplexHatches,no,_MERGE_SCHEMAS,YES",
"META_MACROS","Source_EXPAND_BLOCKS,yes,SourceACAD_IN_USE_BLOCK_HEADER_LA
YER,yes,SourceACAD_IN_RESOLVE_ENTITY_COLOR,yes,Source_EXPAND_VISIBLE,yes,
Source_BULGES_AS_ARCS,no,Source_STORE_BULGE_INFO,no,Source_READ_PAPER_SPA
CE,no,SourceACAD_IN_READ_GROUPS,no,Source_IGNORE_UCS,no,Source_ACADPreser
MapBasic 11.0 514 Reference

Chapter 7:
Relief Shade statement
veComplexHatches,no", "METAFILE","acad", "COORDSYS","", "IDLIST","" Into
"C:\Temp\africa_miller.tab"
Open table "C:\Temp\africa_miller.tab"
Map From "africa_miller"

Supporting Transaction Capabilities for WFS Layers

Syntax

Register Table source_file
{ Type NATIVE |
Type DBF [Charset char_set] |
Type ASCII [Delimiter delim_char][Titles][CharSet char_set] |
Type WKS [Titles] [Range range_name] |
Type WMS Coordsys...
Type WFS [Charset char_set] Coordsys... [Symbol...]

[Linestyle Pen(...)] [Regionstyle Pen(...) Brush(...)]
[Editable]

where:

Editable reflects the Allow Edits choice.

See Also:

Open Table statement, Create Table statement, Server Create Workspace statement, Server
Link Table statement

Relief Shade statement

Purpose

Adds relief shade information to an open grid table. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Relief Shade
Grid tablename
Horizontal xy_plane_angle
Vertical incident_angle
Scale z_scale_factor

tablename is the alias name of the grid to which relief shade information is being calculated.

xy_plane_angle is the direction angle, in degrees, of the light source in the horizontal or xy plane. An
xy_plane_angle of zero represents a light source shining from due East. A positive angle places the
light source counterclockwise, so to place the light source in the NorthWest, set xy_plane_angle to
135.
MapBasic 11.0 515 Reference

Chapter 7:
Reload Symbols statement
incident_angle is the angle of the light source above the horizon or xy plane. An incident_angle of
zero represents a light source right at the horizon. An incident_angle of 90 places the light source
directly overhead.

z_scale_factor is the scale factor applied to the z-component of each grid cell. Increasing the
z_scale_factor enhances the shading effect by exaggerating the vertical component. This can be
used to bring out more detail in relatively flat grids.

Example

Relief Shade
Grid Lumens
Horizontal 135
Vertical 45
Scale 30

Reload Symbols statement

Purpose

Opens and reloads the MapInfo symbol file; this can change the set of symbols displayed in the
Options > Symbol Style dialog box. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax 1 (MapInfo 3.0 Symbols)

Reload Symbols

Syntax 2 (Bitmap File Symbols)

Reload Custom Symbols From directory

directory is a string representing a directory path.

Description

This statement is used by the SYMBOL.MBX utility, which allows users to create custom symbols.

MapInfo 3.0 Symbols refers to the symbol set that came with MapInfo Professional for
Windows 3.0 and has been maintained in subsequent versions of MapInfo Professional.

See Also:

Alter Object statement

RemoteMapGenHandler procedure

Purpose

A reserved procedure name, called when an OLE Automation client calls the MapGenHandler
Automation method.
MapBasic 11.0 516 Reference

Chapter 7:
RemoteMsgHandler procedure
Syntax

Declare Sub RemoteMapGenHandler

Sub RemoteMapGenHandler
 statement_list

End Sub

statement_list is a list of MapBasic statements to execute when the OLE Automation client calls the
MapGenHandler method.

Description

RemoteMapGenHandler is a special-purpose MapBasic procedure name, which is invoked through
OLE Automation. If you are using OLE Automation to control MapInfo Professional, and you call the
MapGenHandler method, MapInfo Professional calls the RemoteMapGenHandler procedures of
any MapBasic applications that are running. The MapGenHandler method is part of the MapGen
Automation model introduced in MapInfo Professional 4.1.

The MapGenHandler Automation method takes one argument: a string. Within the
RemoteMapGenHandler procedure, you can retrieve the string argument by issuing the function call
CommandInfo(CMD_INFO_MSG) and assigning the results to a string variable.

Example

For an example of using RemoteMapGenHandler, see the sample program MAPSRVR.MB.

RemoteMsgHandler procedure

Purpose

A reserved procedure name, called when a remote application sends an execute message.

Syntax

Declare Sub RemoteMsgHandler

Sub RemoteMsgHandler
 statement_list

End Sub

statement_list is a list of statements to execute upon receiving an execute message.

Description

RemoteMsgHandler is a special-purpose MapBasic procedure name that handles inter-application
communication. If you run a MapBasic application that includes a procedure named
RemoteMsgHandler, MapInfo Professional automatically calls the RemoteMsgHandler procedure
every time another application (for example, a spreadsheet or database package) issues an
“execute” command. The MapBasic procedure then can call the CommandInfo() function to
retrieve the string corresponding to the execute command.
MapBasic 11.0 517 Reference

Chapter 7:
RemoteQueryHandler() function
You can use the End Program statement to terminate a RemoteMsgHandler procedure once it is
no longer wanted. Conversely, you should be careful not to issue an End Program statement while
the RemoteMsgHandler procedure is still needed.

Inter-Application Communication Using Windows DDE

If a Windows application is capable of conducting a DDE (Dynamic Data Exchange) conversation,
that application can initiate a conversation with MapInfo Professional. In the conversation, the
external application is the client (active party), and a specific MapBasic application is the server
(passive party).

Each time the DDE client sends an execute command, MapInfo Professional calls the server's
RemoteMsgHandler procedure. Within the RemoteMsgHandler procedure, you can use the
function call:

CommandInfo(CMD_INFO_MSG)

where:

CMD_INFO_MSG (1000)

to retrieve the string sent by the remote application. The DDE conversation must use the name of
the sleeping application (for example, “C:\MAPBASIC\DISPATCH.MBX”) as the topic in order to
facilitate RemoteMsgHandler functionality.

See Also:

DDEExecute statement, DDEInitiate() function, SelChangedHandler procedure, ToolHandler
procedure, WinChangedHandler procedure, WinClosedHandler procedure

RemoteQueryHandler() function

Purpose

A special function, called when a MapBasic program acts as a DDE server, and the DDE client
performs a “peek” request. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

Declare Function RemoteQueryHandler() As String

Function RemoteQueryHandler() As String
 statement_list

End Function

statement_list is a list of statements to execute upon receiving a peek request.

Description

The RemoteQueryHandler() function works in conjunction with DDE (Dynamic Data Exchange).
For an introduction to DDE, see the MapBasic User Guide. An external application can initiate a
DDE conversation with your MapBasic program. To initiate the conversation, the external application
MapBasic 11.0 518 Reference

Chapter 7:
Remove Cartographic Frame statement
uses “MapInfo” as the DDE application name, and it uses the name of your MapBasic application as
the DDE topic. Once the conversation is initiated, the external application (the client) can issue peek
requests to request data from your MapBasic application (the server).

To handle peek requests, include a function called RemoteQueryHandler() in your MapBasic
application. When the client application issues a peek request, MapInfo Professional automatically
calls the RemoteQueryHandler() function. The client's peek request is handled synchronously; the
client waits until RemoteQueryHandler() returns a value.

The DDE client can peek at the global variables in your MapBasic program, even if you do
not define a RemoteQueryHandler() function. If the client issues a peek request using the
name of a MapBasic global variable, MapInfo Professional automatically returns the global's
value to the client instead of calling RemoteQueryHandler(). In other words, if the data you
want to expose is already stored in global variables, you do not need
RemoteQueryHandler().

Example

The following example calls the CommandInfo() function to determine the item name specified by
the DDE client. The item name is used as a flag; in other words, this program decides which value to
return based on whether the client specified “code1” as the item name.

Function RemoteQueryHandler() As String
Dim s_item_name As String

s_item_name = CommandInfo(CMD_INFO_MSG)

If s_item_name = "code1" Then
RemoteQueryHandler = custom_function_1()

Else
RemoteQueryHandler = custom_function_2()

End If

End Function

See Also:

DDEInitiate() function, RemoteMsgHandler procedure

Remove Cartographic Frame statement

Purpose

Allows you to remove cartographic frames from an existing cartographic legend created with the
Create Cartographic Legend statement. You can issue this statement from the MapBasic Window
in MapInfo Professional.
MapBasic 11.0 519 Reference

Chapter 7:
Remove Map statement
Syntax

Cartographic Frame
[Window legend_window_id]
Id frame_id, frame_id, frame_id, ...

legend_window_id is an integer window identifier which you can obtain by calling the
FrontWindow() function and the WindowID() function.

frame_id is the ID of the frame on the legend. You cannot use a layer name. For example, three
frames on a legend would have the successive IDs, 1, 2, and 3.

See Also:

Add Cartographic Frame statement, Alter Cartographic Frame statement, Create
Cartographic Legend statement, Set Cartographic Legend statement

Remove Map statement

Purpose

Removes one or more layers from a Map window. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Remove Map [Window window_id]
Layer map_layer [, map_layer ...] | GroupLayer group_id [, group_id

...][Interactive]

window_id is the integer window identifier of a Map window; to obtain a window identifier, call the
FrontWindow() function or the WindowID() function.

map_layer specifies which map layer(s) to remove; see examples below.

Description

The Remove Map statement removes one or more layers or group layers from a Map window. If no
window_id is provided, the statement affects the topmost Map window.

The group_id can be an integer greater than zero to denote a specific group in the map, or the name
of a group layer. If it is the name of a group layer, the first group layer in the list from the top down
with the same name will be removed. Since the map_layer also refers to a unique identifier it can
refer to a map layer in any group. But to remove an entire group, and all of its nested groups, use the
GroupLayer clause.The map_layer parameter can be an integer greater than zero, a string
containing the name of a table, or the keyword Animate, as summarized in the following table.
MapBasic 11.0 520 Reference

Chapter 7:
Rename File statement
If you include the Interactive keyword, and if the layer removal will cause the loss of labels or
themes, MapInfo Professional displays a dialog box that allows the user to save (a workspace),
discard the labels and themes, or cancel the layer removal. If you omit the Interactive keyword, the
user is not prompted.

A Remove Map statement does not close any tables; it only affects the number of layers displayed
in the Map window. If a Remove Map statement removes the last non-cosmetic layer in a Map
window, MapInfo Professional automatically closes the window.

See Also:

Create Map statement, Map statement, Set Map statement

Rename File statement

Purpose

Changes the name of a file. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Rename File old_filespec As new_filespec

old_filespec is a string representing an existing file's name (and, optionally, path); the file must not
be open.

new_filespec is a string representing the new name (and, optionally, path) for the file.

Examples Descriptions of Examples

Remove Map Layer 1 If you specify “1” (one) as the map_layer parameter, the
top map layer (other than the Cosmetic layer) is removed.
Specify “1, 2" to remove the top two layers.

Example:

Remove Map GroupLayer 1

This removes the first group layer in the list.

Remove Map Layer "Zones" The Zones layer is removed (assuming that one of the
layers in the map is named “Zones”).

Remove Map Layer "Zones(1)" The first thematic layer based on the Zones layer is
removed.

Remove Map Layer Animate The animation layer is removed. To learn how to add an
animation layer, see Add Map statement.
MapBasic 11.0 521 Reference

Chapter 7:
Rename Table statement
Description

The Rename File statement renames a file.

The new_filespec parameter specifies the file's new name. If new_filespec contains a directory path
that differs from the file's original location, MapInfo Professional moves the file to the specified
directory.

Example

Rename File "startup.wor" As "startup.bak"

See Also:

Rename File statement, Save File statement

Rename Table statement

Purpose

Changes the names (and, optionally, the location) of the files that make up a table. You can issue
this statement from the MapBasic Window in MapInfo Professional.

Syntax

Rename Table table As newtablespec

table is the name of an open table.

newtablespec is the new name (and, optionally, path) for the table.

Description

The Rename Table statement assigns a new name to an open table.

The newtablespec parameter specifies the table's new name. If newtablespec contains a directory
name, MapBasic attempts to move the table to the specified directory in addition to renaming the
table. The Rename Table statement renames the physical files which comprise a table. This effect
is permanent (unless/until another Rename Table statement is issued).

This action can invalidate existing workspaces. Any workspaces created before the renaming
operation will refer to the table by its previous, no-longer-applicable name.

Do not use the Rename Table statement to assign a temporary, working table name. If you need to
assign a temporary name, use the Open Table statement’s optional As clause.

The Rename Table statement cannot rename a table that is actually a “view.” For example, a
StreetInfo table (such as SF_STRTS) is actually a view, combining two other tables (SF_STRT1 and
SF_STRT2). You could not rename the SF_STRTS table by calling Rename Table. You cannot
MapBasic 11.0 522 Reference

Chapter 7:
Reproject statement
rename temporary query tables (for example, QUERY1). You cannot rename tables that have
unsaved edits; if a table has unsaved edits, you must either save or discard the edits (or Rollback)
before renaming.

Example

The following example renames the table casanfra as sf_hiway.

Open Table "C:\DATA\CASANFRA.TAB"
Rename Table CASANFRA As "SF_HIWAY.TAB"

The following example renames a table and moves it to a different directory path.

Open Table "C:\DATA\CASANFRA.TAB"
Rename Table CASANFRA As "c:\MAPINFO\SF_HIWAY"

See Also:

Close Table statement, Drop Table statement

Reproject statement

Purpose

Allows you to specify which columns should appear the next time a table is browsed. This statement
has been deprecated.

Resume statement

Purpose

Returns from an OnError error handler.

Syntax

Resume { 0 | Next | label }

label is a label within the same procedure or function.

Restrictions

You cannot issue a Resume statement through the MapBasic window.

Description

The Resume statement tells MapBasic to return from an error-handling routine.

The OnError statement enables an error-handling routine, which is a group of statements
MapBasic carries out in the event of a run-time error. Typically, each error-handling routine includes
one or more Resume statements. The Resume statement causes MapBasic to exit the error-
handling routine.
MapBasic 11.0 523 Reference

Chapter 7:
RGB() function
The various forms of the Resume statement let the application dictate which statement MapBasic is
to execute after exiting the error-handling routine:

A Resume 0 statement tells MapBasic to retry the statement which generated the error.

A Resume Next statement tells MapBasic to go to the first statement following the statement which
generated the error.

A Resume label statement tells MapBasic to go to the line identified by the label. Note that the label
must be in the same procedure.

Example

...
OnError GoTo no_states
Open Table "states"
Map From states

after_mapfrom:
...

End Program
no_states:

Note "Could not open States; no Map used."
Resume after_mapfrom

See Also:

Err() function, Error statement, Error$() function, OnError statement

RGB() function

Purpose

Returns an RGB color value calculated from Red, Green, Blue components. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

RGB(red, green, blue)

red is a numeric expression from 0 to 255, representing a concentration of red.

green is a numeric expression from 0 to 255, representing a concentration of green.

blue is a numeric expression from 0 to 255, representing a concentration of blue.

Return Value

Integer
MapBasic 11.0 524 Reference

Chapter 7:
Right$() function
Description

Some MapBasic statements allow you to specify a color as part of a pen or brush definition (for
example, the Create Point statement). MapBasic pen and brush definitions require that each color
be specified as a single integer value, known as an RGB value. The RGB() function lets you
calculate such an RGB value.

Colors are often defined in terms of the relative concentrations of three components—the red, green
and blue components. Accordingly, the RGB() function takes three parameters—red, green, and
blue—each of which specifies the concentration of one of the three primary colors. Each color
component should be an integer value from 0 to 255, inclusive.

The RGB value of a given color is calculated by the formula:

(red * 65536) + (green * 256) + blue

The standard definitions file, MAPBASIC.DEF, includes Define statements for several common
colors (BLACK, WHITE, RED, GREEN, BLUE, CYAN, MAGENTA, and YELLOW). If you want to
specify red, you can simply use the identifier RED instead of calling RGB().

Example

Dim red,green,blue,color As Integer
red = 255
green = 0
blue = 0
color = RGB(red, green, blue)

' the RGB value stored in the variable: color
' will represent pure, saturated red.

See Also:

Brush clause, Font clause, Pen clause, Symbol clause

Right$() function

Purpose

Returns part or all of a string, beginning at the right end of the string. You can call this function from
the MapBasic Window in MapInfo Professional.

Syntax

Right$(string_expr, num_expr)

string_expr is a string expression.

num_expr is a numeric expression.

Return Value

String
MapBasic 11.0 525 Reference

Chapter 7:
Rnd() function
Description

The Right$() function returns a string which consists of the rightmost num_expr characters of the
string expression string_expr.

The num_expr parameter should be an integer value, zero or larger. If num_expr has a fractional
value, MapBasic rounds to the nearest integer. If num_expr is zero, Right$() returns a null string. If
num_expr is larger than the number of characters in the string_expr string, Right$() returns a copy
of the entire string_expr string.

Example

Dim whole, partial As String
whole = "Afghanistan"
partial = Right$(whole, 4)

' at this point, partial contains the string: "stan"

See Also:

Left$() function, Mid$() function

Rnd() function

Purpose

Returns a random number. You can call this function from the MapBasic Window in MapInfo
Professional.

Syntax

Rnd(list_type)

list_type selects the kind of random number list.

Return Value

A number of type float between 0 and 1 (exclusive).

Description

The Rnd() function returns a random floating-point number, greater than zero and less than one.

The conventional use is of the form Rnd(1), in which the function returns a random number. The
sequence of random numbers is always the same unless you insert a Randomize statement in the
program. Any positive list_type parameter value produces this type of result.

A less common use is the form Rnd(0), which returns the previous random number generated by
the Rnd() function. This functionality is provided primarily for debugging purposes.
MapBasic 11.0 526 Reference

Chapter 7:
Rollback statement
A very uncommon use is a call with a negative list_type value, such as Rnd(-1). For a given
negative value, the Rnd() function always returns the same number, regardless of whether you
have issued a Randomize statement. This functionality is provided primarily for debugging
purposes.

Example

Chknum = 10 * Rnd(1)

See Also:

Randomize statement

Rollback statement

Purpose

Discards a table's unsaved edits. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Rollback Table tablename

tablename is the name of an open table.

Description

If the specified table has been edited, but the edits have not been saved, the Rollback statement
discards the unsaved edits. The user can obtain the same results by choosing File > Revert, except
that command displays a dialog box.

When you Rollback a query table, MapInfo Professional discards any unsaved edits in the
permanent table used for the query (except in cases where the query produces a join, or the
query produces aggregated results, for example, using the Select statement’s Group By
clause).

For example, if you edit a permanent table (such as WORLD), make a selection from WORLD, and
browse the selection, MapInfo Professional will “snapshot” the Selection table, and call the snapshot
(something like) QUERY1. If you then Rollback the QUERY1 table, MapInfo Professional discards
any unsaved edits in the WORLD table, since the WORLD table is the table on which QUERY1 is
based.

Using a Rollback statement on a linked table discards the unsaved edits and returns the table to the
state it was in prior to the unsaved edits.

Example

If keep_changes Then
 Table towns
MapBasic 11.0 527 Reference

Chapter 7:
Rotate() function
Else
Rollback Table towns

End If

See Also:

Commit Table statement

Rotate() function

Purpose

Allows an object (not a text object) to be rotated about the rotation anchor point. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

Rotate(object, angle)

object represents an object that can be rotated. It cannot be a text object.

angle is a float value that represents the angle (in degrees) to rotate the object.

Return Value

A rotated object.

Description

The Rotate() function Rotates all object types except for text objects without altering the source
object in any way.

To rotate text objects, use the Alter Object OBJ_GEO_TEXTANGLE statement.

If an arc, ellipse, rectangle, or rounded rectangle is rotated, the resultant object is converted to a
polyline/polygon so that the nodes can be rotated.

Example

dim RotateObject as object
Open Table "C:\MapInfo_data\TUT_USA\USA\STATES.TAB"
map from states
select * from States where state = "IN"
RotateObject = rotate(selection.obj, 45)
insert into states (obj) values (RotateObject)

See Also:

RotateAtPoint() function
MapBasic 11.0 528 Reference

Chapter 7:
RotateAtPoint() function
RotateAtPoint() function

Purpose

Allows an object (not a text object) to be rotated about a specified anchor point. You can call this
function from the MapBasic Window in MapInfo Professional.

Syntax

RotateAtPoint(object, angle, anchor_point_object)

object represents an object that can be rotated. It cannot be a text object.

angle is a float value that represents the angle (in degrees) to rotate the object.

anchor_point_object is an object representing the anchor point which the object nodes are rotated
about.

Return Value

A rotated object.

Description

The RotateAtPoint() function rotates all object types except for text objects without altering the
source object in any way.

To rotate text objects, use the Alter Object OBJ_GEO_TEXTANGLE statement.

If an arc, ellipse, rectangle, or rounded rectangle is rotated, the resultant object is converted to a
polyline/polygon so that the nodes can be rotated.

Example

dim RotateAtPointObject as object
dim obj1 as object
dim obj2 as object
Open Table "C:\MapInfo_data\TUT_USA\USA\STATES.TAB"]
map from states
select * from States where state = "CA"
obj1 = selection.obj
select * from States where state = "NV"
obj2 = selection.obj
oRotateAtPointObject = RotateAtPoint(obj1 , 65, centroid(obj2))
insert into states (obj) values (RotateAtPointObject)

See Also:

Rotate() function
MapBasic 11.0 529 Reference

Chapter 7:
Round() function
Round() function

Purpose

Returns a number obtained by rounding off another number. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

Round(num_expr, round_to)

num_expr is a numeric expression.

round_to is the number to which num_expr should be rounded off.

Return Value

Float

Description

The Round() function returns a rounded-off version of the numeric num_expr expression.

The precision of the result depends on the round_to parameter. The Round() function rounds the
num_expr value to the nearest multiple of the round_to parameter. If round_to is 0.01, MapInfo
Professional rounds to the nearest hundredth; if round_to is 5, MapInfo Professional rounds to the
nearest multiple of 5; etc.

Example

Dim x, y As Float
x = 12345.6789

y = Round(x, 100)
' y now has the value 12300

y = Round(x, 1)
' y now has the value 12346

y = Round(x, 0.01)
' y now has the value 12345.68

See Also:

Fix() function, Format$() function, Int() function
MapBasic 11.0 530 Reference

Chapter 7:
RTrim$() function
RTrim$() function

Purpose

Trims space characters from the end of a string, and returns the results. You can call this function
from the MapBasic Window in MapInfo Professional.

Syntax

RTrim$(string_expr)

string_expr is a string expression.

Return Value

String

Description

The RTrim$() function removes any spaces from the end of the string_expr string, and returns the
resultant string.

Example

Dim s_name As String
s_name = RTrim$("Mary Smith ")

' s_name now contains the string "Mary Smith"
' (no spaces at the end)

See Also:

LTrim$() function

Run Application statement

Purpose

Runs a MapBasic application or adds a MapInfo workspace. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Run Application [NoMRU] file

file is the name of an application file or a workspace file.

If the statement includes the NoMRU clause, the application or workspace name would not be
added to the Most recently Used list of files.
MapBasic 11.0 531 Reference

Chapter 7:
Run Command statement
Description

The Run Application statement runs a MapBasic application or loads an MapInfo workspace. By
issuing a Run Application statement, one MapBasic application can run another application. To do
so, the file parameter must represent the name of a compiled application file. The Run Application
statement cannot run an uncompiled application. To halt an application launched by the Run
Application statement, use the Terminate Application statement.

Example

The following statement runs the MapBasic application, REPORT.MBX:

Run Application "C:\MAPBASIC\APP\REPORT.MBX"

The following statement loads the workspace, PARCELS.WOR:

Run Application "Parcels.wor"

See Also:

Run Command statement, Run Menu Command statement, Run Program statement,
Terminate Application statement

Run Command statement

Purpose

Executes a MapBasic command represented by a string. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Run Command command

command is a character string representing a MapBasic statement.

Description

The Run Command statement interprets a character string as a MapBasic statement, then
executes the statement.

The Run Command statement has some restrictions, due to the fact that the command parameter
is interpreted at run-time, rather than being compiled. You cannot use a Run Command statement
to issue a Dialog statement. Also, variable names may not appear within the command string; that
is, variable names may not appear enclosed in quotes. For example, the following group of
statements would not work, because the variable names x and y appear inside the quotes that
delimit the command string:

' this example WON'T work
Dim cmd_string As String
Dim x, y As Float
MapBasic 11.0 532 Reference

Chapter 7:
Run Command statement
cmd_string = " x = Abs(y) "
Run Command cmd_string

However, variable names can be used in the construction of the command string.

In the following example, the command string is constructed from an expression that includes a
character variable.

'this example WILL work
Dim cmd_string As String
Dim map_it, browse_it As Logical

Open Table "world"
If map_it Then

cmd_string = "Map From "
Run Command cmd_string + "world"

End If
If browse_it Then

cmd_string = "Browse * From "
Run Command cmd_string + "world"

End If

Example

The Run Command statement provides a flexible way of issuing commands that have variable-
length argument lists. For example, the Map From statement can include a single table name, or a
comma-separated list of two or more table names. An application may need to decide at run time
(based on feedback from the user) how many table names should be included in the Map From
statement. One way to do this is to construct a text string at run time, and execute the command
through the Run Command statement.

Dim cmd_text As String
Dim cities_wanted, counties_wanted As Logical

Open Table "states"
Open Table "cities"
Open Table "counties"

cmd_text = "states" ' always include STATES layer

If counties_wanted Then
cmd_text = "counties, " + cmd_text

End If

If cities_wanted Then
cmd_text = "cities, " + cmd_text

End If

Run Command "Map From " + cmd_text
MapBasic 11.0 533 Reference

Chapter 7:
Run Menu Command statement
The following example shows how to duplicate a Map window, given the window ID of an existing
map. The WindowInfo() function returns a string containing MapBasic statements; the Run
Command statement executes the string.

Dim i_map_id As Integer

' First, get the ID of an existing Map window
' (assuming the Map window is the active window):
i_map_id = FrontWindow()

' Now clone the active map window:
Run Command WindowInfo(i_map_id, WIN_INFO_CLONEWINDOW)

See Also:

Run Application statement, Run Menu Command statement, Run Program statement

Run Menu Command statement

Purpose

Runs a MapInfo Professional menu command, as if the user had selected the menu item. Can also
be used to select a button on a ButtonPad. You can issue this statement from the MapBasic Window
in MapInfo Professional.

Syntax

Run Menu Command { command_code | ID command_ID }

command_code is an integer code from MENU.DEF (such as M_FILE_NEW), representing a
standard menu item or button.

command_ID is a number representing a custom menu item or button.

Description

To execute a standard MapInfo Professional menu command, include the command_code
parameter. The value of this parameter must match one of the menu codes listed in MENU.DEF. For
example, the following MapBasic statement executes MapInfo Professional's File > New command:

Run Menu Command M_FILE_NEW

To select a standard button from MapInfo's ButtonPads, specify that button's code (from
MENU.DEF). For example, the following statement selects the Radius Search button:

Run Menu Command M_TOOLS_SEARCH_RADIUS

To select a custom button or menu command (for example, a button or a menu command created
through a MapBasic program), use the ID clause.

For example, if your program creates a custom tool button by issuing a statement such as…

Alter ButtonPad ID 1 Add
ToolButton
MapBasic 11.0 534 Reference

Chapter 7:
Run Menu Command statement
Calling sub_procedure_name
ID 23
Icon MI_ICON_CROSSHAIR

…then the custom button has an ID of 23. The following statement selects the button.

Run Menu Command ID 23

Using MapBasic, the Run Menu Command statement can execute the MapInfo Professional Help
> MapInfo Professional Tutorial on the Web… command.

Run Menu Command M_HELP_MAPINFO_WWW_TUTORIAL

You can access Query > Invert Selection using the following MapBasic command:

Run Menu Command M_QUERY_INVERTSELECT.

Access Page settings in Options > Preferences > Printer by using the following syntax:

RUN MENU COMMAND M_EDIT_PREFERENCES_PRINTER

Or

RUN MENU COMMAND 217
' if running from MapBasic window

See Also:

Run Application statement, Run Program statement

Integrated Mapping Applications

Integrated Mapping applications cannot display the Layer Control as a window. However, Integrated
Mapping applications can display the Layer Control as a modal dialog box, by using the Run Menu
Command statement with command M_MAP_LAYER_CONTROL_DIALOG (801). For example:

Run Menu Command 801

Preferences Dialog Box

MapInfo Professional's Preferences dialog box is a special case. The Preferences dialog box
contains several buttons, each of which displays another dialog box. You can use Run Menu
Command statement to invoke individual sub-dialog boxes. For example, the following statement
displays the Map Window Preferences sub-dialog box:

Run Menu Command M_EDIT_PREFERENCES_MAP.

Layer Control Window and Dialog Box

MapInfo Professional 10.0 and higher display the Layer Control as a window and not as a dialog
box. As of MapBasic 10.0, MapBasic applications can display the Layer Control as either a window
or as a dialog box by executing a Run Menu command statement:

• To display Layer Control as a window, use M_MAP_LAYER_CONTROL (or its value, 822):
Run Menu Command M_MAP_LAYER_CONTROL
MapBasic 11.0 535 Reference

Chapter 7:
Run Program statement
• To display Layer Control as a dialog box (with OK and Cancel buttons), use
M_MAP_LAYER_CONTROL_DIALOG (or its value, 801):
Run Menu Command M_MAP_LAYER_CONTROL_DIALOG

Releases before MapInfo Professional 10.0 display the Layer Control as a dialog box, so MapBasic
applications (MBX) written with MapBasic 9.5 or earlier assume that the Layer Control is a dialog
box. To be backwards compatible, MapInfo Professional 10.0 and higher executes older MapBasic
applications that requests the Layer Control, using a Layer Control dialog box.

To control whether your MapBasic application (MBX) displays Layer Control as a window or a dialog
box:

• If you recompile your MBX in MapBasic 10.0 (using the updated MENU.DEF from MapBasic
10.0), then the new MBX displays Layer Control as a window, not as a dialog box. This is ideal
for most situations, because MapInfo Professional 10.0 users expect Layer Control to display as
a window.

• If you have recompiled your MBX in MapBasic 10.0, but you want to continue displaying Layer
Control as a dialog box, update your Run Menu Command as follows:
Run Menu Command M_MAP_LAYER_CONTROL_DIALOG

About the Layer Control Dialog Box

The Layer Control dialog box has fewer features compared to the Layer Control window. The
following occur with the Layer Control dialog and not the Layer Control window:

• The Move Up and Move Down buttons are disabled if there are groups in the map.
• When you right-click on a layer, there is no context menu. As a result, most Group layer

operations are not available.
• You are unable to move theme layers.

Run Program statement

Purpose

Runs an executable program. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Run Program program_spec

program_spec is a command string that specifies the name of the program to run, and may also
specify command-line arguments.

Description

If the specified program_spec does not represent a Windows application, MapBasic invokes a DOS
shell, and runs the specified DOS program from there. If the program_spec is the character string
“COMMAND.COM”, MapBasic invokes the DOS shell without any other program. In this case, the
user is able to issue DOS commands, and then type Exit to return to MapInfo. When you spawn a
program through a Run Program statement, Windows continues to control the computer. While the
spawned program is running, Windows may continue to run other background tasks—including your
MapBasic 11.0 536 Reference

Chapter 7:
Run Program statement
MapBasic program. This multitasking environment could potentially create conflicts. Thus, the
MapBasic statements which follow the Run Program statement must not make any assumptions
about the status of the spawned program.

When issuing the Run Program statement, you should take precautions to avoid multitasking
conflicts. One way to avoid such conflicts is to place the Run Program statement at the end of a
sequence of events. For example, you could create a custom menu item which calls a handler sub
procedure, and you could make the Run Program statement the final statement in the handler
procedure.

Example

The following Run Program statement runs the Windows text editor, “Notepad,” and instructs
Notepad to open the text file THINGS.2DO.

Run Program "notepad.exe things.2do"

The following statement issues a DOS command.

Run Program "command.com /c dir c:\mapinfo\ > C:\temp\dirlist.txt"

See Also:

Run Application statement, Run Command statement, Run Menu Command statement
MapBasic 11.0 537 Reference

Chapter 8:
Save File statement
Save File statement

Purpose

Copies a file. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Save File old_filespec As new_filespec [Append]

old_filespec is a string representing the name (and, optionally, the path) of an existing file; the file
must not be open.

new_filespec is a string representing the name (and, optionally, the path) to which the file will be
copied; the file must not be open.

Description

The Save File statement copies a file. The file must not already be open for input/output.

If you include the optional Append keyword, and if the file new_filespec already exists, the contents
of the file old_filespec are appended to the end of the file new_filespec.

Do not use Save File to copy a file that is a component of an open table (for example, filename.tab,
filename.map, etc.). To copy a table, use the Commit Table…As statement.

The Save File statement cannot copy a file to itself.

Example

Save File "settings.txt" As "settings.bak"

See Also:

Kill statement, Rename File statement

Save MWS statement

Purpose

This statement allows you to save the current workspace as an XML-based MWS file for use with
MapXtreme applications. These MWS files can be shared across platforms in ways that workspaces
cannot. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Save MWS Window (window_id [, window_id ...])
Default default_window_id As filespec

window_id is an integer window identifier for a Map window.
MapBasic 11.0 538 Reference

Chapter 8:
Save MWS statement
default_window_id is an integer window identifier for the Map window to be recorded in the MWS as
the default map.

Description

MapInfo Professional enables you to save the maps in your workspace to an XML format for use
with MapXtreme applications. When saving a workspace to MWS format, only the map windows and
legends are saved. All other windows are discarded as MapXtreme applications cannot read that
information. Once your workspace is saved in this format, it can be opened with the Workspace
Manager utility that is included in the MapXtreme installation or with an application developed using
MapXtreme. The file is valid XML so can also be viewed using any XML viewer or editor. MWS files
created with MapInfo Professional 7.8 or later can be validated using schemas supplied with
MapXtreme.

You will not be able to read files saved in MWS format in MapInfo Professional 7.8 or later.

In MapInfo Professional, you can set the visibility of a modifier theme without regard to its reference
feature layer, so you can turn the visibility of the main reference layer off but still display the theme.
In MapXtreme, the modifier themes (Dot Density, Ranges, Individual Value) are only drawn if the
reference feature layer is visible. To ensure that modifiers marked as visible in MapInfo Professional
display in tools like Workspace Manager, we force the visibility of the reference feature layer so that
its modifier themes display.

It is important to note that many MapBasic statements and functions do not translate to MWS format.
The sections below show what aspects of our maps can and cannot be saved into an MWS file. For
detailed listing of the compatibilities between MapBasic and MISQL see the MapInfo Professional
User Guide.

What is Saved in the MWS

The following information is included in the MWS workspace file:

• Tab files' name and alias;
• Coordinate system information;
• Map center and zoom settings;
• Layer list with implied order;
• Map size as pixel width and height;
• Map resize method;
• Style overrides;
• Raster layer overrides;
• Automatic labels;
• Custom labels;
• Queries referenced by map windows;
• Individual value themes;
• Dot density themes;
• Graduated symbol themes;
• Bar themes;
• Range themes;
MapBasic 11.0 539 Reference

Chapter 8:
Save Window statement
• Pie themes;
• Grid themes as MapXtreme grid layers with a style override;
• Themes and label expressions based upon a single attribute column;
• Zoom-ranged overrides.

What is Not Saved to the MWS

The following information is not saved in the MWS workspace file:

• Any non-map windows (browsers, charts, redistricters, 3D map windows, Prism maps);
• Distance, area, or XY and military grid units;
• Snap mode, autoscroll, and smart pan settings;
• Printer setup information;
• Any table that is based on a query that is not referenced by a window;
• Any theme that is based upon computed columns, or based on an expression that cannot be

translated from MapBasic syntax to MI SQL syntax;
• Labels based on expressions that cannot be translated from MapBasic syntax to MI SQL syntax;
• Queries with “sub-select” statements;
• Layers based on queries that includes “sub-select” statements;

A “sub-select” statement is any Select statement nested inside another Select
statement.

• Export options;
• Hot links for labels and objects;
• Group layers;
• Whether object nodes, centroids or line direction is displayed.

See Also:

Save Workspace statement

Save Window statement

Purpose

Saves an image of a window to a file; corresponds to choosing File > Save Window As. This
statement is used to save a Map window in raster and vector image formats. MapBasic supports
raster image translucency. As of version 10.0 and later MapBasic supports translucency for vector
images and the EMF+ and EMF+Dual image formats.

Supported vector formats are WMF, EMF, EMF+ and EMF+Dual. WMF and EMF are based on the
same older technology used for non-enhanced windows. They display translucent vector maps, but
they will appeared dithered, not as a true translucent image. EMF+, using enhanced rendering
technology, will display translucent maps very well. EMF+Dual is a file that contains both an EMF
and an EMF+ image.
MapBasic 11.0 540 Reference

Chapter 8:
Save Window statement
Many older applications cannot read EMF+. The application tries to open it as an EMF (because the
extension is EMF), and fails. EMF+Dual format is a compromise; older applications can open it as an
EMF while newer applications can open it as an EMF+. For example, Office 2000 applications can
read EMF, but not EMF+. Office 2007 reads EMF+.By saving the windows as EMF+Dual, both
applications can read the same image.

MapInfo Professional reads all supported image formats with the exception of EMF+. All images
display as raster images (including WMF and EMF).

Syntax

Save Window window_id
As filespec
Type filetype
[Width image_width [Units paper_units]]
[Height image_height [Units paper_units]]
[Resolution output_dpi]
[Copyright notice [Font...]]

window_id is an integer Window ID representing a Map, Layout, Graph, Legend, Statistics, Info, or
Ruler window; to obtain a window ID, call a function such as the FrontWindow() function or the
WindowID() function.

filespec is a string representing the name of the file to create.

filetype is a string representing a file format:

• "BMP" that specifies Bitmap format
• "WMF" that specifies Windows Metafile format
• "JPEG" that specifies JPEG format
• "JP2" that specifies JPEG 2000 format
• "PNG" that specifies Portable Network Graphics format
• "TIFF" that specifies TIFF format
• "TIFFCMYK" that specifies TIFF CMYK format
• "TIFFG4" that specifies TIFFG4 format
• "TIFFLZW" that specifies TIFFLZW format
• “GEOTIFF” that specifies georeferenced TIFF format
• "GIF" that specifies GIF format
• "PSD" that specifies Photoshop 3.0 format
• "EMF" that specifies Windows Enhanced Metafile format
• "EMF+" that specifies Windows EMF+ format
• "EMF+DUAL" that specifies a file format containing both EMF and EMF+ formats in a single

file

image_width is a number that specifies the desired image width.

image_height is a number that specifies the desired image height.

paper_units is a string representing a paper unit name (for example, “cm” for centimeters).

output_dpi is a number that specifies the output resolution in DPI (dots per inch).

notice is a string that represents a copyright notice; it will appear at the bottom of the image.
MapBasic 11.0 541 Reference

Chapter 8:
Save Workspace statement
The Font clause specifies a text style.

Description

The Save Window statement saves an image of a window to a file. The effect is comparable to the
user choosing File > Save Window As, except that the Save Window statement does not display a
dialog box. For Map, Layout, or Graph windows, the default image size is the size of the original
window. For Legend, Statistics, Info, or Ruler windows, the default size is the size needed to
represent all of the data in the window. Use the optional Width and Height clauses to specify a non-
default image size. Resolution allows you to specify the dpi when exporting images to raster formats.
The Font clause specifies a text style in the copyright notice.

To include a copyright notice on the bottom of the image, use the optional Copyright clause. See
the example below. To eliminate the default notice, specify a Copyright clause with an empty string
("").

Error number 408 is generated if the export fails due to lack of memory or disk space. Note that
specifying very large image sizes increases the likelihood of this error.

Examples

This example produces a Windows metafile:

Save Window i_mapper_ID As "riskmap.wmf" Type "WMF"

This example shows how to specify a copyright notice. The Chr$() function is used to insert the
copyright symbol.

Save Window i_mapper_ID As "riskmap.bmp"
Type "BMP"
Copyright "Copyright " + Chr$(169) + " 1996, Pitney Bowes Software Inc.

Corp."

See Also:

Export statement

Save Workspace statement

Purpose

Creates a workspace file representing the current MapInfo Professional session. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Save Workspace As filespec

filespec is a string representing the name of the workspace file to create.
MapBasic 11.0 542 Reference

Chapter 8:
SearchInfo() function
Description

The Save Workspace statement creates a workspace file that represents the current MapInfo
Professional session. The effect is comparable to the user choosing File > Save Workspace,
except that the Save Workspace statement does not display a dialog box.

To load an existing workspace file, use the Run Application statement.

Example

Save Workspace As "market.wor"

See Also:

Run Application statement

SearchInfo() function

Purpose

Returns information about the search results produced by SearchPoint() or SearchRect(). You can
call this function from the MapBasic Window in MapInfo Professional.

Syntax

SearchInfo(sequence_number, attribute)

sequence_number is an integer number, from 1 to the number of objects located.

attribute is a small integer code from the table below.

Return Value

String or integer, depending on attribute.

Description

After you call SearchRect() or SearchPoint() to search for map objects, call SearchInfo() to
process the search results.

The sequence_number argument is an integer number, 1 or larger. The number returned by
SearchPoint() or SearchRect() is the maximum value for the sequence_number.

The attribute argument must be one of the codes (from MAPBASIC.DEF) in the following table:
MapBasic 11.0 543 Reference

Chapter 8:
SearchInfo() function
Search results remain in memory until the application halts or until you perform another search. Note
that search results remain in memory even after the user closes the window or the tables associated
with the search; therefore, you should process search results immediately. To manually free the
memory used by search results, perform a search which you know will fail (for example, search at
location 0, 0).

MapInfo Professional maintains a separate set of search results for each MapBasic application that
is running, plus another set of search results for MapInfo Professional itself (for commands entered
through the MapBasic window).

Error Conditions

ERR_FCN_ARG_RANGE (644) error is generated if sequence_number is larger than the number of
objects located.

Example

The following program creates two custom tool buttons. If the user uses the point tool, this program
calls the SearchPoint() function; if the user uses the rectangle tool, the program calls the
SearchRect() function. In either case, this program calls SearchInfo() to determine which
object(s) the user chose.

Include "mapbasic.def"
Include "icons.def"
Declare Sub Main
Declare Sub tool_sub

Sub Main
Create ButtonPad "Searcher" As

ToolButton Calling tool_sub ID 1
Icon MI_ICON_ARROW
Cursor MI_CURSOR_ARROW
DrawMode DM_CUSTOM_POINT
HelpMsg "Click on a map location\nClick a location"

Separator
ToolButton Calling tool_sub ID 2
Icon MI_ICON_SEARCH_RECT
Cursor MI_CURSOR_FINGER_LEFT
DrawMode DM_CUSTOM_RECT
HelpMsg "Drag a rectangle in a map\nDrag a rectangle"

attribute code ID SearchInfo() returns:

SEARCH_INFO_TABLE 1 String value: the name of the table containing this object. If an
object is from a Cosmetic layer, this string has the form
“CosmeticN” (where N is a number, 1 or larger).

SEARCH_INFO_ROW 2 Integer value: this row's rowID number. You can use this rowID
number in a Fetch statement or in a Select statement’s
Where clause.
MapBasic 11.0 544 Reference

Chapter 8:
SearchInfo() function
Width 3

Print "Searcher program now running."
Print "Choose a tool from the Searcher toolbar"
Print "and click on a map."

End Sub
Sub tool_sub

' This procedure is called whenever the user uses
' one of the custom buttons on the Searcher toolbar.
Dim x, y, x2, y2 As Float,

i, i_found, i_row_id, i_win_id As Integer,
s_table As Alias

i_win_id = FrontWindow()
If WindowInfo(i_win_id, WIN_INFO_TYPE) <> WIN_MAPPER Then

Note "This tool only works on Map windows."
Exit Sub

End If
' Determine the starting point where the user clicked.
x = CommandInfo(CMD_INFO_X)
y = CommandInfo(CMD_INFO_Y)
If CommandInfo(CMD_INFO_TOOLBTN) = 1 Then

' Then the user is using the point-mode tool.
' determine how many objects are at the chosen point.
i_found = SearchPoint(i_win_id, x, y)

Else
' The user is using the rectangle-mode tool.
' Determine what objects are within the rectangle.
x2 = CommandInfo(CMD_INFO_X2)
y2 = CommandInfo(CMD_INFO_y2)
i_found = SearchRect(i_win_id, x, y, x2, y2)

End If

If i_found = 0 Then
Beep ' No objects found where the user clicked.

Else
Print Chr$(12)
If CommandInfo(CMD_INFO_TOOLBTN) = 2 Then

Print "Rectangle: x1= " + x + ", y1= " + y
Print "x2= " + x2 + ", y2= " + y2

Else
Print "Point: x=" + x + ", y= " + y

End If

' Process the search results.
For i = 1 to i_found

' Get the name of the table containing a "hit".
s_table = SearchInfo(i, SEARCH_INFO_TABLE)

' Get the row ID number of the object that was a hit.
i_row_id = SearchInfo(i, SEARCH_INFO_ROW)

If Left$(s_table, 8) = "Cosmetic" Then
MapBasic 11.0 545 Reference

Chapter 8:
SearchPoint() function
Print "Object in Cosmetic layer"
Else

' Fetch the row of the object the user clicked on.
Fetch rec i_row_id From s_table
s_table = s_table + ".col1"
Print s_table

End If
Next
End If

End Sub

See Also:

SearchPoint() function, SearchRect() function

SearchPoint() function

Purpose

Searches for map objects at a specific x/y location. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

SearchPoint(map_window_id, x, y)

map_window_id is a Map window's integer ID number

x is an x-coordinate (for example, longitude)

y is a y-coordinate (for example, latitude)

Return Value

Integer, representing the number of objects found.

Description

The SearchPoint() function searches for map objects at a specific x/y location. The search applies
to all selectable layers in the Map window, even the Cosmetic layer (if it is currently selectable). The
return value indicates the number of objects found.

This function does not select any objects, nor does it affect the current selection. Instead, this
function builds a list of objects in memory. After calling SearchPoint(), call the SearchInfo()
function to process the search results.

The search allows for a small tolerance, identical to the tolerance allowed by MapInfo Professional's
Info tool. Points or linear objects that are very close to the location are included in the search results,
even if the user did not click on the exact location of the object.
MapBasic 11.0 546 Reference

Chapter 8:
SearchRect() function
To allow the user to select an x/y location with the mouse, use the Create ButtonPad statement or
the Alter ButtonPad statement to create a custom ToolButton. Use DM_CUSTOM_POINT as the
button's draw mode. Within the button's handler procedure, call the CommandInfo() function to
determine the x/y coordinates.

Example

For a code example, see the SearchInfo() function.

See Also:

SearchInfo() function, SearchRect() function

SearchRect() function

Purpose

Searches for map objects within a rectangular area. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

SearchRect(map_window_id, x1, y1, x2, y2)

map_window_id is a Map window's integer ID number.

x1, y1 are coordinates that specify one corner of a rectangle.

x2, y2 are coordinates that specify the opposite corner of a rectangle.

Return Value

Integer, representing the number of objects found.

Description

The SearchRect() function searches for map objects within a rectangular area. The search applies
to all selectable layers in the Map window, even the Cosmetic layer (if it is currently selectable). The
return value indicates the number of objects found.

This function does not select any objects, nor does it affect the current selection. Instead, this
function builds a list of objects in memory. After calling SearchRect() you call SearchInfo()
function to process the search results.

The search behavior matches the behavior of MapInfo Professional's Marquee Select button: If an
object's centroid falls within the rectangle, the object is included in the search results.

To allow the user to select a rectangular area with the mouse, use the Create ButtonPad
statementor the Alter Button statement to create a custom ToolButton. Use DM_CUSTOM_RECT
as the button's draw mode. Within the button's handler procedure, call CommandInfo() function to
determine the x/y coordinates.
MapBasic 11.0 547 Reference

Chapter 8:
Second function
Example

For a code example, see the SearchInfo() function.

See Also:

SearchInfo() function, SearchPoint() function

Second function

Purpose

Returns the second and millisecond component of a Time as a floating-point number. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

Second (Time)

Return Value

Number

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim X as time
dim iSec as integer
X = CurDateTime()
Sec = Second(X)
Print iSec

Seek() function

Purpose

Returns the current file position.

Syntax

Seek(filenum)

filenum is the number of an open file.

Return Value

Integer

Description

The Seek() function returns MapBasic's current position in an open file.
MapBasic 11.0 548 Reference

Chapter 8:
Seek statement
The filenum parameter represents the number of an open file; this is the same number specified in
the As clause of the Open File statement.

The integer value returned by the Seek() function represents a file position. If the file was opened in
random-access mode, Seek() returns a record number (the next record to be read or written). If the
file was opened in binary mode, Seek() returns the byte position of the next byte to be read from or
written to the file.

Error Conditions

ERR_FILEMGR_NOTOPEN (366) error is generated if the specified file is not open.

See Also:

Get statement, Open File statement, Put statement, Seek statement

Seek statement

Purpose

Sets the current file position, to prepare for the next file input/output operation.

Syntax

Seek [#]filenum, position

filenum is an integer value, indicating the number of an open file.

position is an integer value, indicating the desired file position.

Description

The Seek statement resets the current file position of an open file. File input/output operations which
follow a Seek statement will read from (or write to) the location specified by the Seek.

If the file was opened in Random access mode, the position parameter specifies a record number.

If the file was opened in a sequential access mode, the position parameter specifies a specific byte
position; a position value of one represents the very beginning of the file.

See Also:

Get statement, Input # statement, Open File statement, Print # statement, Put statement,
Seek() function, Write # statement

SelChangedHandler procedure

Purpose

A reserved procedure, called automatically when the set of selected rows changes.
MapBasic 11.0 549 Reference

Chapter 8:
SelChangedHandler procedure
Syntax

Declare Sub SelChangedHandler

Sub SelChangedHandler
 statement_list

End Sub

statement_list is a list of statements to execute when the set of selected rows changes.

Description

SelChangedHandler is a special MapBasic procedure name. If the user runs an application with a
procedure named SelChangedHandler, the application “goes to sleep” when the Main procedure
runs out of statements to execute. The sleeping application remains in memory until the application
executes an End Program statement. As long as the application remains in memory, MapInfo
Professional automatically calls the SelChangedHandler procedure whenever the set of selected
rows changes.

Within the SelChangedHandler procedure, you can obtain information about recent changes made
to the selection by calling CommandInfo() function with one of the following codes:

When any procedure in an application executes the End Program statement, the application is
completely removed from memory. Thus, you can use the End Program statement to terminate a
SelChangedHandler procedure once it is no longer wanted. Be careful not to issue an End
Program statement while the SelChangedHandler procedure is still needed.

Multiple MapBasic applications can be “sleeping” at the same time. When the Selection table
changes, MapBasic automatically calls all sleeping SelChangedHandler procedures, one after
another.

A SelChangedHandler procedure should not take actions that affect the GUI “focus” or reset the
current window. In other words, the SelChangedHandler procedure should not issue statements
such as a Note statement, Print statement, or Dialog statement.

See Also:

CommandInfo() function, SelectionInfo() function

attribute code ID CommandInfo(attribute) returns:

CMD_INFO_SELTYPE 1 1 if one row was added to the selection; 2 if one row was
removed from the selection; 3 if multiple rows were added to
the selection; 4 if multiple rows were de-selected.

CMD_INFO_ROWID 2 Integer value: The number of the row which was selected or
de-selected (only applies if a single row was selected or de-
selected).

CMD_INFO_INTERRUPT 3 Logical value: TRUE if the user interrupted a selection process
by pressing Esc; FALSE otherwise.
MapBasic 11.0 550 Reference

Chapter 8:
Select statement
Select statement

Purpose

Selects particular rows and columns from one or more open tables, and treats the results as a
separate, temporary table. Also provides the ability to sort and sub-total data. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Select expression_list
From table_name [, ...] [Where expression_group]

[Into results_table [Noselect]]
[Group By column_list]
[Order By column_list]

expression_list is a comma-separated list of expressions which will comprise the columns of the
Selection results.

expression_group is a list of one or more expressions, separated by the keywords AND or OR.

table_name is the name of an open table.

results_table is the name of the table where query results should be stored.

column_list is a list of one or more names of columns, separated by commas.

Description

The Select statement provides MapBasic programmers with the capabilities of MapInfo
Professional's Query > SQL Select dialog box.

The MapBasic Select statement is modeled after the Select statement in the Structured Query
Language (SQL). Thus, if you have used SQL-oriented database software, you may already be
familiar with the Select statement. Note, however, that MapBasic's Select statement includes
geographic capabilities that you will not find in other packages.

Column expressions (for example, tablename.columnname) in a Select statement may only refer to
tables that are listed in the Select statement's From clause. For example, a Select statement may
only incorporate the column expression STATES.OBJ if the table STATES is included in the
statement's From clause.

The Select statement serves a variety of different purposes. One Select statement might apply a
test to a table, making it easy to browse only the records which met the criteria (this is sometimes
referred to as filtering). Alternately, Select might be used to calculate totals or subtotals for an entire
table. Select can also: sort the rows of a table; derive new column values from one or more existing
columns; or combine columns from two or more tables into a single results table.

Generally speaking, a Select statement queries one or more open tables, and selects some or all of
the rows from said table(s). The Select statement then treats the group of selected rows as a results
table; Selection is the default name of this table (although the results table can be assigned another
name through the Into clause). Following a Select statement, a MapBasic program—or, for that
matter, a MapInfo Professional user—can treat the results table as any other MapInfo table.
MapBasic 11.0 551 Reference

Chapter 8:
Select statement
After issuing a Select statement, a MapBasic program can use the SelectionInfo() function to
examine the current selection.

The Select statement format includes several clauses, most of which are optional. The nature and
function of a Select statement depend upon which clauses are included. For example: if you wish to
use a Select statement to set up a filter, you should include a Where clause; if you wish to use a
Select statement to subtotal the values in the table, you should include a Group By clause; if you
want MapBasic to sort the results of the Select statement, you should include an Order By clause.
Note that these clauses are not mutually exclusive; one Select statement may include all of the
optional clauses.

Select clause

This clause dictates which columns MapBasic should include in the results table. The simplest type
of expression_list is an asterisk character (“*”). The asterisk signifies that all columns should be
included in the results. The statement:

Select * From world

tells MapBasic to include all of the columns from the “world” table in the results table. Alternately, the
expression_list clause can consist of a list of expressions, separated by commas, each of which
represents one column to include in the results table. Typically, each of these expressions involves
the names of one or more columns from the table in question. Very often, MapBasic function calls
and/or operators are used to derive some new value from one or more of the column names.

For example, the following Select statement specifies an expression_list clause with two
expressions:

Select country, Round(population,1000000)
From world

The expression_list above consists of two expressions, the first of which is a simple column name
(country), and the second of which is a function call (Round()) which operates on another column
(population).

After MapBasic carries out the above Select statement, the first column in the results table will
contain values from the world table's name column. The second column in the results table will
contain values from the world table's population column, rounded off to the nearest million.

Each expression in the expression_list clause can be explicitly named by having an alias follow the
expression; this alias would appear, for example, at the top of a Browser window displaying the
appropriate table. The following statement would assign the field alias “Millions” to the second
column of the results table:

Select country,Round(population,1000000) "Millions"
From world

Any mappable table also has a special column, called object (or obj for short). If you include the
column expression obj in the expression_list, the resultant table will include a column which
indicates what type of object (if any) is attached to that row.

The expression_list may include either an asterisk or a list of column expressions, but not both. If an
asterisk appears following the keyword Select, then that asterisk must be the only thing in the
expression_list. In other words, the following statement would not be legitimate:
MapBasic 11.0 552 Reference

Chapter 8:
Select statement
Select *, object From world ' this won't work!

From clause

The From clause specifies which table(s) to select data from. If you are doing a multiple-table join,
the tables you are selecting from must be base tables, rather than the results of a previous query.

Where clause

One function of the Where clause is to specify which rows to select. Any expression can be used
(see Expressions section below). Note, however, that groups of two or more expressions must be
connected by the keywords And or Or, rather than being comma-separated. For example, a two-
expression Where clause might read like this:

Where Income > 15000 And Income < 25000

Note that the And operator makes the clause more restrictive (both conditions must evaluate as
TRUE for MapBasic to select a record), whereas the Or operator makes the clause less restrictive
(MapBasic will select a record if either of the expressions evaluates to TRUE).

By referring to the special column name object, a Where clause can test geographic aspects of each
row in a mappable table. Conversely, the expression “Not object” can be used to single out records
which do not have graphical objects attached.

For example, the following Where clause would tell MapBasic to select only those records which are
currently un-geocoded:

Where Not Object

If a Select statement is to use two or more tables, the statement must include a Where clause, and
the Where clause must include an expression which tells MapBasic how to join the two tables. Such
a join-related expression typically takes the form Where tablename1.field = tablename2.field, where
the two fields have corresponding values. The following example shows how you might join the
tables “States” and “City_1k.” The column City_1k.state contains two-letter state abbreviations
which match the abbreviations in the column States.state.

Where States.state = City_1k.state

Alternately, you can specify a geographic operator to tell MapInfo Professional how to join the two
tables.

Where states.obj Contains City_1k.obj

A Where clause can incorporate a subset of specific values by including the Any or All keyword.
The Any keyword defines a subset, for the sake of allowing the Where clause to test if a given
expression is TRUE for any of the values in the subset. Conversely, the All keyword defines a
subset, for the sake of allowing the Where clause to test if a given condition is true for all of the
values in the subset.

The following query selects any customer record whose state column contains “NY,” “MA,” or “PA.”
The Any() function functions the same way as the SQL “IN” operator.

Select * From customers
Where state = Any ("NY", "MA", "PA")
MapBasic 11.0 553 Reference

Chapter 8:
Select statement
A Where clause can also include its own Select statement, to produce what is known as a
subquery. In the next example, we use two tables: “products” is a table of the various products which
our company sells, and “orders” is a table of the orders we have for our products. At any given time,
some of the products may be sold out. The task here is to figure out which orders we can fill, based
on which products are currently in stock. This query uses the logic, “select all orders which are not
among the list of items that are currently sold out.”

Select * From orders
Where partnum <>
All(Select partnum from products

where not instock)

On the second line of the query, the keyword Select appears a second time; this produces our sub-
select. The sub-select builds a list of the parts that are currently not in stock. The Where clause of
the main query then uses All() function to access the list of unavailable parts.

In the example above, the sub-select produces a set of values, and the main Select statement's
Where clause tests for inclusion in that set of values. Alternately, a sub-select might use an
aggregate operator to produce a single result.

The example below uses the Avg() aggregate operator to calculate the average value of the pop
field within the table states.

Accordingly, the net result of the following Select statement is that all records having higher-than-
average population are selected.

Select * From states
Where population >

(Select Avg(population) From states)

MapInfo Professional also supports the SQL keyword In. A Select statement can use the keyword In
in place of the operator sequence = Any. In other words, the following Where clause, which uses the
Any keyword:

Where state = Any ("NY", "MA", "PA")

is equivalent to the following Where clause, which uses the In keyword:

Where state In ("NY", "MA", "PA")

In a similar fashion, the keywords Not In may be used in place of the operator sequence: <> All.

A single Select statement may not include multiple, non-nested subqueries. Additionally,
MapBasic's Select statement does not support “correlated subqueries.” A correlated
subquery involves the inner query referencing a variable from the outer query. Thus, the
inner query is reprocessed for each row in the outer table. Thus, the queries are correlated.
An example:

' Note: the following statement, which illustrates
' correlated subqueries, will NOT work in MapBasic

Select * from leads
Where lead.name =
MapBasic 11.0 554 Reference

Chapter 8:
Select statement
(Select var.name From vars
Where lead.name = customer.name)

This limitation is primarily of interest to users who are already proficient in SQL queries, through the
use of other SQL-compatible database packages.

Into clause

This optional clause lets you name the results table. If no Into clause is specified, the resulting table
is named Selection. Note that when a subsequent operation references the Selection table, MapInfo
Professional will take a “snapshot” of the Selection table, and call the snapshot QUERYn (for
example, QUERY1).

If you include the Noselect keyword, the statement performs a query without changing the pre-
existing Selection table. Use the NoSelect keyword if you need to perform a query, but you do not
want to de-select whatever rows are already selected.

If you include the Noselect keyword, the query does not trigger the SelChangedHandler
procedure.

Group By clause

This optional clause specifies how to group the rows when performing aggregate functions (sub-
totalling). In a Group By clause, you typically specify a column name (or a list of column names);
MapBasic then builds a results table containing subtotals. For example, if you want to subtotal your
table on a state-by-state basis, your Group By clause should specify the name of a column which
contains state names. The Group By clause may not reference a function with a variable return
type, such as the ObjectInfo() function.

The aggregate functions Sum(), Min(), Max(), Count(*), Avg(), and WtAvg() allow you to
calculate aggregated results.

These aggregate functions do not appear in the Group By clause. Typically, the Select
expression_list clause includes one or more of the aggregate functions listed above, while
the Group By clause indicates which column(s) to use in grouping the rows.

Suppose the Q4Sales table describes sales information for the fourth fiscal quarter. Each record in
this table contains information about the dollar amount of a particular sale. Each record's Territory
column indicates the name of the territory where the sale occurred. The following query counts how
many sales occurred within each territory, and calculates the sum total of all of the sales within each
territory.

Select territory, Count(*), Sum(amount)
From q4sales
Group By territory

The Group By clause tells MapBasic to group the table results according to the contents of the
Territory column, and then create a subtotal for each unique territory name. The expression list
following the keyword Select specifies that the results table should have three columns: the first
MapBasic 11.0 555 Reference

Chapter 8:
Select statement
column will state the name of a territory; the second column will state the number of records in the
q4sales table “belonging to” that territory; and the third column of the results table will contain the
sum of the Amount columns of all records belonging to that territory.

The Sum() function requires a parameter, to tell it which column to summarize. The Count()
function, however, simply takes an asterisk as its parameter; this tells MapBasic to simply
count the number of records within that sub-totalled group. The Count() function is the only
aggregate function that does not require a column identifier as its parameter.

The following table describes MapInfo Professional's aggregate functions.

No MapBasic function, aggregate or otherwise, returns a decimal value. A decimal field is
only a way of storing the data. The arithmetic is done with floating point numbers.

Calculating Weighted Averages

Use the Wtavg() aggregate function to calculate weighted averages. For example, the following
statement uses the Wtavg() function to calculate a weighted average of the literacy rate in each
continent:

Select continent, Sum(pop_1994), WtAvg(literacy, Pop_1994)
From World
Group By continent
Into Lit_query

Function name Description Returns

Avg(column) Returns the average value of the specified column. float

Count(*) Returns the number of rows in the group. Specify *
(asterisk) instead of column name.

integer

Max(column) Returns the largest value of the specified column for all
rows in the group.

float

Min(column) Returns the smallest value of the specified column for all
rows in the group.

float

Sum(column) Returns the sum of the column values for all rows in the
group.

float

WtAvg(column ,
weight_column)

Returns the average of the column values, weighted. See
below.

float
MapBasic 11.0 556 Reference

Chapter 8:
Select statement
Because of the Group By clause, MapInfo Professional groups rows of the table together, according
to the values in the Continent column. All rows having “North America” in the Continent column will
be treated as one group; all rows having “Asia” in the Continent column will be treated as another
group; etc. For each group of rows—in other words, for each continent—MapInfo Professional
calculates a weighted average of the literacy rates.

A simple average (using the Avg() function) calculates the sum divided by the count. A weighted
average (using the WtAvg() function) is more complicated, in that some rows affect the average
more than other rows. In this example, the average calculation is weighted by the Pop_1994
(population) column; in other words, countries that have a large population will have more of an
impact on the result than countries that have a small population.

Column Expressions in the Group By clause

In the preceding example, the Group By territory clause identifies the Territory column by name.
Alternately, a Group By clause can identify a column by a number, using an expression of the form
col#. In this type of expression, the # sign represents an integer number, having a value of one or
more, which identifies one of the columns in the Select clause. Thus, the above Select statement
could have read Group By col1, or even Group By 1, rather than Group By territory.

It is sometimes necessary to use one of these alternate syntaxes. If you wish to Group By a derived
expression, which does not have a column name, then the Group By clause must use the col#
syntax or the # syntax to refer to the proper column expression. In the following example, we Group
By a column value derived through the Month() function. Since this column expression does not
have a conventional column name, our Group By clause refers to it using the col# format:

Select Month(sick_date), Count(*)
From sickdays
Group By 1

This example assumes that each row in the sickdays table represents a sick day claim. The results
from this query would include twelve rows (one row for each month); the second column would
indicate how many sick days were claimed for that month.

Grouping By Multiple Columns

Depending on your application, you may need to specify more than one column in the Group By
clause; this happens when the contents of a column are not sufficiently unique. For example, you
may have a table describing counties across the United States. County names are not unique; for
example, many different states have a Franklin county. Therefore, if your Group By clause specifies
a single county-name column, MapBasic will create one sub-total row in the results table for the
county “Franklin”. That row would summarize all counties having the name “Franklin”, regardless of
whether the records were in different states.

When this type of problem occurs, your Group By clause must specify two or more columns,
separated by commas. For example, a group by clause might read:

Group By county, state

With this arrangement, MapBasic would construct a separate group of rows (and, thus, a separate
sub-total) for each unique expression of the form countyname, statename. The results table would
have separate rows for Franklin County, MA versus Franklin County, FL.
MapBasic 11.0 557 Reference

Chapter 8:
Select statement
Order By clause

This optional clause specifies which column or set of columns to order the results by. As with the
Group By clause, the column is specified by name in the field list, or by a number representing the
position in the field list. Multiple columns are separated by commas.

By default, results sorted by an Order By clause are in ascending order. An ascending character
sort places “A” values before “Z” values; an ascending numeric sort places small numbers before
large ones. If you want one of the columns to be sorted in descending order, you should follow that
column name with the keyword DESC.

Select * From cities
Order By state, population Desc

This query performs a two-level sort on the table Cities. First, MapBasic sorts the table, in ascending
order, according to the contents of the state column. Then MapBasic sorts each state's group of
records, using a descending order sort of the values in the population column. Note that there is a
space, not a comma, between the column name and the keyword DESC.

The Order By clause may not reference a function with a variable return type, such as the
ObjectInfo() function.

Geographic Operators

MapBasic supports several geographic operators: Contains, Contains Part, Contains Entire, Within,
Partly Within, Entirely Within, and Intersects. These operators can be used in any expression, and
are very useful within the Select statement's Where clause. All geographic operators are infix
operators (operate on two objects and return a boolean). The operators are listed in the table below.

Selection Performance

Some Select statements are considerably faster than others, depending in part on the contents of
the Where clause.

If the Where clause contains one expression of the form:

columnname = constant_expression

Usage Evaluates TRUE if:

objectA Contains objectB first object contains the centroid of second object

objectA Contains Part objectB first object contains part of second object

objectA Contains Entire objectB first object contains all of second object

objectA Within objectB first object's centroid is within the second object

objectA Partly Within objectB part of the first object is within the second object

objectA Entirely Within objectB the first object is entirely inside the second object

objectA Intersects objectB the two objects intersect at some point
MapBasic 11.0 558 Reference

Chapter 8:
Select statement
or if the Where clause contains two or more expressions of that form, joined by the And operator,
then the Select statement will be able to take maximum advantage of indexing, allowing the
operation to proceed quickly. However, if multiple Where clause expressions are joined by the Or
operator instead of by the And operator, the statement will take more time, because MapInfo
Professional will not be able to take maximum advantage of indexing.

Similarly, MapInfo Professional provides optimized performance for Where clause expressions of
the form:

[tablename.] obj geographic_operator object_expression

and for Where clause expressions of the form:

RowID = constant_expression

RowID is a special column name. Each row's RowID value represents the corresponding row
number within the appropriate table; in other words, the first row in a table has a RowID value of one.

Examples

This example selects all customers that are in New York, Connecticut, or Massachusetts. Each
customer record does not need to include a state name; rather, the query relies on the geographic
position of each customer object to determine whether that customer is “in” a given state.

Select * From customers
Where obj Within Any(Select obj From states

Where state = "NY" or state = "CT" or state = "MA")

The next example demonstrates a sub-select. Here, we want to select all sales territories which
contain customers that have been designated as “Federal.” The subselect selects all customer
records flagged as Federal, and then the main select works from the list of Federal customers to
select certain territories.

Select * From territories
Where obj Contains Any (Select obj From customers

Where customers.source = "Federal")

The following query selects all parcels that touch parcel 120059.

Select * From parcels
Where obj Intersects (Select obj From parcels

Where parcel_id = 120059)

See Also:

Open Table statement
MapBasic 11.0 559 Reference

Chapter 8:
SelectionInfo() function
SelectionInfo() function

Purpose

Returns information about the current selection. You can call this function from the MapBasic
Window in MapInfo Professional.

Selected labels do not count as a “selection,” because labels are not complete objects,
they are attributes of other objects.

Syntax

SelectionInfo(attribute)

attribute is an integer code from the table below.

Return Value

String or integer; see table below.

Description

The table below summarizes the codes (from MAPBASIC.DEF) that you can use as the attribute
parameter.

If the current selection is the result of a join of two or more tables,
SelectionInfo(SEL_INFO_NROWS) returns the number of rows selected in the base table,
which might not equal the number of rows in the Selection table. See example below.

Error Conditions

ERR_FCN_ARG_RANGE (644) error is generated if an argument is outside of the valid range.

attribute setting ID SelectionInfo() Return Value

SEL_INFO_TABLENAME 1 String: The name of the table the selection was based on.
Returns an empty string if no data currently selected.

SEL_INFO_SELNAME 2 String: The name of the temporary table (for example,
“Query1”) representing the query. Returns an empty string if no
data currently selected.

SEL_INFO_NROWS 3 Integer: The number of selected rows. Returns zero if no data
currently selected.
MapBasic 11.0 560 Reference

Chapter 8:
Server Begin Transaction statement
Example

The following example uses a Select statement to perform a join. Afterwards, the variable i contains
40 (the number of rows currently selected in the base table, States) and the variable j contains 125
(the number of rows in the query results table).

Dim i, j As Integer
Select * From States, City_125

Where States.obj Contains City_125.obj Into QResults
i = SelectionInfo(SEL_INFO_NROWS)
j = TableInfo(QResults, TAB_INFO_NROWS)

See Also:

Select statement, TableInfo() function

Server Begin Transaction statement

Purpose

Requests a remote data server to begin a new unit of work. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Server ConnectionNumber Begin Transaction

ConnectionNumber is an integer value that identifies the specific connection.

Description

The Server Begin Transaction statement is used to mark a beginning point for transaction
processing. The database does not save the results of subsequent SQL Insert, Delete, and Update
statements issued via the Server_Execute() function until a Server Commit statement is issued.
Use the Server Rollback statement to discard changes.

Example

Dim hdbc As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
Server hdbc Begin Transaction
' ... other server statements ...
Server hdbc Commit

See Also:

Server Commit statement, Server Rollback statement
MapBasic 11.0 561 Reference

Chapter 8:
Server Bind Column statement
Server Bind Column statement

Purpose

Assigns local storage that can be used by the remote data server. You can issue this statement from
the MapBasic Window in MapInfo Professional.

Syntax

Server StatementNumber Bind Column n To Variable, StatusVariable

StatementNumber is an integer value that identifies information about a SQL statement.

n is a column number in the result set to bind.

Variable is a MapBasic variable to contain a column value following a fetch.

StatusVariable is an integer code indicating the status of the value as either null, truncated, or a
positive integer value.

Description

The Server Bind Column statement sets up an application variable as storage for the result data of
a column specified in a remote Select statement. When the subsequent Server Fetch statement
retrieves a row of data from the server, the value for the column is stored in the variable specified by
the Server Bind Column statement. The status of the column result is stored in the status variable.

Example

' Application to "print" address labels
' Assumes that a relational table ADDR exists with 6 columns...
Dim hdbc, hstmt As Integer
Dim first_name, last_name, street, city, state, zip As String
Dim fn_stat, ln_stat, str_stat, ct_stat, st_stat, zip_stat As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
hstmt = Server_Execute(hdbc, "select * from ADDR")
Server hstmt Bind Column 1 To first_name,fn_stat
Server hstmt Bind Column 2 To last_name, ln_stat
Server hstmt Bind Column 3 To street, str_stat
Server hstmt Bind Column 4 To city, ct_stat
Server hstmt Bind Column 5 To state, st_stat
Server hstmt Bind Column 6 To zip, zip_stat

StatusVariable value ID Condition

SRV_NULL_DATA -1 Returned when the column has no data for that row.

SRV_TRUNCATED_DATA -2 Returned when there is more data in the column than can be
stored in the MapBasic variable.

Positive integer value Number of bytes returned by the server.
MapBasic 11.0 562 Reference

Chapter 8:
Server Close statement
Server hstmt Fetch NEXT
While Not Server_Eot(hstmt)

Print first_name + " " + last_name
Print street
Print city + ", " + state + " " + zip
Server hstmt Fetch NEXT

Wend
Server hstmt Close
Server hdbc Disconnect

See Also:

Server_ColumnInfo() function

Server Close statement

Purpose

Frees resources associated with running a remote data access statement. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Server StatementNumber Close

StatementNumber is an integer value that identifies information about a SQL statement.

Description

The Server Close statement is used to inform the server that processing on the current remote
statement is finished. All resources associated with the statement are returned. Remember to call
the Server Close statement immediately after a Server_Execute() function for any non-query
SQL statement you are finished processing.

Example

' Fetch the 5th record then close the statement
hstmt = Server_Execute(hdbc, "Select * from Massive_Database")
Server hstmt Fetch Rec 5
Server hstmt Close

See Also:

Server_Execute() function
MapBasic 11.0 563 Reference

Chapter 8:
Server_ColumnInfo() function
Server_ColumnInfo() function

Purpose

Retrieves information about columns in a result set. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

Server_ColumnInfo(StatementNumber, ColumnNo, Attr)

StatementNumber is an integer value that identifies information about an SQL statement.

ColumnNo is the number of the column in the table, starting at 1 with the leftmost column.

Attr is a code indicating which aspect of the column to return.

Return Value

The return value is conditional based on the value of the attribute passed (Attr).

Description

The Server_ColumnInfo function returns information about the current fetched column in the result
set of a remote data source described by a remotely executed Select statement. The
StatementNumber parameter specifies the particular statement handle associated with that
connection. The ColumnNo parameter indicates the desired column (the columns are numbered
from the left starting at 1). Attr selects the kind of information that will be returned.
MapBasic 11.0 564 Reference

Chapter 8:
Server_ColumnInfo() function
The following table contains the attributes returned to the Attr parameter. These types are defined in
MAPBASIC.DEF.

Attr value ID Server_ColumnInfo() returns:

SRV_COL_INFO_NAME 1 String result, the name identifying the column.

SRV_COL_INFO_TYPE 2 Integer result, a code indicating the column type:

• SRV_COL_TYPE_NONE (0)
• SRV_COL_TYPE_CHAR (1)
• SRV_COL_TYPE_DECIMAL (2)
• SRV_COL_TYPE_INTEGER (3)
• SRV_COL_TYPE_SMALLINT (4)
• SRV_COL_TYPE_DATE (5)
• SRV_COL_TYPE_LOGICAL (6)
• SRV_COL_TYPE_FLOAT (8)
• SRV_COL_TYPE_FIXED_LEN_STRING (16)
• SRV_COL_TYPE_BIN_STRING (17)

See Server Fetch for how MapInfo Professional interprets
data types.

SRV_COL_INFO_WIDTH 3 Integer result, indicating maximum number of characters
in a column of type SRV_COL_TYPE_CHAR (1) or
SRV_COL_TYPE_FIXED_LEN_STRING (16).

When using ODBC the null terminator is not counted. The
value returned is the same as the server database table
column width.

SRV_COL_INFO_PRECISION 4 Integer result, indicating the total number of digits for a
SRV_COL_TYPE_DECIMAL (2) column, or -1 for any
other column type.

SRV_COL_INFO_SCALE 5 Integer result, indicating the number of digits to the right of
the decimal for a SRV_COL_TYPE_DECIMAL (2) column,
or -1 for any other column type.

SRV_COL_INFO_VALUE 6 Result type varies. Returns the actual data value from the
column of the current row. Long character column values
greater than 32,766 will be truncated. Binary column
values are returned as a double length string of
hexadecimal characters.
MapBasic 11.0 565 Reference

Chapter 8:
Server Commit statement
Example

Dim hdbc, Stmt As Integer
Dim Col As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
Stmt = Server_Execute(hdbc, "Select * from emp")
Server Stmt Fetch NEXT
For Col = 1 To Server_NumCols(Stmt)

Print Server_ColumnInfo(Stmt, Col, SRV_COL_INFO_NAME) +
" = " +
Server_ColumnInfo(Stmt, Col, SRV_COL_INFO_VALUE)

Next

See Also:

Server Bind Column statement, Server Fetch statement, Server_NumCols() function

Server Commit statement

Purpose

Causes the current unit of work to be saved to the database. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Server ConnectionNumber Commit

ConnectionNumber is an integer value that identifies the specific connection.

SRV_COL_INFO_STATUS 7 Integer result, indicating the status of the column value:

• SRV_NULL_DATA (-1)
Returned when the column has no data for that row.

• SRV_TRUNCATED_DATA (-2)
Returned when there is more data in the column than
can be stored in the MapBasic variable.

• Positive integer value
Number of bytes returned by the server.

SRV_COL_INFO_ALIAS 8 Column alias returned if an alias was used for the column
in the query.

Attr value ID Server_ColumnInfo() returns:
MapBasic 11.0 566 Reference

Chapter 8:
Server_Connect() function
Description

The Server Commit statement makes permanent the effects of all remote SQL statements on the
connection issued since the last Server Begin Transaction statement to the database. You must
have an open transaction initiated by the Server Begin Transaction statement before you can use
the Server Commit statement. Then you must issue a new Server Begin Transaction statement
following the Server Commit statement to begin a new transaction.

Example

hdbc = Server_Connect("ODBC", "DLG=1")
Server hdbc Begin Transaction
hstmt = Server_Execute(hdbc, "Update Emp Set salary = salary * 1.5")
Server hdbc Commit

See Also:

Server Begin Transaction statement, Server Rollback statement

Server_Connect() function

Purpose

Establishes communications with a remote data server. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

Server_Connect(toolkit, connect_string)

toolkit is a string value identifying the remote interface, for example, “ODBC”, “ORAINET”. Valid
values for toolkit can be obtained from the Server_DriverInfo() function.

connect_string is a string value with additional information necessary to obtain a connection to the
database.

Return Value

Integer

Description

The Server_Connect() function establishes a connection to a data source. This function returns a
connection number. A connection number is an identifier to the connection. This identifier must be
passed to all server statements that you wish to operate on the connection.

The parameter toolkit identifies the MapInfo Professional remote interface toolkit through which the
connection to a database server will be made. Information can be obtained about the possible
values via calls to the Server_NumDrivers() function and the Server_DriverInfo() function.
MapBasic 11.0 567 Reference

Chapter 8:
Server_Connect() function
The connect_string parameter supplies additional information to the toolkit necessary to obtain a
connection to the database. The parameters depend on the requirements of the remote data source
being accessed.

The connection string sent to Server_Connect() has the form:

attribute=value[;attribute=value...]

There are no spaces allowed in the connection string.

Passing the DLG=1 connect option provides a connect dialog box with active help buttons.

Microsoft ACCESS Attributes

The attributes used by ACCESS are:

An example of a connection string for ACCESS is:

"DSN=MI ACCESS;UID=ADMIN;PWD=SECRET"

ORACLE ODBC Connection

If your application requires a connection string to connect to a data source, you must specify the
data source name that tells the driver which section of the system information to use for the default
connection information. Optionally, you may specify attribute=value pairs in the connection string to
override the default values stored in the system information. These values are not written to the
system information.

You can specify either long or short names in the connection string. The connection string has the
form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

An example of a connection string for Oracle is:

DSN=Accounting;HOST=server1;PORT=1522;SID=ORCL;UID=JOHN;PWD=XYZZY

The paragraphs that follow give the long and short names for each attribute, as well as a description.
The defaults listed are initial defaults that apply when no value is specified in either the connection
string or in the data source definition in the system information. If you specified a value for the
attribute when configuring the data source, that value is the default.

Attribute Description

DSN The name of the ODBC data source for Microsoft ACCESS.

UID The user login ID.

PWD The user-specified password.

SCROLL The default value is NO. If SCROLL=YES the ODBC cursor library is used for this
connection allowing the ability to fetch first, last, previous, or record n of the database.
MapBasic 11.0 568 Reference

Chapter 8:
Server_Connect() function
ApplicationUsingThreads (AUT): ApplicationUsingThreads={0 | 1}. Ensures that the driver works
with multi-threaded applications. When set to 1 (the initial default), the driver is thread-safe. When
using the driver with single-threaded applications, you can set this option to 0 to avoid additional
processing required for ODBC thread-safety standards.

ArraySize (AS): The number of bytes the driver uses for fetching multiple rows. Values can be an
integer from 1 up to 4 GB. Larger values increase throughput by reducing the number of times the
driver fetches data across the network. Smaller values increase response time, as there is less
waiting time for the server to transmit data. The initial default is 60,000.

CatalogOptions (CO): CatalogOptions={0 | 1}. Determines whether the result column REMARKS
for the catalog functions SQLTables and SQLColumns and COLUMN_DEF for the catalog function
SQLColumns have meaning for Oracle. If you want to obtain the actual default value, set CO=1. The
initial default is 0.

DataSourceName (DSN): A string that identifies an Oracle data source configuration in the system
information. Examples include “Accounting” or “Oracle-Serv1.”

DescribeAtPrepare (DAP): DescribeAtPrepare={0 | 1}. Determines whether the driver describes
the SQL statement at prepare time. When set to 0 (the initial default), the driver does not describe
the SQL statement at prepare time.

EnableDescribeParam (EDP): EnableDescribeParam={0 | 1}. Determines whether the ODBC API
function SQLDescribeParam is enabled, which results in all parameters being described with a data
type of SQL_VARCHAR. This attribute should be set to 1 when using Microsoft Remote Data
Objects (RDO) to access data. The initial default is 0.

EnableStaticCursorsForLongData (ESCLD): EnableStaticCursorsForLongData={0 | 1}.
Determines whether the driver supports long columns when using a static cursor. Using this attribute
causes a performance penalty at the time of execution when reading long data. The initial default is
0.

HostName (HOST): HostName={servername | IP_address}. Identifies the Oracle server to which
you want to connect. If your network supports named servers, you can specify a host name such as
Oracleserver. Otherwise, specify an IP address such as 199.226.224.34.

LockTimeOut (LTO): LockTimeOut={0 | -1}. Determines whether Oracle should wait for a lock to be
freed before raising an error when processing a Select…For Update statement. When set to 0,
Oracle does not wait. When set to -1 (the initial default), Oracle waits indefinitely.

LogonID (UID): The default logon ID (user name) that the application uses to connect to your Oracle
database. A logon ID is required only if security is enabled on your database. If so, contact your
system administrator to get your logon ID.

Password (PWD): The password that the application uses to connect to your Oracle database.

PortNumber (PORT): Identifies the port number of your Oracle listener. The initial default value is
1521. Check with your database administrator for the correct number.

ProcedureRetResults (PRR): ProcedureRetResults={0 | 1}. Determines whether the driver returns
result sets from stored procedure functions. When set to 0 (the initial default), the driver does not
return result sets from stored procedures. When set to 1, the driver returns result sets from stored
procedures. When set to 1 and you execute a stored procedure that does not return result sets, you
will incur a small performance penalty.
MapBasic 11.0 569 Reference

Chapter 8:
Server_Connect() function
SID (SID): The Oracle System Identifier that refers to the instance of Oracle running on the server.

UseCurrrentSchema (UCS): UseCurrentSchema={0 | 1}. Determines whether the driver specifies
only the current user when executing SQLProcedures. When set to 0, the driver does not specify
only the current user. When set to 1 (the initial default), the call for SQLProcedures is optimized, but
only procedures owned by the user are returned.

Oracle Spatial Attributes

Oracle8i Spatial is an implementation of a spatial database from Oracle Corporation. It has some
similarities to the previous Oracle SDO implementation, but is significantly different. Oracle8i Spatial
maintains the Oracle SDO implementation via a relational schema. However, MapInfo Professional
does not support the Oracle SDO relational schema via OCI. MapInfo Professional does support
simultaneous connections to Oracle8i through OCI and to other databases through ODBC. MapInfo
Professional does not support downloading Oracle8I Spatial geometry tables via ODBC using the
current ODBC driver from Intersolv. There is no DSN component.

An example of a connection string to access an Oracle8i Spatial server using TCP/IP is:

"SRVR=FATBOY;UID=SCOTT;PWD=TIGER"

SQL SERVER Attributes

If your application requires a connection string to connect to a data source, you must specify the
data source name that tells the driver which section in the system information to use for the default
connection information. Optionally, you may specify attribute=value pairs in the connection string to
override the default values stored in system information. These values are not written to the system
information.

The connection string has the form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

An example of a connection string for SQL Server is:

DSN=Accounting;UID=JOHN;PWD=XYZZY

The paragraphs that follow give the long and short names, when applicable, for each attribute, as
well as a description. The defaults listed are initial defaults that apply when no value is specified in
either the connection string or in the data source definition in the system information. If you specified
a value for the attribute when configuring the data source, that value is the default.

Attribute Description

LogonID (UID) The logon ID (user name) that the application uses to connect to your
Oracle database. A logon ID is required only if security is enabled on your
database. If so, contact your system administrator to get your logon ID.

Password (PWD) Your password. This, too, should be supplied by your system
administrator.

ServerName (SRVR) The name of the Oracle server.
MapBasic 11.0 570 Reference

Chapter 8:
Server_Connect() function
Address: The network address of the server running SQL Server. Used only if the Server keyword
does not specify the network name of a server running SQL Server. Address is usually the network
name of the server, but can be other names such as a pipe, or a TCP/IP port and socket address.
For example, on TCP/IP: 199.199.199.5, 1433 or MYSVR, 1433.

AnsiNPW: AnsiNPW={yes | no}. Determines whether ANSI-defined behaviors are exposed. When
set to yes, the driver uses ANSI-defined behaviors for handling NULL comparisons, character data
padding, warnings, and NULL concatenation. When set to no, ANSI-defined behaviors are not
exposed.

APP: The name of the application calling SQLDriverConnect (optional). If specified, this value is
stored in the master.dbo.sysprocesses column program_name and is returned by sp_who and the
Transact-SQL APP_NAME function.

AttachDBFileName: The name of the primary file of an attachable database. Include the full path
and escape any slash (\) characters if using a C character string variable:

AttachDBFileName=c:\\MyFolder\\MyDB.mdf

This database is attached and becomes the default database for the connection. To use
AttachDBFileName you must also specify the database name in either the SQLDriverConnnect
DATABASE parameter or the SQL_COPT_CURRENT_CATALOG connection attribute. If the
database was previously attached, SQL Server will not reattach it; it will use the attached database
as the default for the connection.

AutoTranslate: AutoTranslate={yes | no}. Determines how ANSI character strings are translated.
When set to yes, ANSI character strings sent between the client and server are translated by
converting through Unicode to minimize problems in matching extended characters between the
code pages on the client and the server.

These conversions are performed on the client by the SQL Server Wire Protocol driver. This
requires that the same ANSI code page (ACP) used on the server be available on the client.

These settings have no effect on the conversions that occur for the following transfers:

• Unicode SQL_C_WCHAR client data sent to char, varchar, or text on the server.
• Char, varchar, or text server data sent to a Unicode SQL_C_WCHAR variable on the client.
• ANSI SQL_C_CHAR client data sent to Unicode nchar, nvarchar, or ntext on the server.
• Unicode char, varchar, or text server data sent to an ANSI SQL_C_CHAR variable on the client.
• When set to no, character translation is not performed.
• The SQL Server Wire Protocol driver does not translate client ANSI character SQL_C_CHAR

data sent to char, varchar, or text variables, parameters, or columns on the server. No translation
is performed on char, varchar, or text data sent from the server to SQL_C_CHAR variables on
the client.

• If the client and SQL Server are using different ACPs, then extended characters can be
misinterpreted.

DATABASE: The name of the default SQL Server database for the connection. If DATABASE is not
specified, the default database defined for the login is used. The default database from the ODBC
data source overrides the default database defined for the login. The database must be an existing
database unless AttachDBFileName is also specified. If AttachDBFileName is specified, the primary
file it points to is attached and given the database name specified by DATABASE.
MapBasic 11.0 571 Reference

Chapter 8:
Server_Connect() function
LANGUAGE: The SQL Server language name (optional). SQL Server can store messages for
multiple languages in sysmessages. If connecting to a SQL Server with multiple languages, this
attribute specifies which set of messages are used for the connection.

Network: The name of a network library dynamic-link library. The name need not include the path
and must not include the .dll file name extension, for example, Network=dbnmpntw.

PWD: The password for the SQL Server login account specified in the UID parameter. PWD need
not be specified if the login has a NULL password or when using Windows NT authentication
(Trusted_Connection=yes).

QueryLogFile: The full path and file name of a file to be used for logging data about long-running
queries.

QueryLog_On: QueryLog_On={yes | no}. Determines whether long-running query data is logged.
When set to yes, logging long-running query data is enabled on the connection. When set to no,
long-running query data is not logged.

QueryLogTime: A digit character string specifying the threshold (in milliseconds) for logging long-
running queries. Any query that does not receive a response in the time specified is written to the
long-running query log file.

QuotedID: QuotedID={yes | no}. Determines whether QUOTED_IDENTIFIERS is set ON or OFF for
the connection. When set to yes, QUOTED_IDENTIFIERS is set ON for the connection, and SQL
Server uses the SQL-92 rules regarding the use of quotation marks in SQL statements. When set to
no, QUOTED_IDENTIFIERS is set OFF for the connection, and SQL Server uses the legacy
Transact-SQL rules regarding the use of quotation marks in SQL statements.

Regional: Regional={yes | no}. Determines how currency, date, and time data are converted. When
set to yes, the SQL Server Wire Protocol driver uses client settings when converting currency, date,
datetime, and time data to character data. The conversion is one way only; the driver does not
recognize non-ODBC standard formats for date strings or currency values. When set to no, the
driver uses ODBC standard strings to represent currency, date, and time data that is converted to
string data.

SAVEFILE: The name of an ODBC data source file into which the attributes of the current
connection are saved if the connection is successful.

SERVER: The name of a server running SQL Server on the network. The value must be either the
name of a server on the network, or the name of a SQL Server Client Network Utility advanced
server entry. You can enter “(local)” as the server name on Windows NT to connect to a copy of SQL
Server running on the same computer.

StatsLogFile: The full path and file name of a file used to record SQL Server Wire Protocol driver
performance statistics.

StatsLog_On: StatsLog_On={yes | no}. Determines whether SQL Server Wire Protocol driver
performance data is available. When set to yes, SQL Server Wire Protocol driver performance data
is captured. When set to no, SQL Server Wire Protocol driver performance data is not available on
the connection.
MapBasic 11.0 572 Reference

Chapter 8:
Server_Connect() function
Trusted_Connection: Trusted_Connection={yes | no}. Determines what information the SQL
Server Wire Protocol driver will use for login validation. When set to yes, the SQL Server Wire
Protocol driver uses Windows NT Authentication Mode for login validation. The UID and PWD
keywords are optional. When set to no, the SQL Server Wire Protocol driver uses a SQL Server
username and password for login validation. The UID and PWD keywords must be specified.

UID: A valid SQL Server login account. UID need not be specified when using Windows NT
authentication.

WSID: The workstation ID. Typically, this is the network name of the computer on which the
application resides (optional). If specified, this value is stored in the master.dbo.sysprocesses
column hostname and is returned by sp_who and the Transact-SQL HOST_NAME function.

How to specify as a connection option

There are a few parameters that can be used for POSTgreSQL driver:

Definition Keyword Abbreviation

Data source description Description Nothing

Name of Server Servername Nothing

Postmaster listening port Port Nothing

User Name Username Nothing

Password Password Nothing

Debug flag Debug B2

Fetch Max Count Fetch A7

Socket buffer size Socket A8

Database is read only ReadOnly A0

Communication to backend logging CommLog B3

PostgreSQL backend protocol Protocol A1

Backend enetic optimizer Optimizer B4

Keyset query optimization Ksqo B5

Send to backend on connection ConnSettings A6

Recognize unique indexes UniqueIndex Nothing

Unknown result set sizes UnknownSizes A9

Cancel as FreeStmt CancelAsFreeStmt C1
MapBasic 11.0 573 Reference

Chapter 8:
Server_Connect() function
See Also:

Server Disconnect statement

Use Declare/Fetch cursors UseDeclareFetch B6

Text as LongVarchar TextAsLongVarchar B7

Unknowns as LongVarchar UnknownsAsLongVarchar B8

Bools as Char BoolsAsChar B9

Max Varchar size MaxVarcharSize B0

Max LongVarchar size MaxLongVarcharSize B1

Fakes a unique index on OID FakeOidIndex A2

Includes the OID in SQLColumns ShowOidColumn A3

Row Versioning RowVersioning A4

Show SystemTables ShowSystemTables A5

Parse Statements Parse C0

SysTable Prefixes ExtraSysTablePrefixes C2

Disallow Premature DisallowPremature C3

Updateable Cursors UpdatableCursors C4

LF <-> CR/LF conversion LFConversion C5

True is -1 TrueIsMinus1 C6

Datatype to report int8 columns as BI Nothing

Byte as LongVarBinary ByteaAsLongVarBinary C7

Use serverside prepare UseServerSidePrepare C8

Lower case identifier LowerCaseIdentifier C9

SSL mode SSLmode CA

Extra options AB Nothing

Abbreviate (simple setup of a
recommendation value)

CX Nothing

Definition Keyword Abbreviation
MapBasic 11.0 574 Reference

Chapter 8:
Server_ConnectInfo() function
Server_ConnectInfo() function

Purpose

Retrieves information about the active database connections. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

Server_ConnectInfo(ConnectionNo, Attr)

ConnectionNumber is the integer returned by the Server_Connect() function that identifies the
database connection.

Attr is a code indicating which information to return.

Return Value

String

Description

The Server_ConnectInfo function returns information about a database connection. The first
parameter selects the connection number (starting at 1). The second parameter selects the kind of
information that will be returned. Refer to the following table.

Example

Dim dbname as String
Dim hdbc As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
dbname=Server_ConnectInfo(hdbc, SRV_CONNECT_INFO_DB_NAME)
Print dbname

See Also:

Server_Connect() function

Attr value ID Server_ConnectInfo() returns:

SRV_CONNECT_INFO_DRIVER_NAME 1 String result, the name identifying the toolkit
drivername associated with this connection.

SRV_CONNECT_INFO_DB_NAME 2 String result, returning the database name.

SRV_CONNECT_INFO_SQL_USER_ID 3 String result, returning the name of the SQL
user ID.

SRV_CONNECT_INFO_DS_NAME 4 String result, returning the data source name.

SRV_CONNECT_INFO_QUOTE_CHAR 5 String result, returning the quote character.
MapBasic 11.0 575 Reference

Chapter 8:
Server Create Map statement
Server Create Map statement

Purpose

Identifies the spatial information for a server table. It does not alter the table to add the spatial
columns. For this release, we have added the option to place Oracle 11g annotation text in MapInfo
maps. You can issue this statement from the MapBasic Window in MapInfo Professional.

To support the changes to the Make Table Mappable dialog box, we use the Server <Connection
Number> Create Map statement to register the metadata in the MAP CATALOG. To support
ANNOTATION TEXT, we have introduced a Text object type. The statement is now:

Syntax

Server ConnectionNumber Create Map
For linked_table
Type { MICODE columnname | XYINDEX (xcolumnname, ycolumnname) | {

SPATIALWARE | OR_SP | SQLSERVERSPATIAL {
GEOMETRY | GEOGRAPHY} | POSTGIS}
columnname}

[CoordSys...]
[MapBounds { Data | Coordsys | Values (x1, y1)(x2, y2)}]
[ObjectType { Point | Line | Region | Text | ALL }]
[Symbol (...)]
[Linestyle Pen(...)]
[Regionstyle Pen(...) Brush(...)]
[Style Type style_number [Column column_name]]

Text supports the creation of the text object for annotation text. The ALL option does not include this
text object.

connectionNumber is an integer value that identifies the specific connection.

linked_table is the name of an open, linked ODBC table.

columnname is the name of the column containing the coordinates for the specified type.

xcolumnname is the name of the X column containing longitude value of the coordinate

ycolumnname is the name of the Y column containing latitude value of the coordinate

x1, y1, x2, y2 define the coordinate system bounds.

CoordSy clause specifies the coordinate system and projection to be used.

MapBounds clause allows you to specify what to store for the entire/default table view bounds in
the MapCatalog. The default is Data which calculates the bounds of all the data in the layer. (For
programs compiled before 7.5, the default will is Coordsys).

Coordsys stores the coordinate system bounds. This is not recommended as it may cause the
entire layer default view to appear empty if the Coordsys bounds are significantly greater than the
bounds of the actual data. Most users are zoomed out too far to see their data using this option.

Values lets you specify your own bounds values for the MapCatalog.
MapBasic 11.0 576 Reference

Chapter 8:
Server Create Map statement
ObjectType clause specifies the type of object in the table: points, lines, regions, text, or all objects.
If no ObjectType clause is specified, the default is Point. The Text option allows for the placement
of Oracle Spatial annotation text into a text object., and the type for this option is ORA_SP. The ALL
option does not include text.

Symbol is a valid Symbol clause to specify a point style.

Linestyle Pen is a valid Pen clause that specifies the line style to be used for a line object type.

Regionstyle Pen is a valid Pen clause and Brush is a valid Brush clause that specifies the line
style and fill style to be used for a region object type.

StyleType sets per-row symbology. style_number is a value either 0 or 1. The Column keyword and
argument must be present when style_number is set to 1 (one). When the style_number is set to
zero the Column keyword is ignored and the rendition columns in the MapCatalog are cleared.

Description

The Server Create Map statement makes a table linked to a remote database mappable. For a
SpatialWare, Oracle Spatial, SQL Server Spatial or PostGIS table, you can make the table
mappable for points, lines, or regions. For all other tables, you can make a table mappable for points
only. Any MapInfo Professional table may be displayed in a Browser, but only a mappable table can
have graphical objects attached to it and be displayed in a Map window.

If Oracle9i is the server and the coordinate system is specified as Lat/Long without specifying
the datum, the default datum, World Geodetic System 1984(WGS 84), will be assigned to the
Lat/Long coordinate system. This behavior is consistent with the Server Create Table
statement and Easyloader.

.

Examples

Sub Main
Dim ConnNum As Integer
ConnNum = Server_Connect("ODBC",

Attribute Types Description

ORA_SP columnname OracleSpatial

SPATIALWARE SpatialWare for SQL Server

MICODE XYINDEX

SQLSERVERSPATIAL
GEOMETRY

SQL Server Spatial Geometry

SQLSERVERSPATIAL
GEOGRAPHY

SQL Server Spatial Geography

POSTGIS PostGIS for PostgreSQL
MapBasic 11.0 577 Reference

Chapter 8:
Server Create Style statement
"DSN=SQLServer;DB=QADB;UID=mipro;PWD=mipro")
Server ConnNum Create Map For "Cities"
Type SPATIALWARE
CoordSys Earth Projection 1, 0
ObjectType All
ObjectType Point
Symbol (35,0,12)
Server ConnNum Disconnect

End Sub

The following is an example of the MapBasic statement for the ANNOTEXT_TABLE:

Server 1 Create Map For """MIPRO"".""ANNOTEXT_TABLE"""
Type ORA_SP "TEXTOBJ"
CoordSys Earth Projection 12, 62, "m", 0 Bounds

(-34012036.7393, -8625248.51472) (34012036.7393, 8625248.51472)
mapbounds data
ObjectType Text

See Also:

Server Link Table statement, Unlink statement

Server Create Style statement

Purpose

Changes the per object style settings for a mapped table. This statement is similar to the Server Set
Map statement and returns success or failure. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Server ConnectionNumber Set Map linked_table...
[Style Type style_number [Column column_name]]

connectionNumber is an integer value that identifies the specific connection.

linked_table is the name of an open linked ODBC table

columnname is the name of the column containing the coordinates for the specified type

StyleType sets per-row symbology. style_number is a value either 0 or 1. The Column keyword and
argument must be present when style_number is set to 1 (one). When the style_number is set to
zero the Column keyword is ignored and the rendition columns in the MapCatalog are cleared.

Description

In order to succeed, the MapCatalog must have the structure to support styles. It must contain the
columns RENDITIONTYPE, RENDITIONCOLUMN, and RENDITIONTABLE. The command should
not succeed if the style columns are not character or varchar columns. The SQL statement itself will
probably fail if it tries to set a string value into a column with a different data type.
MapBasic 11.0 578 Reference

Chapter 8:
Server Create Table statement
Example

Server 2 Create Map For "qadb:sample.arc"
Type MICODE "mi_sql_micode" ("mi_sql_x","mi_sql_y")
CoordSys Earth Projection 1, 0 ObjectType Point Symbol (35,0,12) Style
Type 1 Column "mi_style"

See Also:

Server_Connect() function

Server Create Table statement

Purpose

Creates a new table on a specified remote database. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Server ConnectionNumber Create Table TableName
(ColumnName ColumnType [,...])
[KeyColumn ColumnName]
[ObjectColumn ColumnName [Type SQLServerSpatial

{Geometry | Geography}]]
[StyleColumn ColumnName]
[CoordSys...]

ConnectionNumber is an integer value that identifies the specific connection to a database.

TableName is the name of the table as you want it to appear in a database.

ColumnName is the name of a column to create. Column names can be up to 31 characters long,
and can contain letters, numbers, and the underscore(_) character. Column names cannot begin
with numbers.

ColumnType is the data type associated with the column.

KeyColumn clause specifies the key column of the table.

ObjectColumn clause specifies the spatial geometry/object column of the table.

StyleColumn clause specifies the Per Row Style column, which allows the use of different object
styles for each row on the table.

CoordSys… clause specifies the coordinate system and projection to be used.

Description

The Server Create Table statement creates a new empty table on the given database of up to 250
columns.
MapBasic 11.0 579 Reference

Chapter 8:
Server Create Table statement
TableName is the name of the table as you want it to appear in database. The name can include a
schema name, which specifies the schema that the table belongs to. If no schema name is provided,
the table belongs to the default schema. The user is responsible for providing an eligible schema
name and must know if the login user has the proper permissions on the given schema. This
extension is for SQL Server 2005 only.

The length of TableName varies with the type of database. We recommend using 14 or fewer
characters for a table name to ensure that it works correctly for all databases. The maximum
TableName length is 14 characters.

ColumnType uses the same data types defined and provided in the Create Table statement. Some
types may be converted to the database-supported types accordingly, once the table is created on
the database.

If the optional KeyColumn clause is specified, a unique index will be created on this column. We
recommend using this clause since it is also allows MapInfo Professional to open the table for live
access.

The optional ObjectColumn clause enables you to create a table with a spatial geometry/object
column. If it is specified, a spatial index will also be created on this column. However, if the server
does not have the ability to handle spatial geometry/objects, the table will not be created. If the
server is an SQL Server with SpatialWare, the table is also spatialized once the table is created. If
the Server is Oracle Spatial, spatial metadata is updated once the table is created.

If Server Create Table is used and the ObjectColumn clause is passed in the statement, you will
also have to use the Server Create Map statement in order to open the table in MapInfo
Professional.

The optional CoordSys clause becomes mandatory only if the table is created with spatial
object/geometry on Oracle Spatial (Oracle8i or later with spatial option). If Oracle9i is the server and
the coordinate system is specified as Lat/Long without specifying the datum, the default datum,
World Geodetic System 1984(WGS 84), will be assigned to the Lat/Long coordinate system. The
coordinate system must be the same as the one specified in the Server Create Map statement
when making it mappable. For other DBMS, this clause has no effect on table creation.

The supported databases include Oracle, SQL Server, PostGIS and Microsoft Access. However, to
create a table with a spatial geometry/object column, SpatialWare is required for SQL Server and
the spatial option is required for Oracle.

Notes on DateTime and Time Data Types

There is no specific change in terms of syntax. We do have following restrictions for the some data
types:

The datatypes Time and DateTime are useful but you must consider the database when using them.
Most databases do not have a corresponding DBMS TIME types. Before this release, we only
supported the Date type. Even the Date was converted to server type If the server did not support
Date type. In MapBasic 9.0 and later, this statement only supports the types that the server also
supports. Therefore, the Time type is prohibited from this statement for Oracle, SQL Server and
MapBasic 11.0 580 Reference

Chapter 8:
Server Create Workspace statement
Access, and the Date type data type is prohibited for SQL Server and Access. Those "unsupported”
types should be replaced with DateTime if you still want to create the table that contains time
information on a column.

For Microsoft SQL Server and Access and verisons of MapInfo Professional older than 9.0,
the conversion was done in the background. As of version 9.0, users must choose
DATETIME instead of DATE or the operation fails.

Examples

The following examples show how to create a table named ALLTYPES that contains seven columns
that cover each of the data types supported by MapInfo Professional, plus the three columns Key,
SpatialObject, and Style columns, for a total of ten columns.

For SQL Server with SpatialWare:

dim hodbc as integer
hodbc = server_connect("ODBC", "dlg=1")
Server hodbc Create Table ALLTYPES(Field1 char(10),Field2 integer,Field3
SmallInt,Field4 float,Field5 decimal(10,4),Field6 date,Field7 logical)
KeyColumn SW_MEMBER
ObjectColumn SW_GEOMETRY
StyleColumn MI_STYLE

For Oracle Spatial:

dim hodbc as integer
hodbc = server_connect("ORAINET", "SRVR=cygnus;UID=mipro;PWD=mipro")
Server hodbc Create Table ALLTYPES(Field1 char(10),Field2 integer,Field3
SmallInt,Field4 float,Field5 decimal(10,4),Field6 date,Field7logical)

KeyColumn MI_PRINX
ObjectColumn GEOLOC
StyleColumn MI_STYLE
Coordsys Earth Projection 1, 0

See Also:

Create Map statement, Server Create Map statement, Server Link Table statement, Unlink
statement

Server Create Workspace statement

Purpose

Creates a new workspace in the database (Oracle 9i or later). You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Server ConnectionNumber Create
Workspace WorkspaceName
MapBasic 11.0 581 Reference

Chapter 8:
Server Disconnect statement
[Description Description]
[Parent ParentWorkspaceName]

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive, and it must be unique.
The length of a workspace name must not exceed 30 characters.

Description is a string to describe the workspace.

ParentWorkspaceName is the name of the workspace which will be the parent of the new
workspace WorkspaceName. By default, when a workspace is created, it is created from the
topmost, or LIVE, database workspace.

Description

This statement only applies to Oracle9i or later. The new workspace WorkspaceName is a child of
the parent workspace ParentWorkspaceName or LIVE if the Parent is not specified.

Refer to the Oracle9i Application Developer's Guide - Workspace Manager for more information.

Examples

The following example creates a workspace named MIUSER in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create
Workspace "MIUSER"
Description "MIUser private workspace"

The following example creates a child workspace under MIUSER in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create Workspace "MBPROG" Description "MapBasic project"
Parent "MIUSER"

See Also:

Server Remove Workspace statement, Server Versioning statement

Server Disconnect statement

Purpose

Shuts down the communication established via the Server_Connect() function with the remote
data server. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Server ConnectionNumber Disconnect

ConnectionNumber is an integer value that identifies the specific connection.
MapBasic 11.0 582 Reference

Chapter 8:
Server_DriverInfo() function
Description

The Server Disconnect statement shuts down the database connection. All resources allocated
with respect to the connection are returned to the system.

Example

Dim hdbc As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
Server hdbc Disconnect

See Also:

Server_Connect() function

Server_DriverInfo() function

Purpose

Retrieves information about the installed toolkits and data sources. You can call this function from
the MapBasic Window in MapInfo Professional.

Syntax

Server_DriverInfo(DriverNo, Attr)

DriverNo is an integer value assigned to an interface toolkit by MapInfo Professional when you start
MapInfo Professional.

Attr is a code indicating which information to return.

Return Value

String

Description

The Server_DriverInfo() function returns information about the data sources. The first parameter
selects the toolkit (starting at 1). The total number of toolkits can be obtained by a call to the
Server_NumDrivers() function. The second parameter selects the kind of information that will be
returned. Refer to the following table.

Attr value ID Server_DriverInfo() returns:

SRV_DRV_INFO_NAME 1 String result, the name identifying the toolkit. ODBC
indicates an ODBC data source. ORAINET indicates an
Oracle Spatial connection.
MapBasic 11.0 583 Reference

Chapter 8:
Server_EOT() function
Example

Dim dlg_string, source As String
dlg_string = Server_DriverInfo(0, SRV_DRV_INFO_NAME_LIST)
source = Server_DriverInfo(1, SRV_DRV_DATA_SOURCE)
While source <> ""

Print "Available sources on toolkit " +
Server_DriverInfo(1, SRV_DRV_INFO_NAME) + ": " +

source
source = Server_DriverInfo(1,

SRV_DRV_DATA_SOURCE)
Wend

See Also:

Server_NumDrivers() function

Server_EOT() function

Purpose

Determines whether the end of the result table has been reached via a Server Fetch statement.
You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

Server_EOT(StatementNumber)

StatementNumber is the number of the Server Fetch statement you are checking.

Return Value

Logical

SRV_DRV_INFO_NAME_LIST 2 String result, returning all the toolkit names, separated by
semicolons. Specifically, ODBC, ORAINET. The
DriverNo parameter is ignored.

SRV_DRV_DATA_SOURCE 3 String result, returning the name of the data sources
supported by the toolkit. Repeated calls will fetch each
name. After the last name for a particular toolkit, the
function will return an empty string. Calling the function
again for that toolkit will cause it to start with the first
name on the list again.

Attr value ID Server_DriverInfo() returns:
MapBasic 11.0 584 Reference

Chapter 8:
Server_Execute() function
Description

The Server_EOT() function returns TRUE or FALSE indicating whether the previous Server Fetch
statement encountered a condition where there was no more data to return. Attempting to fetch a
previous record immediately after fetching the first record causes this to return TRUE. Attempting to
fetch the next record after the last record also returns a value of TRUE.

Example

Dim hdbc, hstmt As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
hstmt = Server_Execute(hdbc, "Select * from ADDR")
Server hstmt Fetch FIRST
While Not Server_EOT(hstmt)

' Processing for each row of data ...
Server hstmt Fetch Next

Wend

See Also:

Server Fetch statement

Server_Execute() function

Purpose

Sends a SQL string to execute on a remote data server. You can call this function from the
MapBasic Window in MapInfo Professional.

Syntax

Server_Execute(ConnectionNumber, server_string)

ConnectionNumber is an integer value that identifies the specific connection.

server_string is any valid SQL statement supported by the connected server. Refer to the SQL
language guide of your server database for information on valid SQL statements.

Return Value

Integer

Description

The Server_Execute() function sends the server_string (an SQL statement) to the server
connection specified by the ConnectionNumber. Any valid SQL statement supported by the active
server is a valid value for the server_string parameter. Refer to the SQL language guide of your
server database for information on valid SQL statements.

This function returns a statement number. The statement number is used to associate subsequent
SQL requests, like the Server Fetch statement and the Server Close statement, to a particular
SQL statement.
MapBasic 11.0 585 Reference

Chapter 8:
Server Fetch statement
You should perform a Server Close statement for each Server_Execute() function as soon as you
are done using the statement handle. For selects, this is as soon as you are done fetching the
desired data. This will close the cursor on the remote server and free up the result set. Otherwise,
you can exceed the cursor limit and further executes will fail. Not all database servers support
forward and reverse scrolling cursors. For other SQL commands, issue a Server Close statement
immediately following the Server_Execute() function.

Dim hdbc, hstmt As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
hstmt = Server_Execute(hdbc, "Select * from ADDR")
Server hstmt Close

Example

Dim hdbc, hstmt As Integer
hdbc = Server_Connect("ODBC", DSN=ORACLE7;DLG=1")
hstmt = Server_Execute (hdbc,

"CREATE TABLE NAME_TABLE (NAME CHAR (20))")
Server hstmt Close
hstmt = Server_Execute (hdbc,

"INSERT INTO NAME_TABLE VALUES ('Steve')")
Server Close hstmt
hstmt = Server_Execute (hdbc,

"UPDATE NAME_TABLE SET name = 'Tim' ")
Server Close hstmt
Server hdbc Disconnect

See Also:

Server Close statement, Server Fetch statement

Server Fetch statement

Purpose

Retrieves result set rows from a remote data server. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Server StatementNumber Fetch [NEXT | PREV | FIRST | LAST | [REC]recno]

or

Server StatementNumber Fetch INTO Table [FILE path]

StatementNumber is an integer value that identifies information about an SQL statement.

recno is an integer representing the record to fetch.

path is the path to an existing table.
MapBasic 11.0 586 Reference

Chapter 8:
Server Fetch statement
Description

The Server Fetch statement retrieves result set data (specified by the StatementNumber) from the
database server. For fetching the data one row at a time, it is placed in local storage and can be
bound to variables with the Server Bind Column statement, or retrieved one column at a time with
the Server_ColumnInfo(SRV_COL_INFO_VALUE) function. The other option is to fetch an entire
result set into a MapInfo table at once, using the Into Table clause.

The Server Fetch and Server Fetch Into statements halt and set the error code
ERR() = ERR_SRV_ESC if the user presses Esc. This allows your MapBasic application using the
Server Fetch statements to handle the escape.

Following a Server Fetch Into statement, the MapInfo table is committed and there are no
outstanding transactions on the table. All character fields greater than 254 bytes are truncated. All
binary fields are downloaded as double length hexadecimal character strings. The column names for
the downloaded table will use the column alias name if a column alias is specified in the query.

Null Handling

When you execute a Select statement and fetch a row containing a table column that contains a
null, the following behavior occurs. There is no concept of null values in a MapInfo table or variable,
so the default value is used within the domain of the data type. This is the value of a MapBasic
variable that is DIMed but not set. However, an Indicator is provided that the value returned was null.

For Bound variables (see Server Bind Column statement), a status variable can be specified and
its value will indicate if the value was null following the fetch. For unbound columns,
SRV_COL_INFO with the Attr type SRV_COL_INFO_STATUS will return the status which can
indicate null.

Refer to the MapBasic User Guide for information on how MapInfo Professional interprets data
types.

Error Conditions

The command Server n Fetch Into table generates an error condition if any attempts to
insert records into the local MapInfo table fail. The commands Server n Fetch
[Next|Prev|recno] generate errors if the desired record is not available.

Example 1

' An example of Server Fetch downloading into a MapInfo table
Dim hdbc, hstmt As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
hstmt = Server_Execute(hdbc, "Select * from emp")
Server hstmt Fetch Into "MyEmp"
Server hstmt Close

Example 2

' An example of Server Fetch using bound variables
Dim hdbc, hstmt As Integer
dim NameVar, AddrVar as String
dim NameStatus, AddrStatus as Integer
MapBasic 11.0 587 Reference

Chapter 8:
Server_GetODBCHConn() function
hdbc = Server_Connect("ODBC", "DLG=1")
hstmt = Server_Execute(hdbc, "Select Name, Addr from emp")
Server hstmt Bind Column 1 to NameVar, NameStatus
Server hstmt Bind Column 2 to AddrVar, AddrStatus
Server hstmt Fetch Next
While Not Server_Eot(hstmt)

Print "Name = " + NameVar + "; Address = " + AddrVar
Server hstmt Fetch Next

Wend

See Also:

Server_ColumnInfo() function

Server_GetODBCHConn() function

Purpose

Returns the ODBC connection handle associated with the remote database connection. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

Server_GetODBCHConn(ConnectionNumber)

ConnectionNumber is the integer returned by the Server_Connect() function that identifies the
database connection.

Description

This function returns an integer containing the ODBC connection handle associated with the remote
database connection. This enables you to call any function in the ODBC DLL to extend the
functionality available through the MapBasic Server… statements.

Example

'* Find the identity of the Connected database
DECLARE FUNCTION SQLGetInfo LIB "ODBC32.DLL" (BYVAL odbchdbc AS INTEGER,
BYVAL infoflag AS INTEGER, val AS STRING, BYVAL len AS INTEGER, outlen AS
INTEGER) AS INTEGER
Dim rc, outlen, hdbc, odbchdbc AS INTEGER
Dim DBName AS STRING
' Connect to a database
hdbc = Server_Connect("ODBC", "DLG=1")
odbchdbc = Server_GetodbcHConn(hdbc) ' get ODBC connection handle
' Get database name from ODBC
DBName = STRING$(33, "0") ' Initialize output buffer
rc = SQLGetInfo(odbchdbc, 17 , DBName, 40, outlen) ' get ODBC Database
Name
' Display results (database name)
if rc <> 0 THEN

Note "SQLGetInfo Error rc=" + rc + ", outlen=" + outlen
MapBasic 11.0 588 Reference

Chapter 8:
Server_GetODBCHStmt() function
else
Note "Connected to Database: " + DBName

end if

See Also:

Server_GetODBCHStmt() function

Server_GetODBCHStmt() function

Purpose

Return the ODBC statement handle associated with the MapBasic Server… statements. You can
call this function from the MapBasic Window in MapInfo Professional.

Syntax

Server_GetODBCHStmt(StatementNumber)

StatementNumber is the integer returned by the Server_Execute() function that identifies the
result set of the SQL statement executed.

Description

This function returns the ODBC statement handle associated with the MapBasic Server…
statements. This enables you to call any ODBC function to extend the functionality available through
the MapBasic Server… statements.

Example

' Find the Number of rows affected by an Update
Dim rc, outlen, hdbc, hstmt, odbchstmt AS INTEGER
Dim RowsUpdated AS INTEGER
' Find the Number of rows affected by an Update
DECLARE FUNCTION SQLRowCount LIB "ODBC32.DLL" (BYVAL odbchstmt AS INTEGER,
rowcnt AS INTEGER) AS INTEGER
hdbc = Server_Connect("ODBC", "DLG=1")
hstmt = Server_Execute(hdbc, "UPDATE TIML.CUSTOMER SET STATE='NY' WHERE
STATE='NY'")
odbchstmt = Server_GetodbcHStmt(hstmt)
rc = SQLRowCount(odbchstmt, RowsUpdated)
Note "Updated " + RowsUpdated + " New customers to Tier 1"

See Also:

Server_GetODBCHConn() function
MapBasic 11.0 589 Reference

Chapter 8:
Server Link Table statement
Server Link Table statement

Purpose

Creates a linked table. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax 1

Server Link Table
SQLQuery
Using ConnectionString
Into TableName
Toolkit Toolkitname
[File FileSpec]
[ReadOnly]
[Autokey { Off | On }]

Syntax 2

Server ConnectionNumber Link Table
SQLQuery
Toolkit toolkitname
Into TableName
[File FileSpec]
[ReadOnly]
[Autokey { Off | On }]

ConnectionNumber is an integer value that identifies an existing connection.

SQLQuery is a SQL query statement (in native SQL dialect plus object keywords) that generates a
result set. The MapInfo linked table is linked to this result set.

ConnectionString is a string used to connect to a database server. See Server_Connect()
function.

TableName is the alias of the MapInfo table to create.

FileSpec is an optional tab filename. If the parameter is not present, the tab filename is created
based on the alias and current directory. If a FileSpec is given and a tab file with this name already
exists, an error occurs.

ReadOnly indicates that the table should not be edited.

Toolkitname is a string indicating the type of connection, ODBC or ORAINET.

If Autokey is set On, the table will be opened with key auto-increment option. If Autokey is set Off
or this option is ignored, the table will be opened without key auto-increment.
MapBasic 11.0 590 Reference

Chapter 8:
Server Link Table statement
Description

This statement creates a linked MapInfo table on disk. The table is opened and enqueued. This
table is considered a MapInfo base table under most circumstances, except the following: The
MapBasic Alter Table statement will fail with linked tables. Linked tables cannot be packed. The
Pack Table dialog box will not list linked tables. Use the Server Link Table syntax to establish a
connection to a database server and to link a table. Use the Server ConnectionNumber Link Table
to link a table using an existing connection. Linked tables contain information to reestablish
connections and identify the remote data to be updated. This information is stored as metadata in
the tab file.

The absence of the ReadOnly keyword does not indicate that the table is editable. The linked table
can be read-only under any of the following circumstances: the result set is not editable; the result
set does not contain a primary key; there are no editable columns in the result set; and, the
ReadOnly keyword is present. If the server is Oracle, Autokey indicates if the key auto-increment is
used or not.

SQL Query Syntax

The MapInfo keyword OBJECT may be used to reference the spatial column(s) within the SQL
Query. MapInfo Professional translates the keyword OBJECT into the appropriate spatial column(s).
A SELECT*FROM tablename will always pick up the spatial columns, but if you want to specify a
subset of columns, use the keywords OBJECT. For example:

SELECT col1, col2, OBJECT
FROM tablename

will download the two columns plus the spatial object. This syntax will work for any database that
MapInfo Professional supports.

MapInfo Professional Spatial Query

MapInfo Professional supports the keyword WITHIN which is used for spatial queries. It is used for
selecting spatial objects in a table that exists within an area identified by a spatial object. The
following two keywords may be used along with the WITHIN keyword:

• CURRENT MAPPER: entire rectangular area shown in the current Map window.
• SELECTION: area within the selection n the current Map window.

The syntax to find all of the rows in a table with a spatial object that exists within the current Map
window would be as follows:

SELECT col1, col2, OBJECT
FROM tablename
WHERE OBJECT WITHIN CURRENT_MAPPER

This syntax will work for any database that MapInfo Professional supports. MapInfo Professional will
also execute spatial SQL queries that are created using the native SQL syntax for the spatial
database. Valid values for toolkitname can be found in Server_DriverInfo() function.
MapBasic 11.0 591 Reference

Chapter 8:
Server_NumCols() function
Examples

Declare Sub Main
Sub Main

Open table "C:\mapinfo\data\states.tab"
Server Link Table "Select * from Statecap" Using

"DSN=MS Access;DBQ=C:\MSOFFICE\ACCESS\DB1.mdb"
Into test File "C:\tmp\test"

Map From Test,States
End Sub 'Main
Declare Sub Main
Sub Main

Dim ConnNum As Integer
ConnNum = Server_Connect("ODBC","DSN=SQS;PWD=sysmal;SRVR=seneca")
Server ConnNum Link Table

"Select * from CITY_1"
Into temp
Map From temp

Server ConnNum Disconnect
End Sub

The following example creates a linked table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=ONTARIO;UID=MIPRO;PWD=MIPRO")
Server hdbc link table

"Select * From ""MIPRO"".""SMALLINTEGER"""
Toolkit "ORAINET"
Into SMALLINTEGER
Autokey ON

Map From SMALLINTEGER

See Also:

Close Table statement, Commit Table statement, Drop Table statement, Rollback statement,
Save File statement, Server Refresh statement, Unlink statement

Server_NumCols() function

Purpose

Retrieves the number of columns in the result set. You can call this function from the MapBasic
Window in MapInfo Professional.

Syntax

Server_NumCols(StatementNumber)

StatementNumber is an integer value that identifies information about an SQL statement.
MapBasic 11.0 592 Reference

Chapter 8:
Server_NumDrivers() function
Return Value

Integer

Description

The Server_NumCols() function returns the number of columns in the result set currently
referenced by StatementNumber.

Example

Dim hdbc, hstmt As Integer
hdbc = Server_Connect("ODBC", "DLG=1")
hstmt = Server_Execute(hdbc, "Select Name, Addr from emp")
Print "Number of columns = " + Server_NumCols(hstmt)

See Also:

Server_ColumnInfo() function

Server_NumDrivers() function

Purpose

Retrieves the number of database connection toolkits currently installed for access from MapInfo.
You can call this function from the MapBasic Window in MapInfo Professional.

Syntax

Server_NumDrivers()

Return Value

Integer

Description

The Server_NumDrivers() function returns the number of database connection toolkits installed for
use by MapInfo Professional.

Example

Print "Number of drivers = " + Server_NumDrivers()

See Also:

Server_DriverInfo() function
MapBasic 11.0 593 Reference

Chapter 8:
Server Refresh statement
Server Refresh statement

Purpose

Resynchronizes a linked or live table with the remote database data. This command can only be run
when no edits are pending against the table. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Server Refresh TableName

TableName is the name of an open MapInfo linked table.

Description

If the connection to the database is currently open then the refresh simply occurs. If the connection
is not currently open, then the connection will be made. If there is any information needed, such as a
password, the user will be prompted for it.

Refreshing the table involves:

1. If the table contains records, delete all the records and objects from the live or linked table by
erasing the files and recreating the table, not by using the MapBasic Delete statement.

2. If a connection handle is stored with the TABLE structure, use it. Otherwise, reconnect using the
connection string stored in the live or linked table metadata.

3. Convert SQL query stored in metadata to RDBMS-specific query.

4. Execute SQL query on RDBMS.

5. Fetch rows from the RDBMS cursor, filling the table. Put up a MapInfo Professional progress bar
during this operation.

6. Close RDBMS cursor.

Example

Server Refresh "City_1k"

See Also:

Commit Table statement, Server Link Table statement, Unlink statement
MapBasic 11.0 594 Reference

Chapter 8:
Server Remove Workspace statement
Server Remove Workspace statement

Purpose

Discards all row versions associated with a workspace and deletes the workspace in the database
(Oracle 9i or later). You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Server ConnectionNumber Remove
Workspace WorkspaceName

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive.

Description

This statement only applies to Oracle9i or later. This operation can only be performed on leaf
workspaces (the bottom-most workspaces in a branch in the hierarchy). There must be no other
users in the workspace being removed.

Examples

The following example removes the MIUSER workspace in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Remove Workspace "MIUSER"

See Also:

Server Create Workspace statement

Server Rollback statement

Purpose

Discards changes made on the remote data server during the current unit of work. You can issue
this statement from the MapBasic Window in MapInfo Professional.

Syntax

Server ConnectionNumber Rollback

ConnectionNumber is an integer value that identifies the specific connection.
MapBasic 11.0 595 Reference

Chapter 8:
Server Set Map statement
Description

The Server Rollback statement discards the effects of all SQL statements on the connection back
to the Server Begin Transaction statement. You must have an open transaction initiated by
Server Begin Transaction statement before you can use this command.

Example

hdbc = Server_Connect("ODBC", "DLG=1")
Server hdbc Begin Transaction

...

' All changes since begin_transaction are about ' to be discarded
Server hdbc Rollback

See Also:

Server Begin Transaction statement, Server Commit statement

Server Set Map statement

Purpose

Changes the object styles for a mappable ODBC table. This updates the MapCatalog. You can issue
this statement from the MapBasic Window in MapInfo Professional.

Syntax

Server ConnectionNumber Set Map linked_table
[ObjectType { Point | Line | Region | Text | ALL }]
[Symbol(...)]
[Linestyle Pen(...)]
[Regionstyle Pen(...) Brush(...)]

ConnectionNumber is an integer value that identifies the specific connection.

linked_table is the name of an open linked DBMS table.

ObjectType clause specifies the type of object in the table and allows you to specify objects as
points, lines, regions, text, or all objects, see Server Create Map statement for details.

Symbol is a valid Symbol clause to specify a point style.

Linestyle Pen specifies the line style to be used for a line object type.

Regionstyle Pen(…) Brush(…) clause specifies the line style and fill style to be used for a region
object type.

Description

The Server Set Map statement changes the object styles of an open mappable ODBC table. An
ODBC table is made mappable with the Server Create Map statement.
MapBasic 11.0 596 Reference

Chapter 8:
Server Versioning statement
Example

Declare Sub Main
Sub Main

Dim ConnNum As Integer
ConnNum = Server_Connect("ODBC", "DSN=SQS;PWD=sys;SRVR=seneca")
Server ConnNum Set Map "Cities"

ObjectType Point
Symbol (35,0,12)

Server ConnNum Disconnect
End Sub

See Also:

Server Create Map statement

Server Versioning statement

Purpose

Version-enables or disables a table on Oracle 9i or later, which creates or deletes all the necessary
structures to support multiple versions of rows to take advantage of Oracle Workspace Manager.
You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Server ConnectionNumber Versioning {
ON [History HistoryValue] |
OFF [Force { OFF | ON }]

} Table ServerTableName

ON | OFF indicates to enable (when it is ON) a table versioning or disable (when it is OFF) a table
versioning.

ConnectionNumber is an integer value that identifies the specific connection.

ServerTableName is the name of the table on Oracle server to be version-enabled/disabled. The
length of a table name must not exceed 25 characters. The name is not case sensitive.

History is an optional parameter when version-enabling a table (ON).

History clause specifies how to track modifications to ServerTableName, for example, lets you
timestamp changes made to all rows in a version-enabled table and to save a copy of either all
changes or only the most recent changes to each row. HistoryValue must be one of the following
constant values:

• SRV_WM_HIST_NONE (0): No modifications to the table are tracked. (This is the default.)
• SRV_WM_HIST_OVERWRITE (1): The with overwrite (W_OVERWRITE) option. A view named

ServerTableName_HIST is created to contain history information, but it will show only the most
recent modifications to the same version of the table. A history of modifications to the version is
not maintained; that is, subsequent changes to a row in the same version overwrite earlier
changes. (The CREATETIME column of the TableName_HIST view contains only the time of the
most recent update.)
MapBasic 11.0 597 Reference

Chapter 8:
Server Versioning statement
• SRV_WM_HIST_NO_OVERWRITE (2): The without overwrite (WO_OVERWRITE) option. A
view named ServerTableName_HIST is created to contain history information, and it will show all
modifications to the same version of the table. A history of modifications to the version is
maintained; that is, subsequent changes to a row in the same version do not overwrite earlier
changes.
However, there are many restrictions on tables to use this option. Please refer the Oracle9i
Application Developer's Guide - Workspace Manager for more information.

Force is an optional parameter, when disabling a version-enabled table (OFF).

If Force is set ON, all data in workspaces other than LIVE to be discarded before versioning is
disabled. OFF (the default) prevents versioning from being disabled if ServerTableName was
modified in any workspace other than LIVE and if the workspace that modified ServerTableName
still exists.

Description

This statement only applies to Oracle9i or later. The table, ServerTableName, that is being version-
enabled must have a primary key defined. Only the owner of a table or a user with the WM_ADMIN
role can enable or disable versioning on the table. Tables that are version-enabled and users that
own version-enabled tables cannot be deleted. You must first disable versioning on the relevant
table or tables. Tables owned by SYS cannot be version-enabled. Refer to the Oracle9i Application
Developer's Guide - Workspace Manager for more information.

Examples

The following example enables versioning on the MIUUSA3 table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Versioning ON Table "MIUUSA3"

or

Server hdbc Versioning ON History 1 Table "MIUUSA3"

The following example disables versioning on the MIUUSA3 table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Versioning OFF Force ON Table "MIUUSA3"

See Also:

Server Create Workspace statement
MapBasic 11.0 598 Reference

Chapter 8:
Server Workspace Merge statement
Server Workspace Merge statement

Purpose

Applies changes to a table (all rows or as specified in the Where clause) in a workspace to its parent
workspace in the database (Oracle 9i or later). You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Server Workspace Merge
Table TableName
[Where WhereClause]
[RemoveData { OFF | ON }]
[{ Interactive | Automatic merge_keyword }]

TableName is the name (alias) of an open MapInfo table from an Oracle9i or later server. The table
contains rows to be merged into its parent workspace.

WhereClause is a string that identifies the rows to be merged into the parent workspace.

merge_keyword is a keyword(s) that limit the Automatic merge behavior.

Description

This statement only applies to Oracle9i or later. All data that satisfies the WhereClause in
TableName is applied to the parent workspace. Any locks that are held by rows being merged are
released. If there are conflicts between the workspace being merged and its parent workspace, this
operation provides user options on how to solve the conflict. The merge operation was executed
only after all the conflicts were resolved. A table cannot be merged in the LIVE workspace (because
that workspace has no parent workspace). A table cannot be merged or refreshed if there is an open
database transaction affecting the table.

Refer to Oracle9i Application Developer's Guide - Workspace Manager for more information.

WhereClause identifies the rows to be merged into the parent workspace. The clause itself should
omit the Where keyword. for example, 'MI_PRINX = 20'. Only primary key columns can be
specified in the Where clause. The Where clause cannot contain a subquery. If WhereClause is not
specified, all rows in TableName are merged.

If RemoveData is set ON, the data in the table (as specified by WhereClause) in the child
workspace will be removed. This option is permitted only if workspace has no child workspaces (that
is, it is a leaf workspace). OFF (the default) does not remove the data in the table in the child
workspace.

If there are conflicts between the workspace being merged and its parent workspace, the user must
resolve conflicts first in order for merging to succeed. MapInfo Professional allows the user to
resolve the conflicts first and then to perform the merging within the process. The Interactive and
Automatic clauses let you control what happens when there is a conflict. These clauses have no
effect if there is no conflict between the workspace being merged and its parent workspace.
MapBasic 11.0 599 Reference

Chapter 8:
Server Workspace Merge statement
If the Interactive clause is specified, MapInfo Professional displays the Conflict Resolution dialog
box in the event of a merge conflict. The conflicts will be resolved one by one or all together based
on user choices. After all the conflicts are resolved, the table is merged into its parent based on the
user's choices.

Due to a system limitation, this option is not available if the server is Oracle9i.

The following table shows the possible values for merge_keyword used with the Automatic setting.

Examples

The following example merges changes to the GWMUSA2 table where MI_PRINX=60 in MIUSER to
its parent workspace.

Server Workspace Merge
Table "GWMUSA2"
Where "MI_PRINX = 60"
Automatic UseCurrent

See Also:

Server Workspace Refresh statement

merge_keyword value Description

StopOnConflict In the event of a conflict, MapInfo Professional will stop here. (This is
also the default behavior if the statement does not include an
Interactive clause or an Automatic clause.)

RevertToBase In the event of a conflict, MapInfo Professional reverts to the original
(base) values. (it causes the base rows to be copied to the child
workspace but not to the parent workspace. However, the conflict is
considered resolved; and when the child workspace is merged, the
base rows are copied to the parent workspace too.) Note that BASE is
ignored for insert-insert conflicts where a base row does not exist; in
this case the Automatic clause must include UseParent or
UseCurrent.)

UseCurrent In the event of a conflict, MapInfo Professional uses the child
workspace values.

UseParent In the event of a conflict, MapInfo Professional uses the parent
workspace values.
MapBasic 11.0 600 Reference

Chapter 8:
Server Workspace Refresh statement
Server Workspace Refresh statement

Purpose

Applies all changes made to a table (all rows or as specified in the Where clause) in its parent
workspace to a workspace in the database (Oracle 9i or later). You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Server Workspace Refresh
Table TableName
[Where WhereClause]
[{ Interactive | Automatic merge_keyword }]

TableName is the name (alias) of an open MapInfo table from an Oracle9i or later server. The table
contains rows to be refreshed using values from its parent workspace.

WhereClause identifies the rows to be refreshed from the parent workspace. The clause itself should
omit the WHERE keyword.

merge_keyword is a string representing keyword(s) that limit the Automatic refresh behavior.

Description

This statement only applies to Oracle9i or later. It applies to workspace all changes in rows that
satisfy the WhereClause in the table in the parent workspace from the time the workspace was
created or last refreshed. If there are conflicts between the workspace being refreshed and its parent
workspace, this operation provides user options on how to solve the conflict. The refresh operation
is executed only after all the conflicts are resolved. A table cannot be refreshed in the LIVE
workspace (because that workspace has no parent workspace). A table cannot be merged or
refreshed if there is an open database transaction affecting the table.

Refer to the Oracle9i Application Developer's Guide - Workspace Manager for more information.

WhereClause identifies the rows to be refreshed from the parent workspace. The clause itself should
omit the WHERE keyword. For example, MI_PRINX = 20. Only primary key columns can be
specified in the Where clause. The Where clause cannot contain a subquery. If WhereClause is not
specified, all rows in TableName are refreshed.

If there are conflicts between the workspace being refreshed and its parent workspace, the user
must resolve conflicts first in order for refreshing to succeed. MapInfo Professional allows the user to
resolve the conflicts first and then to perform the refreshing within the process. The Interactive and
Automatic clauses let you control what happens when there is a conflict. These clauses has no
effect if there is no conflict between the workspace being refreshed and its parent workspace.
MapBasic 11.0 601 Reference

Chapter 8:
Server Workspace Refresh statement
If the Interactive clause is specified, MapInfo Professional displays the Conflict Resolution dialog
box in the event of a refresh conflict. The conflicts will be resolved one by one or all together based
on user choices. After all the conflicts are resolved, the table is refreshed into its parent based on the
user's choices.

Due to a system limitation, this option is not available if the server is Oracle9i.

The following table shows the possible values for merge_keyword used with the Automatic setting.

Examples

The following example refreshes MIUSER by applying changes made to GWMUSA2 where
MI_PRINX=60 in its parent workspace.

Server Workspace Refresh
Table "GWMUSA2"
Where "MI_PRINX = 60"
Automatic UseParent

See Also:

Server Workspace Merge statement

merge_keyword value Description

StopOnConflict In the event of a conflict, MapInfo Professional will stop here. (This is
also the default behavior if the statement does not include an
Interactive clause or an Automatic clause.)

RevertToBase In the event of a conflict, MapInfo Professional reverts to the original
(base) values. (it causes the base rows to be copied to the child
workspace but not to the parent workspace. However, the conflict is
considered resolved; and when the child workspace is merged to it
parent, the base rows will be copied to the parent workspace.) Note
that BASE is ignored for insert-insert conflicts where a base row does
not exist; in this case the Automatic parameter must be followed by
UseParent or UseCurrent.)

UseCurrent In the event of a conflict, MapInfo Professional uses the child
workspace values.

UseParent In the event of a conflict, MapInfo Professional uses the parent
workspace values.
MapBasic 11.0 602 Reference

Chapter 8:
SessionInfo() function
SessionInfo() function

Purpose

Returns various pieces of information about a running session of MapInfo Professional. You can call
this function from the MapBasic Window in MapInfo Professional.

Syntax

SessionInfo(attribute)

attribute is an integer code indicating which session attribute to query.

Return Value

String

Description

The SessionInfo() function returns information about MapInfo Professional's session status. The
attribute can be any of the codes listed in the table below. The codes are defined in
MAPBASIC.DEF.

Error Conditions

ERR_FCN_ARG_RANGE (644) error generated if an argument is outside of the valid range.

Example

Include "mapbasic.def"
print SessionInfo(SESSION_INFO_COORDSYS_CLAUSE)

attribute code ID Return Value

SESSION_INFO_COORDSYS_CLAUSE 1 String result that indicates a session's
CoordSys clause.

SESSION_INFO_DISTANCE_UNITS 2 String result that indicates a session's distance
units.

SESSION_INFO_AREA_UNITS 3 String result that indicates a session's area
units.

SESSION_INFO_PAPER_UNITS 4 String result that indicates a session's paper
units.
MapBasic 11.0 603 Reference

Chapter 8:
Set Adornment statement
Set Adornment statement

Purpose

Modifies the adornment created by the Create Adornment statement. You can change the
adornment position, its dimensions, and specify a border for it. For the scale bar adornment, you can
change its display style, the bar type, units, dimensions, and display a cartographic scale with it.

You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Adornment
Window window_id
[Type adornment_type]
[Position {

[Fixed [(x, y) [Units paper_units]]] |
[win_position [Offset (x, y)] [Units paper_units]]

}]
[Layout Fixed Position { Frame | Geographic }]
[Size [Width win_width] [Height win_height] [Units paper_units]]
[Background [Brush ...] [Pen ...]]
[< SCALEBAR_CLAUSE >]

Where SCALEBAR_CLAUSE is:

[BarType type]
[Ground Units distance_units]
[Display Units paper_units]
[BarLength paper_length]
[BarHeight paper_height]
[BarStyle [Pen] [Brush ...] [Font ...]]
[Scale [{ On | Off }]]

adornment_type can be scale bar.

Position can be Fixed relative to the mapper upper left regardless of the size of the mapper, or
relative to some anchor point on the mapper specified by win_position.

(x, y) in the Fixed clause is position measured from the upper left of the mapper window, which is (0,
0). Using this version of adornment placement, the adornment will be at that position in the mapper
as the mapper resizes. For example, a position of (3, 3) inches would be toward the bottom right of a
small sized mapper but in the middle of a large sized mapper. As the mapper changes size, the
adornment will try to remain completely within the displayed mapper.

paper_units defaults to the MapBasic Paper Unit (see Set Paper Units statement).

win_position specify one of the following codes; codes are defined in MAPBASIC.DEF.

ADORNMENT_INFO_MAP_POS_TL (0)
ADORNMENT_INFO_MAP_POS_TC (1)
ADORNMENT_INFO_MAP_POS_TR (2)
ADORNMENT_INFO_MAP_POS_CL (3)
ADORNMENT_INFO_MAP_POS_CC (4)
MapBasic 11.0 604 Reference

Chapter 8:
Set Adornment statement
ADORNMENT_INFO_MAP_POS_CR (5)
ADORNMENT_INFO_MAP_POS_BL (6)
ADORNMENT_INFO_MAP_POS_BC (7)
ADORNMENT_INFO_MAP_POS_BR (8)

Offset is the amount the adornment will be offset from the mapper when using one of the docked
win_positions.

(x, y) in the Offset clause is measured from the anchor position. For example, if the win_position is
ADORNMENT_INFO_MAP_POS_TL (top left), then the x is to the right and the y is down. If the
win_position is ADORNMENT_INFO_MAP_POS_BR, then the x position is left and the y position is
up. In the center left (ADORNMENT_INFO_MAP_POS_CL) and center right
(ADORNMENT_INFO_MAP_POS_CR), the y offset is ignored. In the center position
(ADORNMENT_INFO_MAP_POS_CC), the offset is ignored completely (both x and y). In the top
center (ADORNMENT_INFO_MAP_POS_TC) and bottom center
(ADORNMENT_INFO_MAP_POS_BC) positions, the x offset is ignored. For
ADORNMENT_INFO_MAP_POS_ defines, see win_position.

Layout Fixed Position determines how an adornment is positioned in a layout when the adornment
is using Fixed positioning. If this is set to Geographic, then the adornment is placed on the same
geographic place on the map frame in the layout as it is in the mapper. If the layout frame changes
size, then the adornment will move relative to the frame to match the geographic position. If this is
set to Frame, then the adornment will remain at a fixed position relative to the frame, as designated
in the Position clause. If the Position clause positions the adornment at (1.0, 1.0) inches, then the
adornment will be placed 1 inch to the left and one inch down from the upper left corner of the frame.
Changing the size of the frame will not change the position of the adornment. The default is
Geographic.

win_width and win_height define the size of the adornment. MapInfo Professional ignores these
parameters if this is a scale bar adornment, because scale bar adornment size is determined by
scale bar specific items, such as BarLength.

Brush is a valid Brush clause. Only Solid brushes are allowed. While values other than solid are
allowed as input without error, the type is always forced to solid. This clause is used only to provide
the background color for the adornment.

Pen is a valid Pen clause. Due to window clipping (the adornment is a window within the mapper),
Pen widths other than 1 may not display correctly. Also, Pen styles other than solid may not display
correctly. This clause is designed to turn on (solid) or off (hollow) and set the color of the border of
the adornment.

type specify one of the following codes; codes are defined in MAPBASIC.DEF.

SCALEBAR_INFO_BARTYPE_CHECKEDBAR (0)
SCALEBAR_INFO_BARTYPE_SOLIDBAR (1)
SCALEBAR_INFO_BARTYPE_LINEBAR (2)
SCALEBAR_INFO_BARTYPE_TICKBAR (3)

0 Check Bar, 1 Solid Bar, 2 Line Bar, or 3 Tick Bar

0 1 2 3
MapBasic 11.0 605 Reference

Chapter 8:
Set Adornment statement
distance_units a unit of measure that the scale bar is to represent:

paper_units defaults to the MapBasic Paper Unit (see Set Paper Units statement).

paper_length a value in paper_units to specify how long the scale bar will be displayed. Specify the
length of the scale bar to a maximum of 34 inches or 86.3 cm on the printed map.

paper_height a value in paper_units to specify how tall the scale bar will be displayed. Specify height
of the adornment to a maximum of 44 inches or 111.76cm on the printed map.

Scale set to On to include a representative fraction (RF) with the scale bar. (In MapInfo
Professional, a map scale that does not include distance units, such as 1:63,360 or 1:1,000,000, is
called a cartographic scale.)

Font is a valid Font clause.

Example

set adornment
window 261727232
type scalebar
position 6
background Brush (2,16777215,16777215) Pen (1,2,0)

distance value Unit Represented

“ch” chains

“cm” centimeters

“ft” feet (also called International Feet; one International Foot equals exactly
30.48 cm)

“in” inches

“km” kilometers

“li” links

“m” meters

“mi” miles

“mm” millimeters

“nmi” nautical miles (1 nautical mile represents 1852 meters)

“rd” rods

“survey ft” U.S. survey feet (used for 1927 State Plane coordinates; one U.S. Survey
Foot equals exactly 12/39.37 meters, or approximately 30.48006 cm)

“yd” yards
MapBasic 11.0 606 Reference

Chapter 8:
Set Application Window statement
bartype 0 ground units "km" display units "cm"
barlength 0.978478 barheight 0.078740
barstyle Pen (1,2,0) Brush (2,0,16777215) Font ("Arial",0,8,0)
scale on

See Also:

Create Adornment statement

Set Application Window statement

Purpose

Sets which window will be the parent of dialog boxes that are yet to be created. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Application Window HWND

HWND is an integer window handle, which identifies a window.

Description

This statement sets which window is the application window. Once you set the application window,
all MapInfo Professional dialog boxes have the application window as their parent. This statement is
useful in “integrated mapping” applications, where MapInfo Professional windows are integrated into
another application, such as a Visual Basic application.

In your Visual Basic program, after you create a MapInfo Object, send MapInfo Professional a Set
Application Window statement, so that the Visual Basic application becomes the parent of
MapInfo Professional dialog boxes. If you do not issue the Set Application Window statement, you
may find it difficult to coordinate whether MapInfo Professional or your Visual Basic program has the
focus.

Issuing the command Set Application Window 0 will return MapInfo Professional to its default
state. This statement re-parents dialog box windows. To re-parent document windows, such as a
Map window, use the Set Next Document statement.

If you specify the HWND as an explicit hexadecimal value, you must place the characters &H
at the start of the HWND; otherwise, MapInfo Professional will try to interpret the expression
as a decimal value. (This situation can arise, for example, when a Visual Basic program
builds a command string that includes a Set Application Window statement.)

For more information on integrated mapping, see the MapBasic User Guide.

See Also:

Set Next Document statement
MapBasic 11.0 607 Reference

Chapter 8:
Set Area Units statement
Set Area Units statement

Purpose

Sets MapBasic's default area unit. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Set Area Units area_name

area_name is a string representing the name of an area unit (for example, “acre”).

Description

The Set Area Units statement sets MapInfo Professional's default area unit of measure. This
dictates the area unit used within MapInfo Professional's SQL Select dialog box. By default,
MapBasic uses square miles as an area unit; this unit remains in effect unless a Set Area Units
statement is issued. The area_name parameter must be one of the string values listed in the table
below:

Unit Name Unit Represented

“acre” acres

“hectare” hectares

“perch” perches

“rood” roods

“sq ch” square chains

“sq cm” square centimeters

“sq ft” square feet

“sq in” square inches

“sq km” square kilometers

“sq li” square links

“sq m” square meters

“sq mi” square miles

“sq mm” square millimeters

“sq rd” square rods
MapBasic 11.0 608 Reference

Chapter 8:
Set Browse statement
Example

Set Area Units "acre"

See Also:

Area() function, Set Distance Units statement

Set Browse statement

Purpose

Modifies an existing Browser window. You can issue this statement from the MapBasic window in
MapInfo Professional.

Syntax

Set Browse
[Window window_id]
[Grid { On | Off }]
[Row row_num]
[Column column_num]
[Columns Resize]

window_id is the integer window identifier of a Browser window or a Redistricter window.

row_num is a SmallInt value, one or larger; one represents the first row in the table.

column_num is a SmallInt value, zero or larger; zero represent the table's first column.

Description

The Set Browse statement controls the settings of an existing Browser window. If no window_id is
specified, the statement affects the topmost Browser window.

The optional Window clause lets you specify which document window to use. If a window_id is not
specified, then it searches for the most recently used Browser window or Redistricter window. If
neither Redistricter nor Browser is the front-most window, but both exist, then Set Browse finds the
Browser window instead of the Redistricter window. To specify which window type to use, either
include the window_id with the Set Browse statement or make the Redistricter window the front-
most window before calling Set Browse.

The optional Grid clause displays (turns on) or does not display (turns off) the grid lines in a Browser
window.

“sq survey ft” square survey feet

“sq yd” square yards

Unit Name Unit Represented
MapBasic 11.0 609 Reference

Chapter 8:
Set Buffer Version statement
The optional Row and Column clauses let you specify which row should be the topmost row in the
Browser, and which column should be the leftmost column in the Browser.

The optional Columns clause lets you set column resizing based on the width of the column header
(title) and the contents that are in view. On first display, the Browser window automatically resizes
columns to completely contain the data that is visible. When scrolling vertically, the Browser window
does not automatically adjust the column width for the new data in view. You must set the Columns
clause to make this happen. After recalculating column width, the width does not change while
scrolling—columns do not resize to the new data in view. If the user manually resizes a column, then
its width does not change.

To change the width, height, or position of a Browser window, use the Set Window statement.

Example

Dim i_browser_id As Integer
Open Table "world"
Browse * From world
i_browser_id = FrontWindow()
Set Browse Window i_browser_id Row 47

See Also:

Browse statement, Set Window statement

Set Buffer Version statement

Purpose

Sets MapInfo Professional to process Buffer operations using an older algorithm that was in use
before MapInfo Professional 9.5.1.

Syntax

Set Buffer Version version_num

version_num a value of either 950 or 951. A version number higher than 951 generates an error.,
and a version number lower than 950 uses the older (version 9.5 and later) algorithm.

Description

MapInfo Professional 9.5.1 introduced a new algorithm to yield self-intersecting polygons when
processing data. However, Oracle does not consider these objects valid, so it is unable to return
these objects to MapInfo Professional or process them. To upload, store, retrieve, or use this data in
Oracle, you must find the self-intersecting polygons in the data and remove them, or run the Buffer
operations using the older algorithm (in use before MapInfo Professional 9.5.1).

To determine if your data contains self-intersecting polygons, in MapInfo Professional, run your table
through the Check Regions process that is accessible from the Objects menu. To remove
unwanted self-intersecting polygons, run a Clean operation on the table. Note that Check Regions
and Clean take some time to process large tables.
MapBasic 11.0 610 Reference

Chapter 8:
Set Cartographic Legend statement
To process your data using the older Buffer algorithms, add this MapBasic command to a
workspace, such as startup.wor, or to a MapBasic window at runtime. You cannot add this
commands to a MapBasic application directly because it will not compile. However, you can issue it
using a Run Command statement within a MapBasic application.

Example

To use Buffer operations from MapInfo Professional 9.5 or earlier, use the MapBasic command:

Set Buffer Version 950

To use Buffer operations from MapInfo Professional 9.5.1 or later, use the MapBasic command:

Set Buffer Version 951

See Also:

Set Combine Version statement

Set Cartographic Legend statement

Purpose

Sets redraw functionality on or off, refreshes, sets the orientation to portrait or landscape, selects
small or large sample legend sizes, or changes the frame order of an existing cartographic legend
created with the Create Cartographic Legend statement. (To change the size, position, or title of
the Legend window, use the Set Window statement.) You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Set Cartographic Legend
[Window legend_window_id]
Redraw { On | Off }

or

Set Cartographic Legend
[Window legend_window_id]
[Refresh]
[Portrait [Columns number_of_columns] |

Landscape [Lines number_of_lines]]
[Align]
[Style Size { Small | Large }]
[Frame Order { frame_id, frame_id, frame_id, ... }]

legend_window_id is an integer window identifier which you can obtain by calling the
FrontWindow() function and the WindowID() function.

frame_id is the ID of the frame on the legend. You cannot use a layer name. For example, three
frames on a legend would have the successive IDs 1, 2, and 3.

number_of_columns specifies the width of the legend.
MapBasic 11.0 611 Reference

Chapter 8:
Set Combine Version statement
number_of_lines specifies the height of the legend.

Description

The Set Cartographic Legend statement allows you to set redraw functionality on or off, refresh,
set the orientation to portrait or landscape, select small or large sample legend sizes, or change the
frame order of an existing cartographic legend created with the Create Cartographic Legend
statement.

If a Window clause is not specified MapInfo Professional will use the topmost legend window.

Other clauses to are not allowed if Redraw is used.

The Refresh keyword causes the Legend window to refresh. Tables for refreshable frames will be
re-scanned for styles. The Portrait or Landscape keywords cause frames in the Legend window to
be laid out in the appropriate order.

Align causes styles and text across all frames, regardless of whether the Legend window is in
portrait, landscape, or custom layout, to be re-aligned.

The Frame Order clause reorders the frames in the legend.

Example

If you used the Create Cartographic Legend statement to select large sample legend sizes, the
following example will refresh the foreground legend window to show large legend sizes:

Set Cartographic Legend Window WindowID(0) Refresh Portrait Align Style
Size Large

See Also:

Add Cartographic Frame statement, Alter Cartographic Frame statement, Create
Cartographic Legend statement, Remove Cartographic Frame statement

Set Combine Version statement

Purpose

Sets MapInfo Professional to process Combine operations using an older algorithm that was in use
before MapInfo Professional 9.5.1.

Syntax

Set Combine Version version_num

version_num a value of either 950 or 951. A version number higher than 951 generates an error.,
and a version number lower than 950 uses the older (version 9.5 and older) algorithm.
MapBasic 11.0 612 Reference

Chapter 8:
Set Command Info statement
Description

MapInfo Professional 9.5.1 introduced a new algorithm to yield self-intersecting polygons when
processing data. However, Oracle does not consider these objects valid, so it is unable to return
these objects to MapInfo Professional or process them. To upload, store, retrieve, or use this data in
Oracle, you must find the self-intersecting polygons in the data and remove them, or run the
Combine operations using the older algorithm (in use before MapInfo Professional 9.5.1).

To determine if your data contains self-intersecting polygons, in MapInfo Professional, run your table
through the Check Regions process that is accessible from the Objects menu. To remove
unwanted self-intersecting polygons, run a Clean operation on the table. Note that Check Regions
and Clean take some time to process large tables.

To process your data using the older Combine algorithms, add this MapBasic command to a
workspace, such as startup.wor, or to a MapBasic window at runtime. You cannot add this
commands to a MapBasic application directly because it will not compile. However, you can issue it
using a Run Command statement within a MapBasic application.

Example

To use Combine operations from MapInfo Professional 9.5 or earlier, use the MapBasic command:

Set Combine Version 950

To use Combine operations from MapInfo Professional 9.5.1 or later, use the MapBasic command:

Set Combine Version 951

See Also:

Set Buffer Version statement

Set Command Info statement

Purpose

Stores values in memory; other procedures can call the CommandInfo() function to retrieve the
values. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Command Info attribute To new_value

attribute is a code used by the CommandInfo() function, such as CMD_INFO_ROWID (2).

new_value is a new value; its data type must match the data type that is associated with the attribute
code (for example, if you use CMD_INFO_ROWID (2), specify a positive integer for new_value).
MapBasic 11.0 613 Reference

Chapter 8:
Set Connection Geocode statement
Description

Ordinarily, the CommandInfo() function returns values that describe recent system events. The Set
Command Info statement stores a value in memory, so that subsequent calls to the
CommandInfo() function returns the value that you specified, instead of returning information about
system events.

Example

Suppose your program has a SelChangedHandler procedure. Within the procedure, the following
function call determines the ID number of the row that was selected or de-selected:

CommandInfo(CMD_INFO_ROWID)

When MapInfo Professional calls the SelChangedHandler procedure automatically, MapInfo
Professional initializes the data values read by the CommandInfo() function. Now suppose you want
to call the SelChangedHandler procedure explicitly, using the Call statement—perhaps for
debugging purposes. Before you issue the Call statement, issue the following statement to “feed” a
value to the CommandInfo() function:

Set Command Info CMD_INFO_ROWID To 1

See Also:

CommandInfo() function, Set Handler statement

Set Connection Geocode statement

Purpose

Configures a connection to a remote service with options for geocoding. The connection needs to
have been already created using the Open Connection statement. You can issue this statement
from the MapBasic Window in MapInfo Professional.

Syntax

Set Connection connection_number Geocode
[Batch Size batch_size]
[ResultCode MarkMultiple [On | Off]]
[MixedCase [On | Off]]
[Match

[StreetName [On | Off] [,]]
[StreetNumber [On | Off] [,]]
[Municipality [On | Off] [,]]
[CountrySubdivision[On | Off] [,]]
[CountrySecondarySubdivision [On | Off] [,]]
[PostalCode [On | Off] [,]]
[MunicipalitySubdivision [On | Off] [,]]
| All [On | Off] [,]]]

[Fallback
[Geographic [On | Off] [,]]
[PostalCode [On | Off] [,]]]
MapBasic 11.0 614 Reference

Chapter 8:
Set Connection Geocode statement
[Dictionary
[All | Address | User | Prefer (Address | User)]

[Offset [[Center offset_num_expr Units distance_unit_name]
[End offset_num_expr Units distance_unit_name]

[PassThrough name value, name value, ...]

connection_number is a number that specifies the connection handle created using the Open
Connection statement.

batch_size is an integer expression that specifies the maximum number of records that are sent to
the service at one time.

offset_num_expr is a numeric expression which specifies the offset from either the corner (end) or
the center of the street. These values are just to offset the point returned from the center of the street
or the end of the street respectively.

distance_unit_name is a String that represents the units in which offset_num_expr are expressed.

name is a the name part of the parameter pair that is passed through to the geocoding service.

value is the value part of the parameter pair that is passed through to the geocoding service.

Description

The Set Connection statement is used to assign geocode preferences already defined so that each
geocode request does not need to reiterate the preferences defined. A Set Connection statement is
composed of six different sub-clauses. These clauses are Batch, Match, Fallback, Dictionary,
Offset, and PassThrough.

Batch Clause

The Batch clause determines the maximum number of records that are sent to the service at one
time. This allows you to optimize the processing of records to balance the amount of time needed by
the local computer and the external service. If this number is high, you will have longer local
downtime while the service processes the records. If this number is low, the user has a better
opportunity to cancel the request. Once a batch is sent to the service it cannot be cancelled. If you
cancel the command, any remaining batches are not processed

Match Clause

If a specific Match is set, the geocoder only considers inputs that fully match the name in the
geocode data as a close match. For example, if Match StreetName is On, the geocoder does not
regard street name inputs that do not match the name in the geocode data, as close matches.

For the individual preferences under Match the default is On. So if a particular preference is stated,
it is the same as setting it to On. For example, Set Connection connectionHandle Geocode
Match Municipality is equivalent to Set Connection connectionHandle Geocode
Match Municipality On.

Match StreetName indicates whether or not the street name should be relaxed when trying to
match.

Match StreetNumber indicates whether or not the address number should be relaxed when trying
to match.
MapBasic 11.0 615 Reference

Chapter 8:
Set Connection Geocode statement
Match Municipality indicates whether or not the municipality should be relaxed when trying to
match.

Match CountrySubdivision indicates whether or not the country subdivision (usually a state or
province) should be relaxed when trying to match.

Match CountrySecondarySubdivision indicates whether or not the country secondary subdivision
should be relaxed when trying to match.

Match PostalCode indicates whether or not the postal code should be relaxed when trying to
match.

Match MunicipalitySubdivision indicates whether or not the municipality subdivision should be
relaxed when trying to match.

Match All sets all the match properties to On or Off . Note this can be used in combination with
other match options. For example, Match All On, Match PostalCode Off turns all the match
parameters on and just the postal code match is turned off.

FallBack Clause

Fallback Geographic indicates whether or not to geocode to the geographic centroid for the input
address if a street level geocode cannot be performed. This value is only appropriate when your
address to be geocoded includes a street address. If the record does not contain a street address,
this value has no impact.

Fallback Postal indicates whether or not to geocode to the postal centroid if a street level geocode
cannot be performed.

Dictionary Clause

Dictionary indicates the combination of MapMarker address dictionary and configured user
dictionaries to use during the geocode process. The five possible choices for the Dictionary clause
are:

• Dictionary All means use both the user and address dictionaries.
• Dictionary Address means use only the address dictionary.
• Dictionary User means use only the User dictionary.
• Dictionary Prefer Address means use both dictionaries and prefer the address dictionary.
• Dictionary Prefer User means use both dictionaries and prefer the User dictionary.

Offset Clause

Offset End indicates the distance that a point location is adjusted from a street corner.

Offset Center indicates the distance that a point location is adjusted from a street center line.

Units is a String that describes the units in which Offset Center and Offset End are measured. See
Set Distance Units statement for the list of available unit names.
MapBasic 11.0 616 Reference

Chapter 8:
Set Connection Isogram statement
PassThrough Clause

PassThrough is a set of name/value pairs that are sent to the geocoder. These are pairs are
geocode service specific and are documented by the particular geocode service.

Example

The following example sets a connection to a geocoder with some match options turned on.

set connection MapMarkerHandle1 geocode match streetname, streetnumber,
municipality, municipalitysubdivision, postalcode, countrysubdivision

The following example adds a PassThrough clause to a Set Connection statement. This particular
example turns on CASS certified results in the US.

PassThrough "KEY_CASS_RULES" "true"

See Also:

Geocode statement, Open Connection statement

Set Connection Isogram statement

Purpose

Allows a user to set options for an Isogram connection. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Set Connection connection_handle Isogram
[Banding [On | Off]]
[MajorRoadsOnly [On | Off]]
[MaxOffRoadDistance distance_value Units distance_units]
[ReturnHoles [On | Off]] [MajorPolygonOnly [On | Off]]
[SimplificationFactor simplification]
[PointsOnly [On | Off]]
[DefaultAmbientSpeed ambient_speed

Units distance_units Per time_units]
[DefaultPropagationFactor propagation_factor]
[Batch Size batch_size]

connection_handle is a the number of the connection returned from the Open Connection
statement.

distance_value is a Float value that specifies the maximum distance travel will be allowed to go off
roads in the network.

distance_units is a string that specifies the distance units in which the specific distance_value is
expressed. For a complete list of valid strings of distance units, see Set Distance Units statement.

simplification is a Float value that controls the density of nodes in the output region as a percentage.
The value can be from 0 to 1 inclusive.
MapBasic 11.0 617 Reference

Chapter 8:
Set Connection Isogram statement
ambient_speed is a numeric value specifying the default ambient speed. The number is expressed
in distance_units and time_units.

time_units is a string that specifies time units. Valid values are “hr”, “min” and “sec”.

propagation_factor is a Float value specifying the default propagation factor. The value can be from
0 to 1 inclusive.

batch_size is an integer expression that specifies the size of each batch that is sent to the service.
The default is 2 and the maximum limit is 50.

Description

The Set Connection Isogram statement configures the connection that is to be used for creating an
Isogram object (using the Create Object statement).

Banding applies only if multiple distances or times are specified in the Isogram operation. If On, the
regions returned for one point will not overlap. The smaller region is cut out of the result. Thus it
represents the time or distance from the smaller region edge to its edge. For example, if 10, 20, and
30 minutes Isograms are requested, the 20 minute Isogram represents the areas accessible from 10
to 20 minutes and the 30 minute Isogram the area from 20 to 30 minutes. If Off, all the regions cover
the area accessible from 0 to the time or distance specified.

MajorRoadsOnly determines whether or not only major roads are used in the calculation of the
Isogram. Isogram generation is substantially quicker when using MajorRoadsOnly.

MaxOffRoadDistance specifies the maximum distance travel is allowed to go off roads.

ReturnHoles indicates whether or not holes should be returned in the resulting region.

MajorPolygonOnly indicates that the Region returned has only one outer polygon.

SimplificationFactor specifies the reduction factor for polygon complexity. The simplification factor
indicates what percentage of the original points should be returned or that the resulting polygon
should be based on. The polygon or set of points may contain many points. The simplification factor
is a float number between 0.01 and 1.0 (1 being 100% and 0.01 being 1%). Lower numbers mean
fewer points in the region and therefore faster transmission times across the Internet connection.
The default value is 0.05.

PointsOnly specifies whether or not records that contain non-point objects should be skipped.

DefaultAmbientSpeed is used only when specifying time. A syntax example is:

DefaultAmbientSpeed 12 "mi" Per "hr"

DefaultPropagationFactor determines the off-road network percentage of the remaining cost
(distance) for which off network travel is allowed when finding the maximum distance boundary.
Roads not identified in the network can be driveways or access roads, among others. The
propagation factor is a percentage of the cost used to calculate the distance between the starting
point and the maximum distance. DefaultPropagationFactor is used only for Distances.

The default value for this property is 0.16.

The acceptable range is between 0.01 and 1.
MapBasic 11.0 618 Reference

Chapter 8:
Set CoordSys statement
Batch Size sets the number of records to send to the server to be processed at once. This may
affect performance and responsiveness. If a large request is sent it will take longer for the Isogram to
be returned and therefore longer for MapInfo Professional to respond to cancel requests and update
the Progress Bar dialog box. A lower number improves responsiveness of the command and lowers
the chance of a time-out and service failure. The default value is 2.

Example

The following example shows a Set Connection Isogram statement.

Set Connection iConnect Isogram
Banding On MajorRoadsOnly On MaxOffRoadDistance 2 Units "mi"
ReturnHoles On MajorPolygonOnly On SimplificationFactor .05
DefaultAmbientSpeed 50 Units "mi" Per "hr" DefaultPropagationFactor .2
Batch Size 2 Point On

See Also:

Create Object statement, Open Connection statement

Set CoordSys statement

Purpose

Sets the coordinate system used by MapBasic. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Set CoordSys...

CoordSys… is a coordinate system clause.

Description

The Set CoordSys statement sets MapBasic's coordinate system. By default, MapBasic uses a
Longitude/Latitude coordinate system. This means that when geographic functions (such as the
CentroidX() function and the ObjectNodeX() function) return x- or y-coordinate values, the
values represent longitude or latitude degree measurements by default. A MapBasic program can
issue a Set CoordSys statement to specify a different coordinate system; thereafter, values
returned by geographic functions will automatically reflect the new coordinate system.

The Set CoordSys statement does not affect a Map window. To set a Map window's projection or
coordinate system, you must issue a Set Map…CoordSys statement.

The CoordSys clause has optional Table and Window sub-clauses that allow you to reference the
coordinate system of an existing table or window. See CoordSys clause for more information.
MapBasic 11.0 619 Reference

Chapter 8:
Set Date Window statement
Example

The following Set CoordSys statement would set the coordinate system to an un-projected, Earth-
based system.

Set CoordSys Earth

The next Set CoordSys statement would set the coordinate system to an Albers equal-area
projection.

Set CoordSys Earth
Projection 9,7,"m",-96.0,23.0,20.0, 60.0, 0.0, 0.0

The Set CoordSys statement below prepares MapBasic to work with objects from a Layout window.
You must use a Layout coordinate system before querying or creating Layout objects.

Set CoordSys Layout Units "in"

Once you have issued the Set CoordSys Layout statement, the MapBasic program will
continue to use the Layout coordinate system until you explicitly change the coordinate
system back. Subsequently, you should issue a Set CoordSys Earth statement before
attempting to query or create any objects on Earth maps.

See Also:

CoordSys clause, Set Area Units statement, Set Distance Units statement, Set Paper Units
statement

Set Date Window statement

Purpose

Displays a date window that converts two-digit input into four-digit years. It also allows you to
change the default to one that best suits your data. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Set Date Window { nYear | Off }

nYear is a SmallInt from 0 to 99 that specifies the year above which is assigned to the previous
century (19xx) and below which is assigned to the next century (20xx). (For example, by specifying
nYear as 70, a 2-digit year of 70 and above corresponds to the years 1970-1999, and a 2-digit year
of 69 and below correspond to the years 2000-2069.)

Off turns date windowing off. Two-digit years will be converted to the current century (based on
system time/calendar settings).
MapBasic 11.0 620 Reference

Chapter 8:
Set Datum Transform Version statement
Description

From the MapBasic window, the session setting will be initialized from the Preference setting and
updated when the preference is changed. Running the Set Date Window statement from the
MapBasic window will change the behavior of input, but will not update the System Preference that
is saved when MapInfo Professional exits.

The session setting is affected by running Set Date Window in the MapBasic window, in any
workspace file including STARTUP.WOR, and any integrated mapping application that runs the
command via the MapInfo Professional application interface.

When the Set Date Window command is run from within a MapBasic program (also as Run
Command statement) only the program's local context is updated with the new setting. The session
and preference settings remain unchanged. The program's local context is initialized from the
session setting. This is similar to how number and date formatting works. They are set/accessed per
program if a program is running, otherwise they set/access global settings.

Enter a number from 0-99. The number you enter displays in the statements below the prompt that
indicate whether the date will display with the prefix 19 or 20.

For example if you enter the number 50, the statements will indicate that:

Years entered as 00-49 become 2000-2049.

Years entered as 50-99 become 1950-1999.

Example

In the following example the variable Date1 = 19890120, Date2 = 20101203 and MyYear = 1990.

DIM Date1, Date2 as Date
DIM MyYear As Integer

Set Format Date "US"
Set Date Window 75

Date1 = StringToDate("1/20/89")
Date2 = StringToDate("12/3/10")
MyYear = Year("12/30/90")

See Also:

DateWindow() function

Set Datum Transform Version statement

Purpose

This statement allows user to switch between using old and new datum conversion. You can issue
this statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Datum Transform Version version_number
MapBasic 11.0 621 Reference

Chapter 8:
Set Digitizer statement
version_number is an integer value. If version_number is equal or more than 800, than updated
datum transformation algorithms are used. Otherwise old algorithm is used.

Description

By default, MapInfo Professional uses updated datum conversion algorithms. These algorithms are
more in line with algorithms used by other software packages and it is recommended not to changed
version from default. In previous versions of MapInfo Professional we used optimized for speed
algorithms and our results were slightly different from other software packages/tools

Set Digitizer statement

Purpose

Establishes the coordinates of a paper map on a digitizing tablet; also turns Digitizer Mode on or off.
You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax 1

Set Digitizer
(mapx1, mapy1) (tabletx1, tablety1) [Label name] ,
(mapx2, mapy2) (tabletx2, tablety2) [Label name]
[, ...]
CoordSys...
[Units...]
[Width tabletwidth]
[Height tabletheight]
[Resolution xresolution, yresolution]
[Button click_button_num, double_click_button_num]
[Mode { On | Off }]

Syntax 2

Set Digitizer Mode { On | Off }

mapx parameters specify East-West Earth positions on the paper map.

mapy parameters specify North-South Earth positions on the paper map.

tabletx parameters specify tablet right-left positions corresponding to the mapx values.

tablety parameters specify tablet up-down positions corresponding to the mapy values.

name is and optional label for the control points.

The CoordSys clause specifies the coordinate system used by the paper map.

click_button_num is the number of the puck button that simulates a click action.

double_click_button_num is the number of the puck button that simulates a double-click.
MapBasic 11.0 622 Reference

Chapter 8:
Set Digitizer statement
Description

The Set Digitizer statement controls the same settings as the Digitizer Setup dialog box in MapInfo
Professional's Map menu. These settings relate to a specific paper map that the user has attached
to the tablet. The Set Digitizer statement does not relate to other digitizer setup options, such as
communications port or baud rate settings; those settings must be configured outside of a MapBasic
application.

The Set Digitizer statement tells MapInfo Professional the coordinate system used by the paper
map, and specifies two or more control points. Each control point consists of a map coordinate pair
(for example, longitude, latitude) followed by a tablet coordinate pair. The tablet coordinate pair
represents the position on the tablet corresponding to the specified map coordinates. Tablet
coordinates represent the distance, in native digitizer units (such as thousandths of an inch), from
the point on the tablet to the tablet's upper left corner.

The CoordSys clause specifies the coordinate system used by the paper map. For more details, see
CoordSys clause.

The Set Digitizer statement ignores the Bounds portion of the CoordSys clause.

The Width, Height, and Resolution clauses are for MapInfo Professional internal use only. MapInfo
Professional stores these clauses, when necessary, in workspaces. MapBasic programs do not
need to specify these clauses.

Turning Digitizer Mode On or Off

Once the digitizer is configured, the user can toggle Digitizer Mode on or off by pressing the D key.
To toggle Digitizer Mode from a MapBasic program, specify

Set Digitizer Mode On

or

Set Digitizer Mode Off

To determine whether Digitizer Mode is currently on or off, call
SystemInfo(SYS_INFO_DIG_MODE), which returns TRUE if Digitizer Mode is on.

When Digitizer Mode is on and the active window is a Map window, the digitizer cursor (a large
crosshair) appears in the window; the digitizer and the mouse have separate cursors.

If Digitizer Mode is off, or if the active window is not a Map window, the digitizer cursor does not
display and the digitizer controls the mouse cursor (if your digitizer driver provides mouse
emulation).

See Also:

CoordSys clause, SystemInfo() function
MapBasic 11.0 623 Reference

Chapter 8:
Set Distance Units statement
Set Distance Units statement

Purpose

Sets the distance unit used for subsequent geographic operations, such as the Create Object
statement. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Distance Units unit_name

unit_name is the name of a distance unit (for example, “m” for meters).

Description

The Set Distance Units statement sets MapBasic's linear unit of measure. By default, MapBasic
uses a distance unit of “mi” (miles); this distance unit remains in effect unless a Set Distance Units
statement is issued. Some MapBasic statements take parameters representing distances. For
example, the Create Object statement’s Width clause may or may not specify a distance unit. If the
Width clause does not specify a distance unit, the Create Object statement uses the distance units
currently in use (either miles or whatever units were set by the latest Set Distance Units statement).

The unit_name parameter must be one of the values from the table below:

unit_name value Unit Represented

“ch” chains

“cm” centimeters

“ft” feet (also called International Feet; one International Foot equals exactly
30.48 cm)

“in” inches

“km” kilometers

“li” links

“m” meters

“mi” miles

“mm” millimeters

“nmi” nautical miles (1 nautical mile represents 1852 meters)

“rd” rods
MapBasic 11.0 624 Reference

Chapter 8:
Set Drag Threshold statement
Example

Set Distance Units "km"

See Also:

Distance() function, ObjectLen() function, Set Area Units statement, Set Paper Units
statement

Set Drag Threshold statement

Purpose

Sets the length of the delay that the user experiences when dragging graphical objects. You can
issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Drag Threshold pause

pause is a floating-point number representing a delay, in seconds; default value is 1.0.

Description

When a user clicks on a map object to drag the object, MapInfo Professional makes the user wait.
This delay prevents the user from dragging objects accidentally. The Set Drag Threshold statement
sets the duration of the delay.

Example

Set Drag Threshold 0.25

Set Event Processing statement

Purpose

Temporarily turns event processing on or off, to avoid unnecessary screen updates. You can issue
this statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Event Processing { On | Off }

“survey ft” U.S. survey feet (used for 1927 State Plane coordinates; one U.S. Survey
Foot equals exactly 12/39.37 meters, or approximately 30.48006 cm)

“yd” yards

unit_name value Unit Represented
MapBasic 11.0 625 Reference

Chapter 8:
Set File Timeout statement
Description

The Set Event Processing statement lets you suspend, then resume, processing of system events.

If several successive statements modify a window, MapInfo Professional may redraw that window
once for each MapBasic statement. Such multiple window redraws are undesirable because they
make the user wait. To eliminate unnecessary window redraws, you can issue the statement:

Set Event Processing Off

Then issue all statements that apply to window maintenance (for example, the Set Map statement),
and then issue the statement:

Set Event Processing On

Every Set Event Processing Off statement should have a corresponding Set Event Processing
On statement to restore event processing. In environments which perform cooperative multi-tasking,
leaving event processing off can prevent other software applications from multi-tasking.

You also can suppress the redrawing of a Map window by issuing a Set Map…Redraw Off
statement, which has an effect similar to the Set Event Processing Off statement. However, the
Set Map statement only affects the redrawing of one Map window, while the Set Event Processing
statement affects the redrawing of all MapInfo Professional windows.

Set File Timeout statement

Purpose

Causes MapInfo Professional to retry file i/o operations when file-sharing conflicts occur. You can
issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Set File Timeout n

n is a positive integer, zero or greater, representing a duration in seconds.

Description

Ordinarily, if an operation cannot proceed due to a file-sharing conflict, MapInfo Professional
displays a Retry/Cancel dialog box. If a MapBasic program issues a Set File Timeout statement,
MapInfo Professional automatically retries the operation instead of displaying the Retry/Cancel
dialog box.

If n is greater than zero, retry processing is enabled. Thereafter, whenever the user attempts to read
a table that is busy (for example, a table that is being saved by another user), MapInfo Professional
repeatedly tries to access the table. If, after n seconds, the table is still unavailable, MapInfo
Professional displays a Retry/Cancel dialog box. Note that the Retry/Cancel dialog box is not
trappable; the dialog box appears regardless of whether an error handler has been enabled.

If n is zero, retry processing is disabled. Thereafter, if MapInfo Professional attempts to access a
table that is busy, the Retry/Cancel dialog box appears immediately.
MapBasic 11.0 626 Reference

Chapter 8:
Set Format statement
Do not use the Set File Timeout statement and the OnError error-trapping feature at the same time.
In places where an error handler is enabled, the file-timeout value should be zero.

In places where the file-timeout value is greater than zero, error trapping should be disabled. For
more information on file-sharing issues, see the MapBasic User Guide.

Example

Set File Timeout 100

Set Format statement

Purpose

Affects how MapBasic processes Strings that represent dates or numbers. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax 1

Set Format Date { "US" | "Local" }

Syntax 2

Set Format Number { "9,999.9" | "Local" }

Description

Users can configure various date and number formatting options by using control panels that are
provided with the operating system. For example, a Windows user can change system date
formatting by using the control panel provided with Windows.

Some MapBasic functions, such as the Str$() function, are affected by these system settings. In
other words, some functions are unpredictable, because they produce different results under
different system configurations.

The Set Format statement lets you force MapBasic to ignore the user's formatting options, so that
functions such as the Str$() function behave in a predictable manner.

Statement Effect on your MapBasic application

Set Format Date "US" MapBasic uses Month/Day/Year date formatting
regardless of how the user's computer is set up.

Set Format Date "Local" MapBasic uses whatever date-formatting options are
configured on the user's computer.
MapBasic 11.0 627 Reference

Chapter 8:
Set Graph statement
Syntax 1 (Set Format Date) affects the output produced under the following circumstances: Calling
the StringToDate() function; passing a date to the Str$() function; or performing an operation
that causes MapBasic to perform automatic conversion between dates and strings (for example,
issuing a Print statement to print a date, or assigning a date value to a string variable).

Syntax 2 (Set Format Number) affects the output produced by the Format$() function and the
FormatNumber$() function. Applications compiled with MapBasic 3.0 or earlier default to U.S.
formatting. Applications compiled with MapBasic 4.0 or later default to “Local” formatting. To
determine the formatting options currently in effect, call the SystemInfo() function. Each MapBasic
application can issue Set Format statements without interfering with other applications.

Example

Suppose a date variable (date_var) contains the date June 11, 1995. The function call:

Str$(date_var)

may return “06/11/95” or “95/11/06” depending on the date formatting options set up on the user's
computer. If you use the Set Format Date “US” statement before calling the Str$() function, you
force the Str$() function to follow U.S. formatting (M/D/YY), which makes the results predictable.

See Also:

Format$() function, FormatNumber$() function, Str$() function, StringToDate() function,
SystemInfo() function

Set Graph statement

Purpose

Modifies an existing Graph window. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax (5.5 and Later Graphs)

Set Graph
[Window window_id]
[Title title_text]
[SubTitle subtitle_text]
[Footnote footnote_text]
[TitleSeries titleseries_text]

Set Format Number "9,999.9" The Format$() function uses U.S. number formatting
options (decimal separator is a period; thousands
separator is a comma), regardless of how the user's
computer is configured.

Set Format Number "Local" The Format$() function uses the number formatting
options set up on the user's computer.

Statement Effect on your MapBasic application
MapBasic 11.0 628 Reference

Chapter 8:
Set Graph statement
[TitleGroup titlegroup_text]
[TitleAxisY1 titleaxisy1_text]
[TitleAxisY2 titleaxisy2_text]

window_id is the window identifier of a Grapher window.

title_text is the title that appears at the top of the Grapher window.

subtitle_text is the graph subtitle text.

footnote is the graph footnote text.

titleseries_text is the graph titleseries text.

titlegroup_text is the graph title group text.

titleaxisY1_text is the text for Y axis title.

titleaxisY2 is the text for Y2.

Syntax (Pre-5.5 Graphs)

Set Graph
[Window window_id]
[Type { Area | Bar | Line | Pie | XY }]
[Stacked { On | Off }]
[Overlapped { On | Off }]
[Droplines { On | Off }]
[Rotated { On | Off }]
[Show3d { On | Off }]
[Overlap overlap_percent]
[Gutter gutter_percent]
[Angle angle]
[Title graph_title [Font...]]
[Series series_num

[Pen...]
[Brush...]
[Line...]
[Symbol...]
[Title series_title]]
[Wedge wedge_num

[Pen...]
[Brush...]]]

[{ Label | Value } Axis
[{ Major | Minor } Tick { Cross | Inside | None | Outside }]
[{ Major | Minor } Grid { On | Off } Pen...]
[Labels { None | At Axis } [Font...]]
[Min { min_value | Auto }]
[Max { max_value | Auto}]
[Cross { cross_value | Auto }]
[{ Major | Minor } Unit { unit_value | Auto }]
[Pen...]
[Title axis_title [Font...]]]

[Legend
[Title legend_title [Font...]]
MapBasic 11.0 629 Reference

Chapter 8:
Set Graph statement
[Subtitle legend_subtitle [Font...]]
[Range [Font...]]]

window_id is the window identifier of a Grapher window.

overlap_percent is the percentage value, from zero to 100, dictating bar overlap.

gutter_percent is a percentage value, from zero to 100, dictating space between bars.

angle is a number from zero to 360, representing the starting angle of a pie chart.

graph_title is the title that appears at the top of the Grapher window.

axis_title is a title that appears on one of the axes of the Grapher window.

min_value is the minimum value to show along the appropriate axis.

max_value is the maximum value to show along the appropriate axis.

cross_value is the value at which the axes should cross.

unit_value is the unit increment between labels on an axis.

series_num is an integer identifying which series of a graph to modify (for example, 2, 3, …).

series_title is the name of a series; this appears next to the pen/brush sample in the Legend.

legend_title and legend_subtitle are text strings which appear in the Legend.

Line clause specifies a line style.

Brush is a valid Brush clause to specify fill style.

Pen is a valid Pen clause to specify the fill's border.

Symbol is a valid Symbol clause to specify a point style.

Font is a valid Font clause specifies a text style.

Description

The Set Graph statement alters the settings of an existing Graph window. If no window_id is
specified, the statement affects the topmost Graph. This statement allows a MapBasic program to
control those options which an end-user would set through MapInfo Professional's Graph menu, as
well as some options which a user would set through the Customize Legend dialog box.

Between sessions, MapInfo Professional preserves Graph settings by storing a Set Graph
statement in the workspace file. Thus, to see an example of the Set Graph statement, you could
create a Graph, save the workspace (for example, GRAPHER.WOR), and examine the workspace
in a MapBasic text edit window. You could then cut/copy and paste to put the Set Graph statement
in your MapBasic program file. To change the width, height, or position of a Graph window, use the
Set Window statement.

Example

5.5 and later graphs:
include 'mapbasic.def'
graph_id = WindowId(4) ' window code for a graph is 4
Set Graph
MapBasic 11.0 630 Reference

Chapter 8:
Set Graph statement
Window graph_id
Title "United States"
SubTitle "1990 Population"
Footnote "Values from 1990 Census"
TitleGroup "States"

TitleAxisY1 "Population"

pre 5.5 graphs:

The following example illustrates how the Set Graph statement can customize a Grapher, as well as
customizing the Grapher-related items that appear in the Legend window. The Graph statement
creates a Graph window which graphs two columns (orders_rcvd and orders_shipped) from the
Selection table.

Note that the Graph statement actually specifies three columns; data from the first column
(sales_rep) is used to label the graph.

Open Window Legend
Set Window Legend

Position (3.0, 1.6) Width 3.3 Height 0.750000
Graph sales_rep,orders_rcvd,orders_shipped

From selection
Position (0.2, 0.1) Width 4.5 Height 3.9

'
' The 1st Set Graph statement customizes the type of
' graph and the main title of the graph
'
Set Graph

Type Bar Stacked Off Overlapped Off
Droplines Off Rotated Off Show3d Off
Overlap 30 Gutter 10 Angle 0
Title "Orders Received vs. Orders Shipped"
Font ("Arial",1,18,0)

'
' the next Set Graph sets all of the attributes of
' the Label axis (since we earlier chose Rotated
' off, this is the x axis).
'
Set Graph Label Axis

Major Tick Outside
Major Grid Off Pen (1,2,117440512)
Minor Tick None
Minor Grid Off Pen (1,2,117440512)
Min 1.0 Max 5.0

Cross 1.0 Major unit 1.0 Minor unit 0.5
Labels At Axis Font ("Arial",0,8,0)
Pen (1,2,117440512)
Title "Salesperson" Font ("Arial",0,8,0)
'
' the above title ("Salesperson") appears
' along the grapher's x-axis
'

'

MapBasic 11.0 631 Reference

Chapter 8:
Set Graph statement
' next Set Graph sets attributes of value (y) axis
'
Set Graph Value Axis

Major Tick Outside
Major Grid Off Pen (1,2,117440512)
Minor Tick None
Minor Grid Off Pen (1,2,117440512)
Min 0.0 Max 300000.0

Cross 0.0 Major unit 50000.0 minor unit 25000.0
Labels At Axis Font ("Arial",0,8,0)
Pen (1,2,117440512)
Title "Order amounts ($)" Font ("Arial",0,8,0)

'
' the above title ("Order amounts...") appears
' along the grapher's y-axis
'
'
' The next set graph customizes graphical styles
' for series 2. This dictates what color bars will
' appear to represent the orders_rcvd column data.
' Also controls what description will appear in the
' legend
'
' Since this is a bar graph, the Brush is the style
' of prime importance; if this was a line graph,
' the Line and Symbol clauses would be important).
'
Set Graph Series 2

Brush (8,255,16777215)
Line (1,2,0,255) Symbol (32,255,12)
Title "Orders Received ($)"
 '
'the above title will appear in the legend...
'

'
' The next set graph customizes the styles
' used by series 3 (orders_shipped).
'
Set Graph Series 3

Brush (2,12632256,201326591)
Line (1,2,0,0) Symbol (34,12632256,12)
Title "Orders Shipped ($)'
'
' the above title will appear in the legend...
'

'
' the last Set Graph statement dictates what
' Grapher-related title and subtitle will appear
' in the Legend window, as well as what fonts will
' be used in the legend.
'
Set Graph Legend
MapBasic 11.0 632 Reference

Chapter 8:
Set Handler statement
Title "Orders Received vs. Orders Shipped"
Font ("Arial",0,10,0) 'set the title font
Subtitle "(by salesperson)"
Font ("Helv",0,8,0) 'set subtitle font
'set the font used for range descriptions
Range font ("Arial",2,8,0)

See Also:

Graph statement, Set Window statement

Set Handler statement

Purpose

Enables or disables the automatic calling of system handler procedures, such as the
SelChangedHandler procedure.

Restrictions

You cannot issue this statement through the MapBasic window.

Syntax

Set Handler handler_name { On | Off }

handler_name is the name of a system handler procedure, such as SelChangedHandler
procedure.

Description

Ordinarily, if you include a system handler procedure in your program, MapInfo Professional calls
the handler procedure automatically, whenever a related system event occurs. For example, if your
program contains a SelChangedHandler procedure, MapInfo Professional calls the procedure
automatically, every time the Selection changes.

Use the Set Handler statement to disable the automatic calling of system handler procedures within
your MapBasic program.

The Set Handler…Off statement does not have any effect on explicit procedure calls (using the Call
statement).

Example

The following example shows how a Set Handler statement can help to avoid infinite loops.

Sub SelChangedHandler
Set Handler SelChangedHandler Off

' Issuing a Select statement here
' will not cause an infinite loop.
MapBasic 11.0 633 Reference

Chapter 8:
Set Layout statement
Set Handler SelChangedHandler On
End Sub

See Also:

SelChangedHandler procedure, ToolHandler procedure

Set Layout statement

Purpose

Modifies an existing Layout window. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Set Layout
[Window window_id]
[Center (center_x, center_y)]
[Extents { To Fit | (pages_across, pages_down) }]
[Pagebreaks { On | Off }]
[Frame Contents { Active | On | Off }]
[Ruler { On | Off }]
[Zoom { To Fit | zoom_percent }]
[{Objects Alpha alpha_value } | { Objects Translucency

translucency_percent }]

window_id is the window identifier of a Layout window.

center_x is the horizontal layout position currently at the middle of the Layout window.

center_y is the vertical layout position currently at the middle of the Layout window.

pages_across is the number of pages (one or more) horizontally that the layout should span.

pages_down is the number of pages (one or more) vertically that the layout should span.

zoom_percent is a percentage indicating the Layout window's size relative to the actual page.

alpha_value is an integer value representing the alpha channel value for translucency. Values range
from 0-255 where 0 is completely transparent and 255 is completely opaque. Values between 0-255
make the objects in the layout display translucently.

translucency_percent is an integer value representing the percentage of translucency for the objects
in a layout. Values range between 0-100. 0 is completely opaque. 100 is completely transparent.

Specify either Alpha or Translucency but not both, since they are different ways of
specifying the same result. If you specify multiple keywords, the last value will be used.
MapBasic 11.0 634 Reference

Chapter 8:
Set Layout statement
Description

The Set Layout statement controls the settings of an existing Layout window. If no window_id is
specified, the statement affects the topmost Layout window. This statement allows a MapBasic
program to control those options which a user would set through MapInfo Professional's Layout
menu.

The Center clause specifies the location on the layout which is currently at the center of the Layout
window.

The Extents clause controls how many pages (for example, how many sheets of paper) will
constitute the page layout. The following clause:

Set Layout Extents To Fit

configures the layout to include however many pages are needed to ensure that all objects on the
layout will print. Alternately, the Extents clause can specify how many pages wide or tall the page
layout should be. For example, the following statement would make the page layout three pages
wide by two pages tall:

Set Layout Extents (3, 2)

If the layout consists of more than one sheet of paper, the Pagebreaks clause controls whether the
Layout window displays page breaks. When page breaks are on (the default), MapInfo Professional
displays dotted lines to indicate the edges of the pages.

The Frame Contents clause controls when and whether MapInfo Professional refreshes the
contents of the layout frames. A page layout typically contains one or more frame objects; each
frame can display the contents of an existing MapInfo Professional window (for example, a frame
can display a Map window). As you change the window(s) on which the layout is based, you may or
may not want MapInfo Professional to take the time to redraw the Layout window. Some users want
the Layout window to constantly show the current contents of the client window(s); however, since
Layout window redraws take time, some users might want the Layout window to redraw only when it
is the active window.

The following statement tells MapInfo Professional to always redraw the Layout window, when
necessary, to reflect changes in the client window(s):

Set Layout Frame Contents On

The following statement tells MapInfo Professional to only redraw the Layout window when it is the
active window:

Set Layout Frame Contents Active

The following statement tells MapInfo Professional to never redraw the Layout window:

Set Layout Frame Contents Off

When Frame Contents are set Off, each frame appears as a plain rectangle with a simple
description (for example, “World Map”).

The Ruler clause controls whether MapInfo Professional displays a ruler along the top and left
edges of the Layout window. By default, Ruler is On.
MapBasic 11.0 635 Reference

Chapter 8:
Set Legend statement
The Zoom clause specifies the magnification factor of the page layout; in other words, it enlarges or
reduces the window's view of the layout. For example, the following statement specifies a zoom
setting of fifty percent:

Set Layout Zoom 50.0

When a page layout is displayed at fifty percent, that means that an actual sheet of paper is twice as
wide and twice as high as it is represented on-screen (in the Layout window). Note that the page
layout can show extreme close-ups, for the sake of allowing accurate detail work. Accordingly, a
Layout window displayed at 200 percent will show a magnification of the page. The Zoom clause
can specify a zoom value anywhere from 6.25% to 800%, inclusive. The Zoom clause does not
need to specify a specific percentage. The following statement tells MapInfo Professional to set the
zoom level so that the entire page layout will appear in the Layout window at one time:

Set Layout Zoom To Fit

Once a Layout window's frame object has been selected, a MapBasic program could issue a
Run Menu Command statement to perform a Move to back or Move to front operation.
Also, since frame objects are (in some senses) conventional MapInfo Professional graphical
objects, MapBasic's Alter Object statement lets an application reset the pen and brush
styles associated with frame objects.

To change the width, height, or position of a Layout window, use the Set Window statement.

Example

Set Layout
Zoom To Fit Extents To Fit
Ruler Off
Frame Contents On

See Also:

Alter Object statement, Create Frame statement, Layout statement, Run Menu Command
statement, Set Window statement

Set Legend statement

Purpose

Modifies the Theme Legend window. You can issue this statement from the MapBasic Window in
MapInfo Professional.

Syntax

Set Legend
[Window window_id]
[Layer { layer_id | layer_name | Prev }

[Display { On | Off }]
[Shades { On | Off }]
MapBasic 11.0 636 Reference

Chapter 8:
Set Legend statement
[Symbols { On | Off }]
[Lines { On | Off }]
[Count { On | Off }]
[Title { Auto | layer_title [Font...] }]
[SubTitle { Auto | layer_subtitle [Font...] }]
[Style Size { Large | Small }]
[Columns number_of_columns]
[Ascending { On | Off } | Order { Ascending | Descending |

Custom }]
[Ranges { Auto | [Font...]

[Range { range_identifier | default }]
range_title [Display { On | Off }] }
[, ...]

]
]
[, ...]

window_id is the integer window identifier of a Map window.

layer_id is a SmallInt that identifies a layer of the map.

layer_name is a string that identifies a map layer.

layer_title, layer_subtitle are character strings which will appear in the theme legend.

range_title is a text string describing one range in a layer that is shaded by value.

Description

The Set Legend statement controls the appearance of the contents in MapInfo Professional's
Theme Legend window. To change the width, height, or position of the Legend window, use the Set
Window statement.

Between sessions, MapInfo Professional preserves theme legend settings by storing a Set Legend
statement in the workspace file. To see an example of the Set Legend statement, you could create
a Map, create a theme legend, save the workspace (for example, LEGEND.WOR), and examine the
workspace in a MapBasic text editor window. You could then cut/copy and paste to put the Set
Legend statement in your MapBasic program file.

Although MapInfo Professional can maintain a large number of Map windows, only one Theme
Legend window exists at any given time. The Theme Legend window displays information about the
active Map. Thus, the Set Legend statement's window_id clause identifies one of the Map windows
in use, not the Legend window. If no window_id is specified, the statement affects the legend
settings for the topmost Map window.

The Layer clause specifies which layer's theme legend should be modified. The Layer clause can
identify a layer by its specific number (for example, specify 2 to control the theme legend of the
second map layer), by its name, or by specifying Layer Prev. The Layer Prev clause tells MapBasic
to modify whatever map layer was last created or modified through a Set Shade statement or
Shade statement.

If a Map window contains two or more thematic layers, the Set Legend statement can include one
Layer clause for each thematic layer.
MapBasic 11.0 637 Reference

Chapter 8:
Set Legend statement
The remainder of the options for the Set Legend statement all pertain to the Layer clause; that is, all
of the clauses described below are actually sub-clauses within the Layer clause.

The Count clause dictates whether each line of the theme legend should include a count, in
parentheses, of how many of the table's records belong to that range. The Shades, Symbols and
Lines clauses dictate which types of graphic objects appear in each line of the theme legend. If the
statement includes the Shades On clause, each line of the theme legend will include a sample fill
pattern. If the statement includes the Symbols On clause, each line of the theme legend will include
a sample symbol marker. If the statement includes the Lines On clause, each line of the theme
legend will include a sample line style.

The Title clause specifies what title, if any, will appear above the range information in the theme
legend. Similarly, the Subtitle clause specifies a subtitle. The title and the subtitle are each limited to
thirty-two characters. If a theme legend includes a title, a subtitle, and range information, the objects
will appear in that order—the title first, then the subtitle below it, then the range information below
the subtitle. If the optional Auto clause is used, the text is automatically generated for each theme.

The Font clause specifies a text style.

The Ascending On clause arranges the range descriptions in ascending order. If this optional
clause is omitted, the default order of the ranges is descending.

The Ranges clause describes the text that will accompany each line in the theme legend. Each
range description consists of a text string (range_title) followed by a Display clause. The Display
clause (Display On or Display Off) dictates whether that range will be displayed in the theme legend.
Note If the Auto clause is not used, the Ranges clause must include a range_title Display clause for
each range in the thematic map, even if some of the ranges are not to be displayed.

If a map layer is a graduated symbols theme, there should be exactly two range_title Display
clauses. If a map layer is shaded as a dot density theme, there should be exactly one range_title
Display clause. Otherwise, there should be one more range_title Display clause than there are
ranges; this is because the theme legend reserves one line for an artificial range known as “all
others”. The all-others range represents any and all objects which do not belong to any of the other
ranges.

The Order and Range clauses will increase the workspace version to the current version. Old
workspaces will still parse correctly as there is still support for the original Ascending clause. If the
order is not custom, MapInfo Professional will write out the original Ascending clause and NOT
increase the workspace version.

The Order clause is another way to specify legend label order of ascending or descending as well
as new custom order. However, the original Ascending clause is still available for backwards
compatibility. You can use either the Order clause, or the Ascending clause, but not both (both
clauses cannot be included in the same MapBasic statement or you will get a syntax error).

The Custom option for the Order clause is allowed only for Individual Value themes. An error will
occur if you try to custom order other theme types. The error is “Custom legend label order
is only allowed for Individual Value themes.”
MapBasic 11.0 638 Reference

Chapter 8:
Set LibraryServiceInfo statement
When the Order is Custom, each range in the Ranges clause must include a range identifier,
otherwise a syntax error will occur. The range identifier must come before the range title and
Display clause. The range identifier is the same const string or value used by the Values clause in
the Shade statement that creates the Individual Value theme. The range identifier for the “all others”
category is 'default'.

Every category in the theme must be included, including the default or “all others” category,
otherwise an error will occur. The error is “Incorrect number of ranges specified for
custom order.”

The default or “all others” category may also be reordered, although the best place to place this
argument is at the end or beginning of the Ranges clause.

If the range identifier does not refer to a valid category an error will occur. The error is “Invalid
range value for custom order.”

The Style Size clause facilitates thematic swatches to appear in different sizes.

The Columns clause allows you to specify the width of the legend. number_of_columns indicates
the column width.

See Also:

Map statement, Open Window statement, Set Map statement, Set Window statement, Shade
statement

Set LibraryServiceInfo statement

Purpose

Resets the current Library Service related attributes. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Set LibraryServiceInfo
{ URL url }

url is a valid Library Service URL.

Description

URL is a valid URL clause to specify the Library Service URL.

Example

Include “mapbasic.def”
declare sub main
Set LibraryServiceInfo URL
“http://localhost:8080/LibraryService/LibraryService”
end sub
MapBasic 11.0 639 Reference

Chapter 8:
Set LibraryServiceInfo statement
See Also:

LibraryServiceInfo() function, URL clause
MapBasic 11.0 640 Reference

Chapter 9:
Set Map statement
Set Map statement

Purpose

Modifies an existing Map window. You can issue this statement from the MapBasic Window in
MapInfo Professional. The Set Map statement has an extensive set of clauses, so syntax
descriptions are organized by topic.

Syntax

Set Map
[Window window_id]
[MAP_BEHAVIOR_CLAUSES]
[VIEW_CLAUSES]
[LAYER_PROPERTY_CLAUSES]
[LABEL_CLAUSES]
[STYLE_OVERRIDE_CLAUSES]
[LABEL_OVERRIDE_CLAUSES]
[GROUPLAYER_PROPERTY_CLAUSES]
[ORDER_LAYERS_CLAUSES]
[COORSYS_CLAUSES]
[IMAGE_CLAUSES]
[LAYER_ACTIVATE_CLAUSES]

window_id is the integer window identifier of a Map window.

MAP_BEHAVIOR_CLAUSES see Changing the Behavior of the Entire Map

VIEW_CLAUSES see Changing the Current View of the Map

LAYER_PROPERTY_CLAUSES see Managing Individual Layer Properties and Appearance

LABEL_CLAUSES see Managing Individual Label Properties

STYLE_OVERRIDE_CLAUSES see Adding Style Overrides to a Layer.

LABEL_OVERRIDE_CLAUSES see Adding Overrides for Layer Labels.

GROUPLAYER_PROPERTY_CLAUSES see Managing Group Layers

ORDER_LAYERS_CLAUSES see Ordering Layers

COORSYS_CLAUSES see Managing the Coordinate System of the Map

IMAGE_CLAUSES see Managing Image Properties

LAYER_ACTIVATE_CLAUSES see Managing Hotlinks.
MapBasic 11.0 641 Reference

Chapter 9:
Set Map statement
Description

The Set Map statement controls the settings of a Map window. If no window_id is specified, the
statement affects the topmost Map window. This statement allows a MapBasic program to control
options a user would set through MapInfo Professional's Map > Layer Control, Map > Change
View, and Map > Options menu items. For example, the Set Map statement lets you configure
which map layer is editable, and lets you set the map's zoom distance or scale.

Set Map controls the contents of a Map window, not the size or position of the window's
frame. To change the size or position of a Map window, use the Set Window statement.

Between sessions, MapInfo Professional preserves Map settings by storing a Set Map statement in
a workspace file. To see an example of the Set Map statement, create a map, save the workspace
(for example, MAPPER.WOR), and examine the workspace in a text editor, such as Notepad.

The order of the clauses in a Set Map statement is very important. Entering the clauses in an
incorrect order can generate a syntax error.

See Also:

Add Map statement, Map statement, MapperInfo() function, Remove Map statement, Set
Window statement, LayerInfo() function, LayerListInfo function, LayerStyleInfo() function,
StyleOverrideInfo() function, LabelOverrideInfo() function

Changing the Behavior of the Entire Map
The following clauses affect the behavior of the map, such as units, clipping object behavior, and
redraw behavior.

Syntax

Set Map
[Window window_id]
[Clipping [Object clipper] [{ Off | On}]

[Using { Display { PolyObj | All } | Overlay }]]
[Preserve { Scale | Zoom }]
[Area Units area_unit]
[Distance Units dist_unit]
[Display { Scale | Position | Zoom }]
[Redraw { On | Off | Suspended }]
[Move Nodes { value | Default }]

window_id is the integer window identifier of a Map window.

clipper is an Object expression; only the portion of the map within the object will display. See the
description in the Clipping section for more information.

area_unit is a string representing the name of an area unit used to display area calculations (for
example, “sq mi” for square miles, “sq km” for square kilometers; see Set Area Units statement for
a list of unit names). For example:

Set Map Area Units "sq km"
MapBasic 11.0 642 Reference

Chapter 9:
Set Map statement
dist_unit is a string expression, specifying the units for the map (such as “mi” for miles, “m” for
meters; see Set Distance Units statement for a list of available unit names). This is an optional
parameter. If not present, the distance units from the table's coordinate system are used.

value can be 0 or 1. If the value is 0, duplicate nodes are not moved. If the value is 1, any duplicate
nodes within the same layer will be moved.

Description

Clipping sets a clipping object for the Map window; corresponds to MapInfo Professional's Map >
Set Clip Region command. Once a clipping region is set, enable or disable clipping by specifying
Clipping On or Clipping Off.

Set Map Clipping Object obj_variable_name

There are three modes that can be used for Clipping. Using the Overlay mode will use the MapInfo
Professional Objects > Erase Outside functionality to produce the clipping. Polylines and Regions
will be clipped at the Region boundary. Points and Labels will be completely displayed only if the
point or label point lie inside the Region. Text is always displayed and never clipped. Styles for all
objects are never clipped. Using the Display All mode, the Windows display will provide the clip
region functionality. All objects (including points, labels, and text) will be clipped at the Region
boundary. All styles will be clipped at the region boundary. This is the default mode.

Using the Display PolyObj mode the Windows display will provide the clip region functionality for
Polylines and Regions only. Styles for Polylines and Regions will be clipped at the region boundary.
Points and Labels will be completely displayed only if the point or label point lie inside the Region.
Text is always displayed and never clipped. Styles for points, labels and text are never clipped.

In general, the Windows display functionality found in Display All and Display PolyObj provides
better performance than the Overlay functionality. For example:

Set Map Clipping Object obj_variable_name Using Display All

Display dictates what type of information should appear on the status bar when the Map window is
active. Display Zoom displays the current zoom (the width of the area displayed). Display Scale
displays the current scale. Display Position displays the position of the cursor (for example,
decimal degrees of longitude/latitude).

Set Map Display Position

Preserve controls how the Map window behaves when the user re-sizes the window. If you specify
Preserve Zoom then MapInfo Professional redraws the entire Map window whenever the user re-
sizes the window. If you specify Preserve Scale then MapInfo Professional only redraws the portion
of the window that needs to be redrawn. These options correspond to settings in MapInfo
Professional's Options dialog box (Map > Options).

Redraw disables or enables the automatic redrawing of the Map window. If you issue a Set Map
Redraw Off statement, subsequent statements can affect the map (for example, Set Map, Add Map
Layer, Remove Map Layer) without causing MapInfo Professional to redraw the Map window. After
MapBasic 11.0 643 Reference

Chapter 9:
Set Map statement
making all necessary changes to the Map window, issue a Set Map Redraw On statement to
restore automatic redrawing (at which time, MapInfo Professional will redraw the map once to show
all changes).

Some actions, such as panning and zooming, can cause MapInfo Professional to redraw a
Map window even after you specify Redraw Off. If you find that the Redraw Off syntax does
not prevent window redraws, you may want to use the Set Event Processing Off
statement.

Redraw has three options, On, Off and Suspended. The Suspended keyword will draw a visual
cue suggesting the state of map redraws, on the map window. For example:

Set Map Redraw Suspended
The user can put the maps into a suspended state by clicking a button at the bottom of the Layer
Control window.

Move Nodes can be 0 or 1. If the value is 0, duplicate nodes are not moved. If the value is 1, any
duplicate nodes within the same layer will be moved. If a Move Node value is specified, that window
is considered to be using a custom value. To return to using the default (from the mapper
preference), specify Move Nodes Default.

Once Set Map Move Nodes value has been used, that map has a custom setting. If a Map window
has a custom setting, the Map window preference will not be used. The Map window preference will
apply to new Map windows and any non-customized Map windows. The setting for an existing Map
window can be customized by using the Set Map Move Nodes value MapBasic statement.

Example

The following program opens two tables, opens a Map window to show both tables, and then
performs a Set Map statement to make changes to the Map window:

Open Table "world"
Open Table "cust1993" As customers
Map From customers, world

Set Map
Center (-100, 40) 'center map over mid-USA
Zoom 4000 Units "mi" 'show entire USA
Preserve Zoom 'preserve zoom when resizing
Display Position 'show lat/long on status bar

Changing the Current View of the Map
The following clauses affect the current view—in other words, where the map is centered, and how
large an area is displayed in the Map window.

Syntax

Set Map
[Window window_id]
MapBasic 11.0 644 Reference

Chapter 9:
Set Map statement
[Center (longitude, latitude) [Smart Redraw]]
[Zoom {

zoom_distance [Units dist_unit] | Entire [Layer layer_id] }]
[Pan pan_distance [Units dist_unit]

{ North | South | East | West } [Smart Redraw]]
[Scale screen_dist [Units dist_unit] For map_dist

[Units dist_unit]]

window_id is the integer window identifier of a Map window.

longitude, latitude is the new center point of the map.

zoom_distance is a numeric expression dictating how wide an area to display.

dist_unit is a string expression, specifying the units for the map (such as “mi” for miles, “m” for
meters; see Set Distance Units statement for a list of available unit names). This is an optional
parameter. If not present, the distance units from the table's coordinate system are used.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

pan_distance is a distance to pan the map.

screen_dist and map_dist specify a map scale (for example, screen_dist = 1 inch, map_dist = 1
mile).

Description

Center controls where the map will be centered within the Map window. For example: New York City
is located (approximately) at 74 degrees West, 41 degrees North. The following Set Map statement
centers the map in the vicinity of New York City. Coordinates are specified in decimal degrees, not
Degrees/Minutes/Seconds.

Set Map Center (-74.0, 41.0)

A Set Map…Center statement causes the entire window to redraw, unless you include the optional
Smart Redraw clause. For details on Smart Redraw, see below (under Pan).

Pan moves the Map window's view of the map. For example, the following statement moves the
map view 100 kilometers north:

Set Map Pan 100 Units "km" North

Ordinarily, the Set Map…Pan statement redraws the entire Map window. If you include the optional
Smart Redraw clause, MapInfo Professional only redraws the portion of the map that needs to be
redrawn (as if the user had re-centered the map using the window scrollbars or the Grabber tool).

Set Map Pan 100 Units "km" North Smart Redraw

CAUTION: if you include the Smart Redraw clause, the Map window always moves in
multiples of eight pixels. Because of this behavior, the map might not move as
far as you requested. For example, if you try to pan North by 100 km, the map
might actually pan some other distance—perhaps 79.5 kilometers—because
that other distance represents a multiple of eight-pixel increments.

Scale zooms in or out so that the map has the scale you specify. For example, the following
statement zooms the map so that one inch on the screen shows an area ten miles across.
MapBasic 11.0 645 Reference

Chapter 9:
Set Map statement
Set Map Scale 1 Units "in" For 10 Units "mi"

Zoom dictates how wide an area should be displayed in the Map. For example, the following
statement adjusts the zoom level, to display an area 100 kilometers wide.

Set Map Zoom 100 Units "km"

If the Zoom clause includes the keyword Entire, MapInfo Professional zooms the map to show all
objects in a Map layer (or all objects in all map layers):

Set Map Zoom Entire Layer 2 'show all of layer 2
Set Map Zoom Entire 'show the whole map

Managing Individual Layer Properties and Appearance
The following clauses affect layers. Layer properties are optional in the Set Map statement.

Syntax

Set Map
[Window window_id]
[Layer layer_id

[LAYER_ACTIVATE_CLAUSES]
[Editable { On | Off }]
[Selectable { On | Off }]
[Zoom (min_zoom, max_zoom) [Units dist_unit] [{ On | Off }]]
[Arrows { On | Off }]
[Centroids { On | Off }]
[Default Zoom]
[Nodes { On | Off }]
[Inflect num_inflections [by percent] at

color:value [, color:value]
[Round rounding_factor]]
[Contrast contrast_value]
[Brightness brightness_value]
[{Alpha alpha_value }|{ Translucency translucency_percent }]

]
[Transparency { Off | On }]
[Color transparent_color_value]
[GrayScale { On | Off }]
[Relief { On | Off }]
[LABEL_CLAUSES]
[LAYER_OVERRIDE_CLAUSES]
[Display { Off | Graphic | Global }]
[Global Line...] [, Line...] ...
[Global Pen...] [, Pen...] ...
[Global Brush...] [, Brush...] ...
[Global Symbol...] [, Symbol...] ...
[Global Font...] [, Font...] ...

]

window_id is the integer window identifier of a Map window.
MapBasic 11.0 646 Reference

Chapter 9:
Set Map statement
layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

LAYER_ACTIVATE_CLAUSES is a shorthand notation, not a MapBasic Keyword. See Layer
Activate Clause described under Managing Hotlinks on page 671.

min_zoom is a numeric expression, identifying the minimum zoom at which the layer will display.

max_zoom is a numeric expression, identifying the maximum zoom at which the layer will display.

dist_unit is a string expression, specifying the units for the map (such as “mi” for miles, “m” for
meters; see Set Distance Units statement for a list of available unit names). This is an optional
parameter. If not present, the distance units from the table's coordinate system are used.

num_inflections is a numeric expression, specifying the number of color:value inflection pairs used
in a Grid theme.

color is an expression of color using the RGB() function.

value is an inflection that is displayed in the paired color.

rounding_factor is a numeric expression, specifying the rounding factor applied to the inflection
values.

contrast_value a value of 0 to 100 representing contrast. This value corresponds to the slider on the
Grid Appearance dialog box, which is available when modifying a grid theme from the Modify
Thematic Map dialog box.

brightness_value a value of 0 to 100 representing brightness. This value corresponds to the slider
on the Grid Appearance dialog box, which is available when modifying a grid theme from the Modify
Thematic Map dialog box.

we never describe the contrast_value or brightness_value arguments. They are both numbers from
0 to 100, which specify contrast and brightness; these correspond to the sliders in the Grid
Appearance dialog box, which is accessible when you use the Modify Thematic Map dialog box to
modify a Grid theme.

alpha_value is an integer value representing the alpha channel value for translucency. Values range
from 0-255. 0 is completely transparent. 255 is completely opaque. Values between 0-255 make the
image layer display translucent.

translucency_percent is an integer value representing the percentage of translucency for a vector,
raster, or grid image layer. Values range between 0-100. 0 is completely opaque. 100 is completely
transparent.

Specify either Alpha or Translucency but not both, since they are different ways of
specifying the same result. If you specify multiple keywords, the last value will be used.

transparent_color_value a specific color value. Transparency allows raster image layers to display
in a transparent mode where pixels of a certain color (transparent_color_value) do not draw.

LABEL_CLAUSES is a shorthand notation, not a MapBasic keyword, see Managing Individual
Label Properties.
MapBasic 11.0 647 Reference

Chapter 9:
Set Map statement
LAYER_OVERRIDE_CLAUSES is a shorthand notation, not a MapBasic keyword, see Adding
Style Overrides to a Layer.

Description

Editable sets the Editable attribute for the appropriate Layer. At any given time, only one of the
mapper's layers may have the Editable attribute turned on. Note that turning on a layer's Editable
attribute automatically turns on that layer's Selectable attribute. The following Set Map statement
turns on the Editable attribute for first non-cosmetic layer:

Set Map
Layer 1 Editable On

Selectable sets whether the given layer should be selectable through operations such as Radius-
Search. Any or all of the Map layers can have the Selectable attribute on. The following Set Map
statement turns on the Selectable attribute for the first non-cosmetic map layer, and turns off the
Selectable attribute for the second and third map layers:

Set Map
Layer 1 Selectable On
Layer 2 Selectable Off
Layer 3 Selectable Off

Zoom configures the zoom-layering of the specified layer. Each layer can have a zoom-layering
range; this range, when enabled, tells MapInfo Professional to only display the Map layer when the
map's zoom distance is within the layering range. The following statement sets a range of 0 to 10
miles for the first non-Cosmetic layer.

Set Map
Layer 1 Zoom (0, 10) Units "km" On

The On keyword activates zoom layering for the layer. To turn off zoom layer, specify Off
instead.

Arrows turns the display of direction arrows on or off.

Centroids turns the display of centroids on or off.

Inflect overrides the inflection color:value pairs that are stored in the grid (.MIG) file.

Nodes turns the display of nodes on or off.

Relief turns relief shading for a grid on or off. The grid must have relief shade information calculated
for it for this clause to have any effect. Relief shade information can be calculated for a grid with the
Relief Shade statement.

Display controls how the objects in the layer are displayed. When you specify Display Off, the layer
does not appear in the Map. When you specify Display Graphic, the layer's objects appear in their
default style, as saved in the table. When you specify Display Global, all objects appear in the
global styles assigned to the layer. These global styles can be assigned through the optional Global
sub-clauses. The following statement displays layer 1 with green line and fill styles:

Set Map
Layer 1 Display Global
Global Line(1, 2, GREEN)
MapBasic 11.0 648 Reference

Chapter 9:
Set Map statement
Global Pen (1, 2, GREEN)
Global Brush (2, GREEN, WHITE)

Global Line specifies the style used to display line and polyline objects. A Line clause is identical to
a Pen clause, except for the use of the keyword Line instead of Pen.

Global Pen is a valid Pen clause that specifies the style used to display the borders of filled objects.

Global Symbol is a valid Symbol clause that specifies the style used to display point objects.

Global Brush is a valid Brush clause that specifies the style used to display filled objects.

Global Font is a valid Font clause that specifies the font used to display text objects.

The Global clauses support stacked styles as a comma separated list of like style clauses. For
example, the following displays points with a global stacked symbol style:

Set Map Layer 1 Display Global Global Symbol (32,16777136,24),
Symbol (36,255,14)

The following statement adds a global stacked line style to a layer:

Set Map Layer 1 Display Global
Zoom (0, 10000) Units "mi"
Global Line (4, 193, 16711680), Line (2, 193, 16711680)

Settings That Have a Permanent Effect on a Map Layer
The Default Zoom clause is a special clause that modifies a table, rather than a Map window. Use
the Default Zoom clause to reset a table's default zoom distance and center position settings to the
window's current zoom and center point.

Every mappable table has a default zoom distance and center position. When the user first opens a
Map window, MapInfo Professional sets the window's initial zoom distance and center position
according to the zoom and center settings stored in the table.

If a Set Map…Layer statement includes the Default Zoom clause, MapInfo Professional stores the
Map window's current zoom distance and center point in the named table. For example, the
following statement stores the Map window's zoom and center settings in the table that comprises
the first map layer:

Set Map Layer 1 Default Zoom
The Default Zoom clause takes effect immediately; no Save operation is
required.

Examples

The following statement turns on the display of arrows, centroids, and nodes for layer 1:

Set Map
Layer 1 Arrows On Centroids On Nodes On

The following statement displays layer 1 in its default style:

Set Map
Layer 1 Display Graphic
MapBasic 11.0 649 Reference

Chapter 9:
Set Map statement
Managing Individual Label Properties
The following clauses affect label properties for a layer. This set of clauses apply to a layer. For layer
clauses, see Managing Individual Layer Properties and Appearance.

Syntax

Set Map
[Window window_id]
[Layer layer_id

[Label
[Line { Simple | Arrow | None }]
[Position [Center] [{ Above | Below }] [{Left | Right }]]
[Auto Retry { On | Off }]
[Font...] [Pen...]
[With label_expr]
[Parallel { On | Off }] [Follow Path] [Percent Over percent]
[Visibility { On | Off | Zoom(min_vis, max_vis)

[Units dist_unit] }]
[Auto { On | Off }]
[Overlap { On | Off }]
[PartialSegments { On | Off }]
[Duplicates { On | Off }]
[Max [number_of_labels]]
[Offset offset_amount]
[Default]
[LabelAlpha alpha_value]
[LABEL_OVERRIDE_CLAUSES]

]
[Object ID
 [Table alias]
 [Visibility { On | Off }]
 [Anchor (anchor_x, anchor_y)]
 [Text text_string]
 [Position [Center] [{Above | Below }] [{ Left | Right }]]
 [Font...] [Pen...]
 [Line { Simple | Arrow | None }]
 [Angle text_angle] [Follow Path]
 [Offset offset_amount]
 [Callout (callout_x, callout_y)]
 [, Object...]
]

]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

label_expr is the expression to use for creating labels.
MapBasic 11.0 650 Reference

Chapter 9:
Set Map statement
Parallel is a setting with the following attributes:

• Parallel Off = horizontal labels, not rotated with line
• Parallel On = labels rotated with line
• Follow Path clause = create curved label, path auto calculated once and stored until location

edited
• Percent Over When curved labels are longer than the geometry they name, this is the

amount (expressed as a percentage) of overhang permitted. For example, a sample entry
might be:
Set Map Layer 1 Label Follow Path
Percent Over 40

This attribute only applies to curved labels.

min_vis, max_vis are numbers specifying the minimum and maximum zoom distances within which
the labels will display.

dist_unit is a string expression, specifying the units for the map (such as “mi” for miles, “m” for
meters; see Set Distance Units statement for a list of available unit names). This is an optional
parameter. If not present, the distance units from the table's coordinate system are used.

number_of_labels is an integer representing the maximum number of labels MapInfo Professional
will display for the layer. If you omit the number_of_labels argument, there is no limit.

offset_amount is a number from zero to 200 (representing a distance in points), causing the label to
be offset from its anchor point.

alpha_value is a SmallInt that represents the alpha value of the labels in this layer. It is a value
between 0-255 where 0 is completely transparent and 255 is completely opaque. Values in between
display labels translucently.

LABEL_OVERRIDE_CLAUSES is a shorthand notation, not a MapBasic keyword, see Adding
Overrides for Layer Labels.

ID is an integer that identifies an edited label; generated automatically when the user saves a
workspace. A label's ID equals the row ID of the object that owns the label.

alias is the name of a table that is part of a seamless map. The Table alias clause generates an
error if this layer is not a seamless map.

anchor_x, anchor_y are map coordinates, specifying the anchor position for the label.

text_string is a string that will become the text of the label.

text_angle is an angle, in degrees, indicating the rotation of the text.

callout_x, callout_y are map coordinates, specifying the end of the label call-out line.
MapBasic 11.0 651 Reference

Chapter 9:
Set Map statement
Description

The Label clause controls a map layer's labeling options. The Label clause has the following sub-
clauses:

Line sets the type of call-out line, if any, that should appear when a label is dragged from its original
location. You can specify Line Simple, Line Arrow, or Line None. For example:

Set Map Layer 1
Label Line Arrow

Position controls label positions with respect to the positions of object centroids. For example, the
following statement sets labels above and to the right of object centroids.

Set Map Layer 1
Label Position Above Right

Auto Retry lets users to apply a placement algorithm that will try multiple label positions until a
position is found that does not overlap any other label, or until all positions are exhausted.

• When Writing Workspaces, if the Auto Retry feature is On, we write Auto Retry On to the
workspace after the Position clause (but the order isn't important), and increase the
workspace version to 9.5 or later. If the feature is Off, we do not write anything to the
workspace and do not increase the version number. A version 9.5 or later workspace can
have Auto Retry Off in it, but we do not explicitly write it out, to avoid increasing the version
unnecessarily.

• When Reading Workspaces If Auto Retry On or Auto Retry Off is in the workspace, it must be
a version 9.5 or later workspace, otherwise a syntax error occurs. If Auto Retry is On,
different positions are tried to place the label. If Auto Retry is Off, no retry is attempted - this
is the default behavior. Overlap must be Off to enable the Auto Retry feature. If Overlap is On
and Auto Retry On/Off are in the same LABELCLAUSE, the Auto Retry mechanism is
initialized but ignored, so overlapping labels are allowed.

Font is a valid Font clause to specify a text style used in labels.

Follow Path is used when referring to curved labels

Pen is a valid Pen clause to specify the line style to use for call-out lines. Call-out lines only appear
if you specify Line Simple or Line Arrow, and if the user drags a label from its original location.

Set Map Layer 1
Label Line Arrow

Pen(2, 1, 255)

With specifies the expression used to construct the text for the labels. For example, the following
statement specifies a labeling expression which uses the Proper$() function to control
capitalization in the label.

Set Map Layer 1
Label With Proper$(Cityname)

Parallel controls whether labels for line objects are rotated, so that the labels are parallel to the
lines.

Set Map Layer 1
Label Parallel On
MapBasic 11.0 652 Reference

Chapter 9:
Set Map statement
Visibility controls whether labels are visible for this layer. Specify Visibility Off to turn off label
display for both default labels and user-edited labels. Specify Visibility Zoom… to set the labels to
display only when the map is within a certain zoom distance. The following example sets labels to
display when the map is zoomed to 2 km or less.

Set Map Layer 1
Label Visibility Zoom (0, 2) Units "km"

Auto controls whether automatic labels display. If you specify Auto Off, automatic labels will not
display, although user-edited labels will still display.

Overlap controls whether MapInfo Professional draws labels that would overlap existing labels. To
prevent overlapping labels, specify Overlap Off.

PartialSegments controls whether MapInfo Professional labels an object when the object's centroid
is not in the visible portion of the map. If you specify PartialSegments On (which corresponds to
selecting the Label Partial Objects check box in MapInfo Professional), MapInfo Professional
labels the visible portion of the object. If you specify PartialSegments Off, an object will only be
labeled if its centroid appears in the Map window.

Duplicates controls whether MapInfo Professional allows two or more labels that have the same
text. To prevent duplicate labels, specify Duplicates Off.

Max number_of_labels sets the maximum number of labels that MapInfo Professional will display for
this layer. If you omit the number_of_labels argument, MapInfo Professional places no limit on the
number of labels.

Offset offset_amount specifies an offset distance, so that MapInfo Professional automatically places
each label away from the object's centroid. The offset_amount argument is an integer from zero to
50, representing a distance in points. If you specify Offset 0 labels appear immediately adjacent to
centroids. If you specify Offset 10 labels appear 10 points away. The offset setting is ignored when
the Position clause specifies centered text.

The following statement allows overlapping labels, placed to the right of object centroids, with a
horizontal offset of 10 points:

Set Map Layer 1
Label Overlap On Position Right Offset 10

Default resets all of the labels for this layer to their default values. The following statement deletes
all edited labels from the top layer in the Map window, restoring the layer's default labels:

Set Map Layer 1 Label Default

The Object clause allows you to edit labels. For example, if you edit labels in MapInfo Professional
and then save a workspace, the workspace contains Object clauses to represent the edited labels.
The Set Map statement contains one Object clause for each edited label.

To see examples of the Object clause, edit a map's labels, save a workspace, and examine the
workspace in a text editor.
MapBasic 11.0 653 Reference

Chapter 9:
Set Map statement
Adding Style Overrides to a Layer

Purpose

The Override Add clause creates a new style override definition for a layer if none exists, or appends
to the existing list of style override definitions. A style override allows you to change map styles
based on the current zoom level of the map.

Syntax

Set Map
[Window window_id]
[Layer layer_id

[Zoom (min_zoom, max_zoom) [Units unit_dist]]
[Display { Off | Graphic | Global }]
[Global Pen...[, Pen...]...]
[Global Line...[, Line...]...]
[Global Symbol...[, Symbol...]...]
[Global Brush...[, Brush...]...]
[Global Font...]
[{ Alpha alpha_value }| { Translucency translucency_percent }]
[STYLEOVERRIDE_CLAUSE] ...

]

Where STYLEOVERRIDE_CLAUSE is:

[[Style] Override Add [override_name] {
[Using [Window window_id] Layer layer_id {

All | Override { override_index | override_name } }
]
|
Zoom (min_zoom, max_zoom)
[Units dist_unit]
[{ Alpha alpha_value } | { Translucency translucency_percent }]
[Enable { On | Off }]
[Arrows { On | Off }]
[Centroids { On | Off }]
[Nodes { On | Off }]
[Line...] [, Line...]
[Pen...] [, Pen...] ...
[Symbol...] [, Symbol...] ...
[Brush...] [, Brush...] ...
[Font...] [, Font...] ...

}]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

override_index is an integer index (1-based) for the override definition within the layer. Each
override is tied to an zoom range and is ordered so that the smallest zoom range value is on top
(index 1).
MapBasic 11.0 654 Reference

Chapter 9:
Set Map statement
override_name is the user specified override name.

min_zoom is a numeric expression, identifying the minimum zoom at which the style override will
come into effect

max_zoom is a numeric expression, identifying the maximum zoom at which the style override will
come into effect

dist_unit is a string expression, specifying the units for the map (such as “mi” for miles, “m” for
meters; see Set Distance Units statement for a list of available unit names). This is an optional
parameter. If not present, the distance units from the table's coordinate system are used.

alpha_value is an integer value representing the alpha channel value for translucency. Values range
from 0-255. 0 is completely transparent. 255 is completely opaque. Values between 0-255 make the
image layer display translucent.

translucency_percent is an integer value representing the percentage of translucency for a vector,
raster, or grid image layer. Values range between 0-100. 0 is completely opaque. 100 is completely
transparent.

Specify either Alpha or Translucency but not both, since they are different ways of
specifying the same result. If you specify multiple keywords, the last value will be used.

Description

The display style zoom range lets you set up display style overrides that only apply within a limited
range of zoom levels. There can be multiple display style zoom ranges per layer. To have the line
styles change when zooming in on the map, set up multiple display style zoom ranges and assign a
different style override to each of them.

The layer zoom range turns off the layer altogether if you zoom in or out too far. There can only be
one of these per layer.

Arrows turns the display of direction arrows on or off.

Centroids turns the display of centroids on or off.

Nodes turns the display of nodes on or off.

Line specifies the style used to display line and polyline objects. A Line clause is identical to a Pen
clause, except for the use of the keyword Line instead of Pen.

Pen is a valid Pen clause that specifies the style used to display the borders of filled objects.

Symbol is a valid Symbol clause that specifies the style used to display point objects.

Brush is a valid Brush clause that specifies the style used to display filled objects.

Font is a valid Font clause that specifies the font used to display text objects.

Using is for a one-time copy (only the overridden properties get copied) to set the initial property
value of an layer override. The source and target layer do not maintain a connection.
MapBasic 11.0 655 Reference

Chapter 9:
Set Map statement
Each vector layer supports more than one style override and more than one label override. Every
style override has its own zoom range that is not allowed to overlap with any other style override for
the same layer. Every label override also has its own zoom range that is not allowed to overlap any
other label override for the same layer. However, style and label overrides can share or have
overlapping zoom ranges between each other.

When an override comes into view (when the map's zoom range is within an override zoom range)
then the map styles or labels are displayed using the override properties rather than the layers base
set of style and label properties.

Style overrides do not display beyond the limits of the layer display zoom range regardless of what
bounds the style override zoom range defines. Likewise, label overrides do not display beyond the
limits of the layer's label zoom range, or the layer's display zoom range, regardless of what bounds
the label override defines.

For more information about style overrides for layers, see Modifying Style Overrides for a Layer
and Enabling, Disabling, or Removing Overrides for a Layer. See also, LayerStyleInfo()
function and StyleOverrideInfo() function.

Examples

The following statement adds an override to a layer:

Set Map Layer 1
Style Override Add Zoom (0, 10000) Units "mi" Line (2, 193, 16711680)

The following statement adds multiple style overrides to a layer:

Set Map Layer 1 Display Global
Zoom (1, 10000) Units "mi"
Global Line (1, 193, 16711680)
Style Override Add Zoom (1, 1000) Units "mi" Line (4, 193, 16711680),

Line (2, 193, 16711680)
Style Override Add Zoom (1000, 10000) Units "mi"

Line (2, 193, 16711680)

Example: copy a style from one map to another map

To copy a style from one map to another map:

Set Map Layer 1 Style Override Add Using Window 81132792 Layer 1 All

Examples: adding styles from another layer

The following statement adds an override for layer 2 using style named layer1_style2 from layer 1:

Set Map Layer 2
Style Override Add Using Layer 1 layer1_style1

The following statement adds an override for layer 2 using style 3 from layer 1:

Set Map Layer 2
Style Override Add layer2_style2 Using Layer 1 Override 3
MapBasic 11.0 656 Reference

Chapter 9:
Set Map statement
The following statement copies over all the overrides information from layer 2 to layer 3:

Set Map Layer 3 Display Global
Global Line (1, 193, 16711680)
Style Override Add Using Layer 2 All

Modifying Style Overrides for a Layer
Excluding the Add keyword from the Override clause modifies the properties for an existing multiple
style override definition within a layer specified by the integer index (1-based) or the override name.

Syntax

Set Map
[Window window_id]
[Layer layer_id

 [MODIFYSTYLEOVERRIDE_CLAUSE]
 [MODIFYSTYLEOVERRIDE_CLAUSE] ...

]

Where MODIFYSTYLEOVERRIDE_CLAUSE is:

[[Style] Override { override_index | override_name } {
[Zoom (min_zoom, max_zoom)
[Units dist_unit]
[{ Alpha alpha_value } | { Translucency translucency_percent }]
[Enable { On | Off }]
[Arrows { On | Off }]
[Centroids { On | Off }]
[Nodes { On | Off }]
[Line...] [, Line...]
[Pen...] [, Pen...] ...
[Symbol...] [, Symbol...] ...
[Brush...] [, Brush...] ...
[Font...]

}]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

override_index is an integer index (1-based) for the override definition within the layer. Each
override is tied to an zoom range and is ordered so that the smallest zoom range value is on top
(index 1).

override_name is the user specified override name.

min_zoom is a numeric expression, identifying the minimum zoom at which the style override will
come into effect

max_zoom is a numeric expression, identifying the maximum zoom at which the style override will
come into effect
MapBasic 11.0 657 Reference

Chapter 9:
Set Map statement
dist_unit is a string expression, specifying the units for the map (such as “mi” for miles, “m” for
meters; see Set Distance Units statement for a list of available unit names). This is an optional
parameter. If not present, the distance units from the table's coordinate system are used.

alpha_value is an integer value representing the alpha channel value for translucency. Values range
from 0-255. 0 is completely transparent. 255 is completely opaque. Values between 0-255 make the
image layer display translucent.

translucency_percent is an integer value representing the percentage of translucency for a vector,
raster, or grid image layer. Values range between 0-100. 0 is completely opaque. 100 is completely
transparent.

Specify either Alpha or Translucency but not both, since they are different ways of
specifying the same result. If you specify multiple keywords, the last value will be used.

Description

Arrows turns the display of direction arrows on or off.

Centroids turns the display of centroids on or off.

Nodes turns the display of nodes on or off.

Line specifies the style used to display line and polyline objects. A Line clause is identical to a Pen
clause, except for the use of the keyword Line instead of Pen.

Pen is a valid Pen clause that specifies the style used to display the borders of filled objects.

Symbol is a valid Symbol clause that specifies the style used to display point objects.

Brush is a valid Brush clause that specifies the style used to display filled objects.

Font is a valid Font clause that specifies the font used to display text objects.

For more information about style overrides for layers, see Adding Style Overrides to a Layer and
Enabling, Disabling, or Removing Overrides for a Layer. See also,LayerStyleInfo() function
and StyleOverrideInfo() function.

Example

Set Map Layer 1 Style Override 1 Alpha 119

Enabling, Disabling, or Removing Overrides for a Layer
If multistyle overrides are defined for a layer, they are enabled by default.

To enable or disable multistyle overrides for a layer, use the Override clauses with either the On or
Off option.

To remove an existing override definition for a layer, use Override Remove clause.
MapBasic 11.0 658 Reference

Chapter 9:
Set Map statement
Syntax: enable or disable overrides

Set Map
[Window window_id]
[Layer layer_id [[Style] Override { On | Off }]]

Syntax: remove overrides

Set Map
[Window window_id]
[Layer layer_id

[[Style] Override Remove {
All | override_index [, override_index,]

}]
]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

override_index is an integer index (1-based) for the override definition within the layer. Each
override is tied to an zoom range and is ordered so that the smallest zoom range value is on top
(index 1).

Description

If multistyle overrides are defined for a layer, they are enabled by default. To disable but not delete
them use the Overrides clause with either the On or Off option.

For more information about style overrides for layers, see Adding Style Overrides to a Layer and
Modifying Style Overrides for a Layer.

Example

Set Map Layer 1 Style Override Remove 3, 2
Set Map Layer 1 Style Override Remove All

Adding Overrides for Layer Labels
The Label Override clause adds a zoom range to an existing label override definition or creates a
new override definition for labels.

Syntax

Set Map
[Window window_id]
[Layer layer_id

[Label
[Visibility { On| Off | Zoom (min_vis, max_vis)

[Units dist_unit]] }
]
[Line { Simple | Arrow | None }]
[Position [Center] [{ Above | Below }] [{ Left | Right }]]
MapBasic 11.0 659 Reference

Chapter 9:
Set Map statement
[Auto Retry { On | Off }]
[Font...] [Pen...]
[With label_expr]
[Parallel { On | Off }] [Follow Path] [Percent Over percent]
[Auto { On | Off }]
[Overlap { On | Off }]
[PartialSegments { On | Off }]
[Duplicates { On | Off }]
[Max [number_of_labels]]
[Offset offset_amount]
[Default]
[LabelAlpha alpha_value]
[LABEL_OVERRIDE_CLAUSE]
[LABEL_OVERRIDE_CLAUSE] ...

]
]

Where LABELOVERRIDE_CLAUSE is:

[[Label] Override Add [labeloverride_name] {
[Using [Window window_id] Layer layer_id {

All | Override {labeloverride_index | labeloverride_name }
}] |
Zoom (min_vis, max_vis)
[Enable { On | Off }]
[Units dist_unit]
[Line { Simple | Arrow | None }]
[Position [Center] [{ Above | Below }] [{ Left | Right }]]
[Auto Retry { On | Off }]
[Font...] [Pen...]
[With label_expr]
[Parallel { On | Off }] [Follow Path] [Percent Over percent]
[Auto { On | Off }]
[Overlap { On | Off }]
[PartialSegments { On | Off }]
[Duplicates { On | Off }]
[Max [number_of_labels]]
[Offset offset_amount]
[LabelAlpha alpha_value]

}]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

labeloverride_index is an integer index (1-based) for the override definition within the layer. Each
label override is tied to an zoom range and is ordered so that the smallest zoom range value is on
top (index 1).

labeloverride_name is the user specified override name.

min_vis, max_vis are numbers specifying the minimum and maximum zoom at which the style
override will come into effect.
MapBasic 11.0 660 Reference

Chapter 9:
Set Map statement
dist_unit is a string expression, specifying the units for the map (such as “mi” for miles, “m” for
meters; see Set Distance Units statement for a list of available unit names). This is an optional
parameter. If not present, the distance units from the table's coordinate system are used.

label_expr is the expression to use for creating labels.

percent when curved labels are longer than the geometry they name, this is the amount (expressed
as a percentage) of overhang permitted.

number_of_labels is an integer representing the maximum number of labels MapInfo Professional
will display for the layer. If you omit the number_of_labels argument, there is no limit.

offset_amount is a number from zero to 200 (representing a distance in points), causing the label to
be offset from its anchor point.

alpha_value is an integer value representing the alpha channel value for translucency. Values range
from 0-255. 0 is completely transparent. 255 is completely opaque. Values between 0-255 make the
labels display translucent.

Description

A label property zoom range sets up labeling properties that vary with the map's zoom level. There
can be multiple label properties zoom ranges per layer. To change the labeling expression when
zooming in on the map, or to see the label font grow larger when zooming in, set up multiple label
properties zoom ranges.

The label zoom range turns off the labels if you zoom in or out too far. There can only be one of
these per layer.

Line sets the type of call-out line, if any, that should appear when a label is dragged from its original
location. You can specify Line Simple, Line Arrow, or Line None. For example:

Position controls label positions with respect to the positions of object centroids. For example, the
following statement sets labels above and to the right of object centroids.

Auto Retry lets users to apply a placement algorithm that will try multiple label positions until a
position is found that does not overlap any other label, or until all positions are exhausted.

• When Writing Workspaces, if the Auto Retry feature is On, we write Auto Retry On to the
workspace after the Position clause (but the order isn't important), and increase the
workspace version to 9.5 or later. If the feature is Off, we do not write anything to the
workspace and do not increase the version number. A version 9.5 or later workspace can
have Auto Retry Off in it, but we do not explicitly write it out, to avoid increasing the version
unnecessarily.

• When Reading Workspaces If Auto Retry On or Auto Retry Off is in the workspace, it must be
a version 9.5 or later workspace, otherwise a syntax error occurs. If Auto Retry is On,
different positions are tried to place the label. If Auto Retry is Off, no retry is attempted - this
is the default behavior. Overlap must be Off to enable the Auto Retry feature. If Overlap is On
and Auto Retry On/Off are in the same label clause, the Auto Retry mechanism is initialized
but ignored, so overlapping labels are allowed.

Font is a valid Font clause to specify a text style used in labels.
MapBasic 11.0 661 Reference

Chapter 9:
Set Map statement
With specifies the expression used to construct the text for the labels. For example, the following
statement specifies a labeling expression which uses the Proper$() function to control
capitalization in the label.

Parallel controls whether labels for line objects are rotated, so that the labels are parallel to the
lines.

Auto controls whether automatic labels display. If you specify Auto Off, automatic labels will not
display, although user-edited labels will still display.

Overlap controls whether MapInfo Professional draws labels that would overlap existing labels. To
prevent overlapping labels, specify Overlap Off.

PartialSegments controls whether MapInfo Professional labels an object when the object's centroid
is not in the visible portion of the map. If you specify PartialSegments On (which corresponds to
selecting the Label Partial Objects check box in MapInfo Professional), MapInfo Professional
labels the visible portion of the object. If you specify PartialSegments Off, an object will only be
labeled if its centroid appears in the Map window.

Duplicates controls whether MapInfo Professional allows two or more labels that have the same
text. To prevent duplicate labels, specify Duplicates Off.

Max number_of_labels sets the maximum number of labels that MapInfo Professional will display for
this layer. If you omit the number_of_labels argument, MapInfo Professional places no limit on the
number of labels.

Offset offset_amount specifies an offset distance, so that MapInfo Professional automatically places
each label away from the object's centroid. The offset_amount argument is an integer from zero to
50, representing a distance in points. If you specify Offset 0 labels appear immediately adjacent to
centroids. If you specify Offset 10 labels appear 10 points away. The offset setting is ignored when
the Position clause specifies centered text.

For more information about style overrides for layers, see Modifying Layer Label Overrides and
Enabling, Disabling, or Removing Overrides for Layer Labels. See also, LabelOverrideInfo()
function.

Examples

The following example overrides label style:

Set Map Layer 1 Label Zoom (1, 100000) with State
Override Add Zoom (1, 1000) with State_Name
Override Add Zoom (1000, 10000) with State

The following example adds a new style:

Set Map Layer 1 Label Override Add Zoom (10000, 100000)
with State Overlap Off

Modifying Layer Label Overrides
When the add keyword is excluded from the Label Override clause it will modify the properties for an
existing multiple label override definition within a layer specified by the integer index (1-based) or the
override name.
MapBasic 11.0 662 Reference

Chapter 9:
Set Map statement
Set Map [Layer layer_id
[Label...

[MODIFYLABEL_OVERRIDE_CLAUSE]
[MODIFYLABEL_OVERRIDE_CLAUSE] ...

]
]

Where MODIFYLABEL_OVERRIDE_CLAUSE is:

[Override { labeloverride_index | labeloverride_name } {
[Zoom (min_vis, max_vis) [Units dist_unit]]
[Enable { On | Off }]
[Line { Simple | Arrow | None }]
[Position [Center] [{ Above | Below }] [{ Left | Right }]]
[Auto Retry { On | Off }]
[Font...] [Pen...]
[With label_expr]
[Parallel { On | Off }] [Follow Path] [Percent Over percent]
[Auto { On | Off }]
[Overlap { On | Off }]
[PartialSegments { On | Off }]
[Duplicates { On | Off }]
[Max [number_of_labels]]
[Offset offset_amount]
[LabelAlpha alpha_value]

}]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

labeloverride_index is an integer index (1-based) for the override definition within the layer. Each
label override is tied to an zoom range and is ordered so that the smallest zoom range value is on
top (index 1).

labeloverride_name is the user specified override name.

min_vis, max_vis are numbers specifying the minimum and maximum zoom at which the style
override will come into effect

dist_unit is a string expression, specifying the units for the map (such as “mi” for miles, “m” for
meters; see Set Distance Units statement for a list of available unit names). This is an optional
parameter. If not present, the distance units from the table's coordinate system are used.

label_expr is the expression to use for creating labels.

percent when curved labels are longer than the geometry they name, this is the amount (expressed
as a percentage) of overhang permitted.

number_of_labels is an integer representing the maximum number of labels MapInfo Professional
will display for the layer. If you omit the number_of_labels argument, there is no limit.

offset_amount is a number from zero to 200 (representing a distance in points), causing the label to
be offset from its anchor point.
MapBasic 11.0 663 Reference

Chapter 9:
Set Map statement
alpha_value is an integer value representing the alpha channel value for translucency. Values range
from 0-255. 0 is completely transparent. 255 is completely opaque. Values between 0-255 make the
labels display translucent.

Description

Line sets the type of call-out line, if any, that should appear when a label is dragged from its original
location. You can specify Line Simple, Line Arrow, or Line None. For example:

Position controls label positions with respect to the positions of object centroids. For example, the
following statement sets labels above and to the right of object centroids.

Auto Retry lets users to apply a placement algorithm that will try multiple label positions until a
position is found that does not overlap any other label, or until all positions are exhausted.

• When Writing Workspaces, if the Auto Retry feature is On, we write Auto Retry On to the
workspace after the Position clause (but the order isn't important), and increase the
workspace version to 9.5 or later. If the feature is Off, we do not write anything to the
workspace and do not increase the version number. A version 9.5 or later workspace can
have Auto Retry Off in it, but we do not explicitly write it out, to avoid increasing the version
unnecessarily.

• When Reading Workspaces If Auto Retry On or Auto Retry Off is in the workspace, it must be
a version 9.5 or later workspace, otherwise a syntax error occurs. If Auto Retry is On,
different positions are tried to place the label. If Auto Retry is Off, no retry is attempted - this
is the default behavior. Overlap must be Off to enable the Auto Retry feature. If Overlap is On
and Auto Retry On/Off are in the same LABELCLAUSE, the Auto Retry mechanism is
initialized but ignored, so overlapping labels are allowed.

Font is a valid Font clause to specify a text style used in labels.

With specifies the expression used to construct the text for the labels. For example, the following
statement specifies a labeling expression which uses the Proper$() function to control
capitalization in the label.

Parallel controls whether labels for line objects are rotated, so that the labels are parallel to the
lines.

Auto controls whether automatic labels display. If you specify Auto Off, automatic labels will not
display, although user-edited labels will still display.

Overlap controls whether MapInfo Professional draws labels that would overlap existing labels. To
prevent overlapping labels, specify Overlap Off.

PartialSegments controls whether MapInfo Professional labels an object when the object's centroid
is not in the visible portion of the map. If you specify PartialSegments On (which corresponds to
selecting the Label Partial Objects check box in MapInfo Professional), MapInfo Professional
labels the visible portion of the object. If you specify PartialSegments Off, an object will only be
labeled if its centroid appears in the Map window.

Duplicates controls whether MapInfo Professional allows two or more labels that have the same
text. To prevent duplicate labels, specify Duplicates Off.

Max number_of_labels sets the maximum number of labels that MapInfo Professional will display for
this layer. If you omit the number_of_labels argument, MapInfo Professional places no limit on the
number of labels.
MapBasic 11.0 664 Reference

Chapter 9:
Set Map statement
Offset offset_amount specifies an offset distance, so that MapInfo Professional automatically places
each label away from the object's centroid. The offset_amount argument is an integer from zero to
50, representing a distance in points. If you specify Offset 0 labels appear immediately adjacent to
centroids. If you specify Offset 10 labels appear 10 points away. The offset setting is ignored when
the Position clause specifies centered text.

For more information about style overrides for layers, see Adding Overrides for Layer Labels and
Enabling, Disabling, or Removing Overrides for Layer Labels. See also, LabelOverrideInfo()
function.

Example

The following example modifies style:

Set Map Layer 1 Label Override 3 Zoom (1000, 10000)
Line Arrow Pen (2, 1, 255)

Enabling, Disabling, or Removing Overrides for Layer Labels
If multilabel overrides are defined for a layer, they are enabled by default.

To enable or disable label overrides for a layer, use the Label Override clauses with either the On or
Off option.

To remove an existing label override definition for a layer, use Label Override Remove clause.

Syntax: enable or disable overrides

Set Map
[Window window_id]
[Layer layer_id

[Label [Overrides { On | Off }]]
]

Syntax: remove overrides

Set Map
[Window window_id]
[Layer layer_id

[Label [Override Remove { All | labeloverride_index
[, labeloverride_index ...] }]

]
]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

labeloverride_index is an integer index (1-based) for the override definition within the label. Each
label override is tied to an zoom range and is ordered so that the smallest zoom range value is on
top (index 1).
MapBasic 11.0 665 Reference

Chapter 9:
Set Map statement
For more information about style overrides for layers, see Adding Overrides for Layer Labels and
Modifying Layer Label Overrides. See also, LabelOverrideInfo() function.

Example

The following examples remove styles:

Set Map Layer 1 Label Override Remove 3
Set Map Layer 1 Label Override Remove All

Managing Group Layers
The following clauses affect group layers. Group properties are set like layer properties as part of
the optional group layer clause in the Set Map statement.

For layer clauses, see Managing Individual Layer Properties and Appearance.

Syntax 1 (Group)

Set Map
[Window window_id]
[GroupLayer group_id [Display { On | Off }]

[Title “new_ friendly_name”]]

Syntax 2 (Ungroup)

Set Map
[Window window_id]
[GroupLayer group_id [Ungroup [All]]]

window_id is the integer window identifier of a Map window.

group_id can be either the numeric ID or a string name. The name would refer to the first group
found in the list with that name.

Description

Ungroup removes the group layer but insert all the children of the group list into the parent list. All
keyword will ungroup all nested group layers and insert all children into the parent list. Draw order
will be maintained.
MapBasic 11.0 666 Reference

Chapter 9:
Set Map statement
Examples

GroupLayer “Tropics” (group 1)
Tropic_Of_Capricorn (layer 1)
Tropic_Of_Cancer (layer 2)

Wgrid15 (layer 3)
GroupLayer “World Places” (group 2)

WorldPlaces (layer 4)
WorldPlacesMajor (layer 5)
WorldPlaces_Capitals (layer 6)

Airports (layer 7)

Set Map GroupLayer 1 Ungroup results in this list (with group and layer ID's renumbered):

Tropic_Of_Capricorn (layer 1)
Tropic_Of_Cancer (layer 2)
Wgrid15 (layer 3)
GroupLayer “World Places” (group 2)

WorldPlaces (layer 4)
WorldPlacesMajor (layer 5)
WorldPlaces_Capitals (layer 6)

Airports (layer 7)

whereas

Set Map GroupLayer 1 Ungroup All results in this list:

Tropic_Of_Capricorn (layer 1)
Tropic_Of_Cancer (layer 2)
Wgrid15 (layer 3)
WorldPlaces (layer 4)
WorldPlacesMajor (layer 5)
WorldPlaces_Capitals (layer 6)
Airports (layer 7)

Title will rename to the group layer to the string contained in grouplayer_id_string. The following
renames group layer 2 in the Layer Control layer list as Hello World:

Set Map GroupLayer 2 Title “Hello World”

Ordering Layers
The following clauses move a layer and group layer to a specific location in the layer list.

Syntax

Set Map
[Window window_id]
[Order layer_id, [, layer_id ...]]
[

[GroupLayers group_layer_id [, group_layer_id…]]
MapBasic 11.0 667 Reference

Chapter 9:
Set Map statement
[Layers layer_id [, layer_id]] . . .
[DestGroupLayer group_layer_id [Position position]]

]

window_id is the integer window identifier of a Map window.

layer_id is a number identifying a map layer to modify, according to that layer's original position in
the map, where 1 (one) is the top-most layer number (the layer which draws last, and therefore
always appears on top).

group_layer_id is a number identifying a group layer to modify, according to its original position in
the map.

position is 1-based index within the destination group of where to insert the list of layers being
moved. The default position is the first position in the group (position = 1).

Description

The Cosmetic layer is a special layer, with a layer number of zero. The Cosmetic layer is always
drawn last; thus, a zero should not appear in an Order clause. For example: given a Map window
with four layers (not including the Cosmetic layer), the following Set Map statement will reverse the
order of the topmost two layers:

Set Map Order 2, 1, 3, 4

Set Map Order resets the order in which map layers are drawn. It moves layers, such as 3, 2, and 1
in the following example, to the top of the layer list, removing them from whatever group they might
have been in.

Set Map Order Layers 3, 2, 1

However, using the GroupLayers and Layers clauses lets you specify moving layers and/or whole
groups.

The optional DestGroupLayer specifies the group to insert the list of one or more layers and groups
into, and at what position. This clause can also be used with the older syntax to specify the exact
location to insert the layers. If missing, it means the groups and/or layers are inserted into the top
level list at the first position (as it was assumed with the old syntax). However you can specify the
top level list with a group ID = 0.

The position is the 1-based index within the destination group of where to insert the list of layers
being moved. If the position is omitted it is assumed to be the first position in the group (position = 1).

If the position given exceeds the number of items in the destination group, the new layers and/or
groups will be inserted at the end of the destination group.

Layer and group IDs may be the numeric ID or name. Group IDs range from 0 to the total number of
groups in the list.

Once the list is reordered all IDs are renumbered sequentially from the top down.

Thematic layers and their reference base layer must always remain in a contiguous sequence, so
Set Map Order will not allow you to insert layers within a set of thematic layers. If the Position
specified would insert layers within a set of thematic layers, the layers will instead be inserted above
or below the set, which ever is closest to the original Position.
MapBasic 11.0 668 Reference

Chapter 9:
Set Map statement
Managing the Coordinate System of the Map
The following clauses affect the coordinate system of the map and distance type in use.

Syntax

Set Map
[Window window_id]
[CoordSys...]
[Distance Type { Spherical | Cartesian }]
[XY Units xy_unit [{ Display Decimal {On | Off } |

Display Grid [{ MGRS | USNG [Datum datumid] }] }]]

window_id is the integer window identifier of a Map window.

xy_unit is a string representing the name of an x/y coordinate unit (for example, “m” for meters,
“degree” for degrees). If the XY Units are in degrees, the Display Decimal clause specifies whether
to display in decimal degrees. Set to On to display in decimal degrees or Off to set in degrees,
minutes, or seconds. Set Display Grid to display in Military grid reference format.

datumid is a numeric expression representing the datum id. It must evaluate to one of the following
values:

DATUMID_NAD27 (62)
DATUMID_NAD83 (74)
DATUMID_WGS84 (104)

DATUMID_* are defines in MapBasic.def. WGS84 and NAD83 are treated as equivalent.

Description

CoordSys clause Assigns the Map window a different coordinate system and projection. For details
on the syntax of a CoordSys clause, see CoordSys clause.

The MapBasic coordinate system must be set explicitly with a Set CoordSys statement and can be
retrieved with the SessionInfo() function.

When a Set Map statement includes a CoordSys clause, the MapBasic application's
coordinate system is automatically set to match the map's coordinate system.

This example only alters the map's coordinate system and units; the MapBasic coordinate system is
unaffected:

Set Map XY Units "m" CoordSys Earth Projection 8,
33, "m", -55.5, 0, 0.9999, 304800, 0

Distance Type is either Spherical or Cartesian. All distance, length, perimeter, and area
calculations for objects contained in the Map window will be performed using one of these
calculation methods. Note that if the coordinate system of the Map window is NonEarth, then the
calculations will be performed using Cartesian methods regardless of the option chosen, and if the
coordinate system of the Map window is Latitude/Longitude, then calculations will be performed
using Spherical methods regardless of the option chosen.
MapBasic 11.0 669 Reference

Chapter 9:
Set Map statement
XY Units specifies the type of coordinate unit used to display x-, y-coordinates (for example, when
the user has specified that the map should display the cursor position on the status bar). The unit
name can be “degree” (for degrees longitude/latitude) or a distance unit such as “m” for meters.

If the XY Units are in degrees, the Display Decimal clause specifies whether to display in decimal
degrees (On) or in degrees, minutes, seconds (Off). Display Grid will display coordinates in Military
Grid reference system format no matter how the XY Units are specified.

Set Map XY Units "m" Display Grid
Set Map XY Units "degree" Display Grid
Set Map XY Units "degree" Display Decimal On
Set Map XY Units "degree" Display Decimal Off

The following statement specifies meters as the coordinate unit:

Set Map XY Units "m"

Managing Image Properties
The following clauses affect image reprojection and resampling.

Syntax

Set Map
[Window window_id]
[Image Reprojection { None | Always | Auto }]
[Image Resampling { CubicConvolution | NearestNeighbor }]

window_id is the integer window identifier of a Map window.

Description

Image Reprojection has three options, Always and Auto (for Automatic) and None.

• None means that MapInfo Professional treats raster layers as it has in pre-version 8.5
versions by conforming the vector layers to the raster layer.

• Always means that reprojection is always done; specifically, coordinates are calculated
using precise formulae and pixels are resampled using “cubic convolution” or “nearest
neighbor”.

• Auto means that use of reprojection is decided based on how the destination image
rectangle looks after having been transformed into the source image space. If it looks as a
“rigorous” rectangle (two sides are parallel to x-axis and two sides parallel to y-axis), then the
old MapInfo Professional code works, for example standard Windows functions are used for
only stretching the source image in both directions. This is the fastest way of drawing
resulting images. If the above is not the case (stretching is not enough because of non-
linearities and/or skew of the destination image rectangle transformed into the source image
space), the reprojection code works.

Image Resampling has two options, Cubic Convolution and Nearest Neighbor.

• CubicConvolution is a method of resampling images providing for the best “restoration” of
pixel values unavailable in a source image (because of its discreteness). Here, a pixel of the
destination image is calculated based on the pixel values in a 4x4 window centered at the
“basic” pixel in the source image. The coordinates (real numbers, in general) of the basic
MapBasic 11.0 670 Reference

Chapter 9:
Set Map statement
pixel are calculated for every pixel of the destination image based on special optimized
procedure. Pixels within the above window are weighted in a special way based on the
mantissas of basic pixel coordinates.

• NearestNeighbor is a method of resampling images by merely putting the value of the basic
pixel from a source image into the current pixel position.

Managing Hotlinks
The hotlink settings are persisted via the Set Map statement Layer Activate clause, which supports
multiple hotlink definitions. This includes the ability to add new items, modify the attribute of existing
items, remove and reorder items. For a discussion of how MapInfo Professional supports legacy
syntax, see Exceptions to Support Backwards Compatibility.

Purpose

The purpose of Activate is to allow you to define new hotlinks. You use a hotlink to launch a file or a
URL from a Map window.

Syntax

Set Map
[Window window_id]
[Layer layer_id
 [Activate LAYER_ACTIVATE_CLAUSES]]

Where LAYER_ACTIVATE_CLAUSES is:

Using launch_expr [On { Labels | Objects | Labels Objects }]
[Relative Path { On | Off }] [Enable { On | Off }]

[Alias expression]
[,LAYER_ACTIVATE_CLAUSES]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

launch_expr is an expression that will resolve to the name of the file to launch when the object is
activated.

expression the placeholder of the actual file name expression being set (any URL or filename).

Description

Relative Path lets you define links to files stored in locations relative to the tables. For example: if
the table C:\DATA\STATES.TAB contains HotLinks to workspace files that are stored in directories
under c:\data. The workspace file for New York, NEWYORK.WOR, is stored in c:\data\ny and the
MapBasic 11.0 671 Reference

Chapter 9:
Set Map statement
HotLink associated with New York is “NY\NEWYORK.WOR”. Setting Relative Path to On tells
MapInfo Professional to prefix the HotLink string with the location of the .tab file, in this case
resulting in the launch string “C:\DATA\NY\NEWYORK.WOR”.

HotLinks identified as URLs are not modified before launch, regardless of the Relative
Path setting. The ShellAPI function path's URL is used to determine if a HotLink is a
URL.

Enable clause has two options On and Off. When set to On, it enables the hotlink definition and
when set to Off, it disables the hotlink definition.

For an individual hotlink the Enable clause allow the user to "turn off" a hotlink while preserving the
definition. (In versions prior to 10.0, the user disabled the hotlink by setting the expression to "",
losing the original expression.)

An active object is an object in a Map window that has a URL or filename associated with it. Clicking
on an active object with the HotLink Tool will launch the associated URL or file. For example, if the
string http://www.boston.com is associated with a point object on the map, then clicking the
point, or its label, will result in the default browser being started with the site
http://www.boston.com. You can associate other types of files with map objects; MapInfo
workspace (.wor), table (.tab) or application (.mbx) files, Word documents (.doc), executable files
(.exe), etc. Any type of file that the system knows how to “launch” can be associated with a map
object. From version 10.0 onwards another clause “Alias” has been added for hotlinks. This alias
clause is used to set an expression, which will basically be the placeholder of the actual File Name
Expression being set. In the current hotlinks implementation, the FileName Expression can be set to
any URL or filename. It has been found that URL’s can be very long and hence when an user clicks
on an active Hotlinks object having multiple hotlink definitions, it becomes difficult to show the
lengthy URL’s in the popup window. To solve this problem, the Alias Expression has been added to
the GUI. The similar work is performed by the Alias keyword in MapBasic. When an active object
has multiple hotlink definitions, if you set the Alias Expression to a valid expression, then the popup
window shows the Alias Name, instead of the lengthy URL.

The Alias expression is displayed in the popup window, only if it is set to something other
than the default value “None”. Thus hotlink definitions can have Alias expression set or not.
Any hotlink created using MapBasic without the alias keyword, will have the Alias Expression
in the GUI have a value of “None”.

This version of the command wipes out any existing definitions and creates one or more new
definitions. The Using clause is required and launch_expr must not be an empty string (for example,
""). When the Enable clause is included and set to Off, the hotlink definition will be disabled.

The On, Relative Path, Enable and Alias clauses are optional.

For more information about Hotlinks, see Adding New HotLink Definitions, Modifying Existing
HotLink Definitions, Removing HotLink Definitions, and Reordering HotLink Definitions.
MapBasic 11.0 672 Reference

Chapter 9:
Set Map statement
Exceptions to Support Backwards Compatibility

The Using clause can be omitted, but only from the first HotLink definition. The Using expression
can be empty (""), but only for the first HotLink definition.

No Using Clause

Both of the following commands omit the Using clause, and in 850 this has the consequence of
updating the properties of the one/only hotlink def, even if the user has never issues a command to
set the Using clause. As of 900 these commands are a problem because map layers are created
without any hotlink definitions.

• Activate On Objects
• Activate Relative Path On

To solve this problem, MapInfo Professional allows empty expressions, but only for the first hotlink
definition. As was the case in pre-900 versions, a hotlink with an empty expression is effectively
disabled. Omitting the Using clause, generates an error unless the command originates from a pre-
900 application or workspace.

Empty Using clause

The following command sets the hotlink expression to an empty string, which essentially disables
hotlink capability for the layer. In fact, the default launch expression is the empty string, so the
hotlink definition has no affect until the expression is set to a non-empty string. This works as a way
to enable/disable a hotlink in 850. In 900 we support the notion of enabling/disabling via explicit
syntax in the Set map Layer Activate Enable On/Off command, and don't really want to support
hotlink definition with an empty expression string.

Set Map Layer 1 Activate Using ""

This statement allows empty expressions, but only for the first hotlink definition. As was the case in
pre-9.0 versions, a hotlink with an empty expression is effectively disabled.

When a Set Map Layer Activate command is encounter with no Using clause or an empty Using
clause, the action depends on the current state of the layer's hotlinks.

The table following contains examples of different scenarios.

Action
Number of
HotLinks Result

Activate
Using " "

One or More Sets the first hotlink's expression to empty string. The definition is
effectively disabled until the expression is set to a non-empty
value.

Activate
Using " "

Zero Creates a new hotlink definition and sets its expression to empty.
The definition is effectively disabled until the expression is set to a
non-empty value.
MapBasic 11.0 673 Reference

Chapter 9:
Set Map statement
Note that the same actions will apply when reading in table metadata.

Example

Set Map Layer 1 Activate Using Url1 On Objects Relative Path Off Enable
On, Using Url2 On Objects Relative Path On Enable On

Adding New HotLink Definitions
The following clause adds a new hotlink definition to the map. For a detailed description of the
Activate clause, see Managing Hotlinks.

Syntax

Set Map
[Window window_id]
[Layer layer_id
 [Activate Add [First] LAYER_ACTIVATE_CLAUSES]]

Where LAYER_ACTIVATE_CLAUSES is:

Using launch_expr [On { Labels | Objects | Labels Objects }]
[Relative Path { On | Off }] [Enable { On | Off }]
[Alias expression] [,LAYER_ACTIVATE_CLAUSES]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

launch_expr must not be an empty string (for example, "").

expression the placeholder of the actual file name expression being set (any URL or filename).

Activate On
Objects

One or More If issued from a pre-9.0 application or workspace:

• Update the first hotlink definition with the values specified in
the command. Does not affect the expression.

If issued from a 9.0 (or later) application or workspace:

• Generates a "Missing required Using clause" syntax error

Activate On
Object

Zero If issued from a pre-9.0 application or workspace:

• Creates a new hotlink definition, set its expression to empty
and apply the values specified in the command. The definition
will effectively be disabled until the expression is set to a non-
empty value.

If issued from a 9.0 (or later) application or workspace

• Generates a "Missing required Using clause" syntax error
MapBasic 11.0 674 Reference

Chapter 9:
Set Map statement
Description

First is optional to insert the new items at the beginning of the list.

Enable clause has two options On and Off. When set to On, it enables the hotlink definition and
when set to Off, it disables the hotlink definition.

Examples

Set Map Layer 1 Activate Add Using URL1 On Objects Relative Path On Alias
URL, Using URL2 On Objects Enabled Off
Set Map Layer 1 Activate Add First Using URL1 On Objects

Notes

MapBasic 9.0 and later of this command contain a hotlink def at the end of the hotlink list.

Modifying Existing HotLink Definitions
The following clause modifies hotlink definition on the map.For a detailed description of the Activate
clause, see Managing Hotlinks.

Syntax

Set Map
[Window window_id]
[Layer layer_id
 [Activate Modify MODIFY_CLAUSES]]

Where MODIFY_CLAUSES is:

hotlink_id { [Using launch_expr]
[On { Labels | Objects | Labels Objects }]
[Relative Path { On | Off }] [Enable { On | Off }]
[Alias expression] }

[, MODIFYCLAUSE]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

hotlink_id is an integer index (1-based) that specifies the hotlink definition to modify. At least one
hotlink_id must be specified.

launch_expr must not be an empty string (for example, "").

expression the placeholder of the actual file name expression being set (any URL or filename).

Description

Enable clause has two options On and Off. When set to On, it enables the hotlink definition and
when set to Off, it disables the hotlink definition.
MapBasic 11.0 675 Reference

Chapter 9:
Set Map statement
Examples

Set Map Layer 1 Activate Modify 1 Using URL1 On Objects Alias URL, 2
Relative Path Off
Set Map Layer 1 Activate Modify 2 On Objects, 4 On Labels
Set Map Layer 1 Activate Modify 3 Relative Path On Enable Off
Set Map Layer 1 Activate Modify 2 Enable Off, 3 Enable On

Removing HotLink Definitions
The following clause removes a new hotlink definition from the map.For a detailed description of the
Activate clause, see Managing Hotlinks.

Syntax

Set Map
[Window window_id]
[Layer layer_id

[Activate Remove {
All | hotlink_id [, hotlink_id, hotlink_id, ...]

}]
]

window_id is the integer window identifier of a Map window.

layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

hotlink_id is an integer index (1-based) that specifies the hotlink definition to modify. At least one
hotlink_id must be specified.

Description

All specifies that all hotlink definitions are removed.

Examples

Set Map Layer 1 Activate Remove 2, 4
Set Map Layer 1 Activate Remove All

Reordering HotLink Definitions
The following clause reorders hotlink definitions on the map.For a detailed description of the Activate
clause, see Managing Hotlinks.

Syntax

Set Map
[Window window_id]
[Layer layer_id

[Activate Order hotlink_id [,hotlink_id, hotlink_id, ...]]]

window_id is the integer window identifier of a Map window.
MapBasic 11.0 676 Reference

Chapter 9:
Set Map3D statement
layer_id identifies which layer to modify; can be a SmallInt (for example, use 1 to specify the top map
layer other than Cosmetic) or a string representing the name of a table displayed in the map.

hotlink_id is an integer index (1-based) that specifies the hotlink definition to modify. At least one
hotlink_id must be specified.

Example

Set Map Layer 1 Activate Order 2, 3, 1

Set Map3D statement

Purpose

Change the settings of an existing 3DMap window. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Set Map3D
[Window window_id]
[Camera [Zoom factor | Pitch angle | Roll angle | Yaw angle |

Elevation angle Position (x,y,z) | FocalPoint (x,y,z)]]
[Orientation (vu_1, vu_2, vu_3, vpn_1, vpn_2, vpn_3,

clip_near, clip_far)]]
[Light [Position (x, y, z | Color lightcolor]]
[Resolution (res_x, res_y)]
[Scale grid_scale]
[Background backgroundcolor]
[Refresh]

mapper_creation_string specifies a command string that creates the mapper textured on the grid.

factor specifies the amount to set the zoom.

angle is an angle measurement in degrees. The horizontal angle in the dialog box ranges from 0-
360 degrees and rotates the maps around the center point of the grid. The vertical angle in the
dialog box ranges from 0-90 and measures the rotation in elevation from the start point directly over
the map.

res_x, res_y is the number of samples to take in the x- and y-directions. These values can increase
to a maximum of the grid resolution. The resolution values can increase to a maximum of the grid x,y
dimension. If the grid is 200x200 then the resolution values will be clamped to a maximum of
200x200. You cannot increase the grid resolution, only specify a subsample value.

grid_scale is the amount to scale the grid in the z-direction. A value >1 will exaggerate the topology
in the z-direction, a value < 1 will scale down the topological features in the z-direction.

backgroundcolor is a color to be used to set the background and is specified using the RGB()
function.
MapBasic 11.0 677 Reference

Chapter 9:
Set Map3D statement
Description

The Set Map3D statement changes the settings of an already created 3D Map. If the original tables
from which the 3D Map was created were modified either by adding labels or by modifying
geometry, Refresh will capture the changes in the mapper and recreate the 3D map based on those
changes.

Camera specifies the camera position and orientation.

Pitch adjusts the camera's current rotation about the x axis centered at the camera's origin.

Roll adjusts the camera's current rotation about the z axis centered at the camera's origin.

Yaw adjusts the camera's current rotation about the y axis centered at the camera's origin.

Elevation adjusts the current camera's rotation about the X Axis centered at the camera's focal
point.

Position indicates the camera/light position.

FocalPoint indicates the camera/light focal point.

Orientation specifies the cameras ViewUp (vu_1, vu_2, vu_3), ViewPlane Normal (vpn_1, vpn_2,
vpn_3) and Clipping Range (clip_near, clip_far), used specifically for persistence of view.

Resolution is the number of samples to take in the x- and y-directions. These values can increase
to a maximum of the grid resolution. The resolution values can increase to a maximum of the grid x,y
dimension. If the grid is 200x200 then the resolution values will be clamped to a maximum of
200x200. You can't increase the grid resolution, only specify a subsample value.

Units specifies the units the grid values are in. Do not specify this for unit-less grids (for example,
grids generated using temperature or density). This option needs to be specified at creation time. If
there are units associated with your grid values, they have to specified when you create the 3DMap.
You cannot change them later with Set Map3D or the Properties dialog box.

Refresh regenerates the texture from the original tables.

Example

Dim win3D as Integer
Create Map3D Resolution(75,75) Resolution(100,100) Scale 2 Background
RGB(255,0,0)
win3D = FrontWindow()
Set Map3D Window win3D Resolution(150,100) Scale 0.75 Background
RGB(255,255,0)
Changes the original 3DMap window's resolution in the X and Y, the scale
to de-emphasize the grid in the Z direction (< 1) and change the
background color to yellow.

See Also:

Create Map3D statement, Map3DInfo() function
MapBasic 11.0 678 Reference

Chapter 9:
Set Next Document statement
Set Next Document statement

Purpose

Re-parents a MapInfo Professional document window (for example, so that a Map window becomes
a child window of a Visual Basic application). You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Set Next Document
{ Parent HWND | Style style_flag | Parent HWND Style style_flag }

HWND is an integer window handle, identifying a parent window.

style_flag is an integer code (see table below), indicating the window style.

Description

This statement is used in Integrated Mapping applications. For an introduction to Integrated
Mapping, see the MapBasic User Guide.

To re-parent an MapInfo Professional window, issue a Set Next Document statement, and then
issue one of these window-creation statements: Map statement, Browse statement, Graph
statement, Layout statement, or Create Legend statement.

Include the Parent clause to identify an existing window, which will become the parent of the
MapInfo Professional window you are about to create. Include the Style clause to specify a window
style. If you are creating a document window, such as a Map window, include both clauses.

The style_flag argument must be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.

style_flag code ID Effect on the next document window:

WIN_STYLE_STANDARD 0 This code resets the style flag to its default value.
If you issue a Set Next Document Style 1
statement, but then you change your mind and
do not want to use the child window style, issue a
Set Next Document Style 0 statement to reset
the style.

WIN_STYLE_CHILD 1 Next window is created as a child window.

WIN_STYLE_POPUP_FULLCAPTION 2 Next window is created as a popup window, but
with a full-height title bar caption.

WIN_STYLE_POPUP 3 Next window is created as a popup window with
a half-height title bar caption.
MapBasic 11.0 679 Reference

Chapter 9:
Set Paper Units statement
The parent and style settings remain in effect until you create a new window. The new window
adopts the parent and style settings you specified; then MapInfo Professional reverts to its default
parent and style settings for any subsequent windows. To re-parent more than one window, issue a
separate Set Next Document statement for each window you will create.

The Create ButtonPad statement resets the parent and style settings, although the new
ButtonPad is not re-parented.

This statement re-parents document windows. To re-parent dialog box windows, use the Set
Application Window statement. To re-parent special windows such as the Info window, use the
Set Window statement.

Example

The sample program LEGENDS.MB uses the following statements to create a Theme Legend
window inside of a Map window.

Dim win As Integer
win = FrontWindow()
...
Set Next Document

Parent WindowInfo(win, WIN_INFO_WND)
Style 1

Create Legend From Window win

See Also:

Set Application Window statement, Set Window statement

Set Paper Units statement

Purpose

Sets the paper unit of measure that describes screen window sizes and positions. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Paper Units unit

unit is a string representing the name of a paper unit (for example, “cm” for centimeters).

Description

The Set Paper Units statement changes MapBasic's paper unit of measure.

Paper units are small units of linear measure, such as “mm” (millimeters). MapBasic's uses “in”
(inches) as the default paper unit; this remains MapBasic's paper unit unless a Set Paper Units
statement is issued.
MapBasic 11.0 680 Reference

Chapter 9:
Set Path statement
Some MapBasic statements (for example, the Set Window statement) include Position, Width,
and Height clauses, through which a MapBasic program can reset the size or the position of
windows on the screen. The numbers that you specify in Position, Width, and Height clauses use
MapBasic's paper units. For example, the Set Window statement Set Window Width 5 resets
the width of a window. The window's new width depends on the paper unit in use; if MapBasic is
currently using “in” as the paper unit, the Set Window statement makes the Map five inches wide.

If MapBasic is currently using “cm” as the paper unit, the Set Map statement makes the Map five
centimeters wide.

MapBasic's paper unit is internal, and invisible to the end-user. When a user performs an operation
which displays a paper measurement, the unit of measure displayed on the screen is independent of
MapBasic's internal paper unit.

The unit parameter must be one of the values listed in the following table:

See Also:

Set Area Units statement, Set Distance Units statement

Set Path statement

Purpose

Allows user to change programmatically the path of a special MapInfo Professional directory defined
initially in the Preferences dialog to access specific MapInfo files. You can issue this statement from
the MapBasic Window in MapInfo Professional.

Syntax

Set Path current_path_id path

current_path_id is one of the following values:

PREFERENCE_PATH_TABLE (0)
PREFERENCE_PATH_WORKSPACE (1)
PREFERENCE_PATH_MBX (2)
PREFERENCE_PATH_IMPORT (3)
PREFERENCE_PATH_SQLQUERY (4)
PREFERENCE_PATH_THEMETHEMPLATE (5)

Unit name Paper unit represented

“cm” Centimeters

“in” Inches

“mm” Millimeters

“pt” Points

“pica” Picas
MapBasic 11.0 681 Reference

Chapter 9:
Set PrismMap statement
PREFERENCE_PATH_MIQUERY (6)
PREFERENCE_PATH_NEWGRID (7)
PREFERENCE_PATH_CRYSTAL (8)
PREFERENCE_PATH_GRAPHSUPPORT (9)
PREFERENCE_PATH_REMOTETABLE (10)
PREFERENCE_PATH_SHAPEFILE (11)
PREFERENCE_PATH_WFSTABLE (12)
PREFERENCE_PATH_WMSTABLE (13)

path is a string value, indicating the directory or folder to be used for these files.

Description

Set Path statement given the ID of a special MapInfo Preference directory allows to set it
programmatically. An example of a special MapInfo directory is the default location to which MapInfo
Professional writes out new native MapInfo tables.

Example

include "mapbasic.def"
declare sub main
sub main
Set Path PREFERENCE_PATH_WORKSPACE “C:\Temp\”
Print GetCurrentPath$(PREFERENCE_PATH_WORKSPACE)
end sub

See Also:
GetPreferencePath$() function

Set PrismMap statement

Purpose

Changes the settings of an existing Prism Map window. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Set PrismMap
[Window window_id]
[Camera [Zoom factor | Pitch angle | Roll angle | Yaw angle |

Elevation angle Position (x,y,z) | FocalPoint (x,y,z)]]
[Orientation (vu_1, vu_2, vu_3, vpn_1, vpn_2, vpn_3,

clip_near, clip_far)]]
[Light [Position (x,y,z) | Color lightcolor]]
[Scale grid_scale]
[Background backgroundcolor]
[Label With infotips_expr]
[Refresh]

window_id is a window identifier a for a mapper window which contains a Grid layer. An error
message is displayed if a Grid layer is not found.
MapBasic 11.0 682 Reference

Chapter 9:
Set PrismMap statement
mapper_creation_string specifies a command string that creates the mapper textured on the grid.

Camera specifies the camera position and orientation.

angle is an angle measurement in degrees. The horizontal angle in the dialog box ranges from 0-
360 degrees and rotates the maps around the center point of the grid. The vertical angle in the
dialog box ranges from 0-90 and measures the rotation in elevation from the start point directly over
the map.

Pitch adjusts the camera's current rotation about the X-Axis centered at the camera's origin.

Roll adjusts the camera's current rotation about the Z-Axis centered at the camera's origin.

Yaw adjusts the camera's current rotation about the Y-Axis centered at the camera's origin.

Elevation adjusts the current camera's rotation about the X-Axis centered at the camera's focal
point.

Position indicates the camera or light position.

FocalPoint indicates the camera or light focal point.

Orientation specifies the cameras ViewUp (vu_1, vu_2, vu_3), ViewPlane Normal (vpn_1, vpn_2,
vpn_3), and Clipping Range (clip_near, clip_far), used specifically for persistence of view.

backgroundcolor is a color to be used to set the background and is specified using the RGB()
function.

infotips_expr is the expression to use for InfoTips.

Refresh regenerates the texture from the original tables.

Description

The Set PrismMap statement changes the settings of an already created Prism Map.

Example

The following example changes the original PrismMap window's resolution in the x and y, the scale
to de-emphasize the grid in the z-direction (< 1) and changes the background color to yellow.

Dim win3D as Integer
Create PrismMap Resolution(75,75) Resolution(100,100) Scale 2 Background
RGB(255,0,0)
win3D = FrontWindow()
Set PrismMap Window win3D Resolution(150,100) Scale 0.75 Background
RGB(255,255,0)

See Also:

Create PrismMap statement, PrismMapInfo() function
MapBasic 11.0 683 Reference

Chapter 9:
Set ProgressBars statement
Set ProgressBars statement

Purpose

Disables or enables the display of progress-bar dialog boxes. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Set ProgressBars { On | Off }

Description

Some MapBasic statements, such as the Create Object As Buffer statement, automatically display a
progress-bar dialog box (a “percent complete” dialog box showing a horizontal bar and a Cancel
button). To suppress progress-bar dialog boxes, use the Set ProgressBars Off statement. By
suppressing these dialog boxes, you guarantee that the user will not interrupt the operation by
clicking the Cancel button. To resume displaying progress-bar dialog boxes, use the Set
ProgressBars On statement.

If you issue a Set ProgressBars Off statement from within a compiled MapBasic application (MBX
file), the statement only disables progress-bar dialog boxes caused by the MBX file. Actions taken
by the user can still cause progress bars to display. Also, Run Menu Command statements can still
cause progress bars to display, because the Run Menu Command statement simulates the user
selecting a menu command.

To disable progress-bar dialog boxes that are caused by user actions or Run Menu Command
statements, type a Set ProgressBars Off statement into the MapBasic window (or send the
command to MapInfo Professional through OLE Automation or DDE).

If your application minimizes MapInfo Professional (using the Set Window MapInfo Min), you should
suppress progress bars. When a progress bar displays while MapInfo Professional is minimized, the
progress bar is frozen for as long as MapInfo Professional is minimized. If you suppress the display
of progress bars, the operation can proceed, even if MapInfo Professional is minimized.

See Also:

ProgressBar statement, Run Menu Command statement

Set Redistricter statement

Purpose

Changes the characteristics of a districts table during a redistricting session. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax 1 (Change)

Set Redistricter districts_table
[Change district_name
MapBasic 11.0 684 Reference

Chapter 9:
Set Redistricter statement
[To new_district_name] [Pen...] [Brush...] [Symbol...]]
[Add new_district_name [Pen...] [Brush...] [Symbol...]]
[Remove district_name]

Syntax (Order)

Set Redistricter districts_table
Order { "Alpha" | "MRU" | "Unordered" }

Syntax 3 (Percentage)

Set Redistricter districts_table
Percentage from { column | row }

districts_table is the name of the districts table (for example, Districts).

district_name is a string representing the name of an existing district.

new_district_name is a string representing a new district name, used when adding a district or
renaming an existing district.

Pen is a valid Pen clause to specify a line style. For example, Pen MakePen (width, pattern, color).

Brush is a valid Brush clause to specify fill style. For example, Brush MakeBrush (pattern,
forecolor, backcolor).

Symbol is a valid Symbol clause to specify a point style. For example, Symbol MakeSymbol
(shape, color, size).

Description

Set Redistricter modifies the set of districts that are in use during a redistricting session. To begin a
redistricting session, use the Create Redistricter statement. For an introduction to redistricting, see
the MapInfo Professional documentation.

To add, delete, or modify a district or districts, use Syntax 1. Use the Change clause to change the
name and/or the graphical style associated with a district. Use the Add clause to add a new district.
Use the Remove clause to remove an existing district; when you remove a district, map objects
which had been assigned to that district are re-assigned to the “all others” district.

The district_name and new_district_name parameters must always be string expressions, even if
the district column is numerical. For example, to refer to the district representing the number 33,
specify the string expression “33”.

To affect the ordering of the rows in the Districts Browser, use Syntax 2. Specify “Alpha” to use
alphabetical ordering. Specify “MRU” if you want the most recently used district to appear on the top
row of the Districts Browser. Specify “Unordered” if you want districts to be added to the bottom row
of the Districts Browser as they are added.

Examples

Once a redistricting session is in effect, the following statement creates a new district.

Set Redistricter Districts
Add "NorthWest" Brush MakeBrush(2, 255, 0)
MapBasic 11.0 685 Reference

Chapter 9:
Set Resolution statement
The following statement renames the “NE” district to “NorthEast.” Note that this type of change can
affect the table that is being redistricted. Initially, any rows belonging to the “NE” district have “NE”
stored in the district column. After the Set Redistricter… Change statement, each of those rows
has “NorthEast” stored in that column.

Set Redistricter Districts
Change "NE" To "NorthEast"

The following statement removes the “NorthWest” district from the Districts table:

Set Redistricter Districts
Remove "NorthWest"

The following statement sets the ordering of rows in the Districts Browser, so that the most recently
used districts appear at the top:

Set Redistricter Districts
Order "MRU"

See Also:

Create Redistricter statement

Set Resolution statement

Purpose

Sets the object-editing resolution setting; this controls the number of nodes assigned to an object
when an object is converted to another object type. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Set Resolution node_limit

node_limit is a SmallInt value between 2 and 1,048,570 (inclusive); default is 100.

Description

By default, MapInfo Professional assigns 100 nodes per circle when converting a circle or arc into a
region or polyline. Use the Set Resolution statement to alter the number of nodes per circle. By
increasing the resolution setting, you can produce smoother result objects.

The Set Resolution statement affects subsequent operations performed by the user, such as the
Objects > Convert to Regions command and the Objects > Convert to Polylines command. The
resolution setting also affects some MapBasic statements and functions, such as the
ConvertToRegion() function and the ConvertToPline() function. The resolution setting also
affects operations where MapInfo Professional performs automatic conversion (for example, Split,
Combine).

Buffering operations are not affected by the Set Resolution statement. The Create Object As
Buffer statement and the Buffer() function both have resolution parameters which allow you to
specify buffer resolution explicitly.
MapBasic 11.0 686 Reference

Chapter 9:
Set Shade statement
See Also:

ConvertToPline() function, ConvertToRegion() function

Set Shade statement

Purpose

Modifies a thematic map layer. You can issue this statement from the MapBasic Window in MapInfo
Professional.

Syntax

Set Shade
[Window window_id] { map_layer_id | "table (theme_layer_id)" }

[Style Replace { On | Off }]
...

window_id is an integer window identifier.

map_layer_id is a SmallInt value, representing the layer number of a thematic layer.

table is the name of the table on which a thematic layer is based.

theme_layer_id is a SmallInt value, one or larger, representing which thematic layer to modify (for
example, one represents the first thematic layer created).

Description

After you use the Shade statement to create a thematic map layer, you can use the Set Shade
statement to modify the settings for that thematic layer. Issuing a Set Shade statement is analogous
to choosing Map > Modify Thematic Map. The syntax of the Set Shade statement is identical to the
syntax of the Shade statement, except for the way that the Set Shade statement identifies a map
layer. A Set Shade statement can identify a layer by its layer number, as shown below:

Set Shade
Window i_map_winid
2
With Num_Hh_90
Graduated 0.0:0 11000000:24 Vary Size By "SQRT"

Or a Set Shade statement can identify a map layer by referring to the name of a table (the base
table on which the layer was based), followed by a number in parentheses:

Set Shade
Window i_map_winid
"States(1)"
With Num_Hh_90
Graduated 0.0:0 11000000:24 Vary Size By "SQRT"

The number in parentheses represents the number of the thematic layer. To modify the first thematic
layer that was based on the States table, specify States(1), etc.

Style Replace On (default) specifies the layers under the theme are not drawn.
MapBasic 11.0 687 Reference

Chapter 9:
Set Style statement
Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

See Also:

Shade statement

Set Style statement

Purpose

Resets the current Pen, Brush, Symbol, or Font style. You can issue this statement from the
MapBasic Window in MapInfo Professional.

Syntax

Set Style
{ Brush... | Font... | Pen... |

BorderPen | LinePen | Symbol... }

Font is a valid Font clause to specify a text style.

Pen is a valid Pen clause to specify a line style.

Brush is a valid Brush clause to specify fill style.

Symbol is a valid Symbol clause to specify a point style.

BorderPen takes a Pen clause which specifies a border line style.

LinePen takes a Pen clause which specifies a line style.

Description

The Set Style statement resets the Pen, Brush, Symbol, or Font style currently in use.

The Pen clause sets both the line and border pen. To set them individually, use the LinePen clause
to set the line and the BorderPen clause to set the border. When the user draws a new graphical
object to a Map or Layout window, MapInfo Professional creates the object using whatever Font,
Pen, Brush, and/or Symbol styles are currently in use.

Example

Example of Brush, Symbol, and Font:

Include "mapbasic.def"
Set Style Brush MakeBrush(64, CYAN, BLUE)
Set Style Symbol MakeSymbol(9, BLUE, 14)
Set Style Font MakeFont("Arial", 1, 14, BLACK,WHITE)
MapBasic 11.0 688 Reference

Chapter 9:
Set Table Datum statement
Example of Pen:

In this example, the line pen and the border pen are red.

Include "mapbasic.def"
Set Style Pen MakePen(3, 9, RED)

Example of LinePen and BorderPen:

In this example, the line pen is red and the border pen is green.

Include "mapbasic.def"
Set Style LinePen MakePen(6, 77, RED)
Set Style BorderPen MakePen(6, 77, GREEN)

See Also:

CurrentBrush() function, CurrentFont() function, CurrentPen() function, CurrentSymbol()
function, MakeBrush() function, MakeFont() function, MakePen() function, MakeSymbol()
function, RGB() function

Set Table Datum statement

Purpose

Writes the datum index information for native tables into the map file, including the ellipsoid index, 3
shift parameters, 3 rotation parameters, scale parameter. Because some datums are identical, this
statement keeps the datum index along with all datum parameters in memory and writes it into
mapfile. You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Table table_name datum datum_number

See Also:

Set Datum Transform Version statement

Set Table statement

Purpose

Configures various settings of an open table. You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Set Table tablename
[FastEdit { On | Off }]
[Undo { On | Off }]
[ReadOnly]
[Seamless { On | Off } [Preserve]]
MapBasic 11.0 689 Reference

Chapter 9:
Set Table statement
[UserMap { On | Off }]
[UserBrowse { On | Off }]
[UserClose { On | Off }]
[UserEdit { On | Off }]
[UserRemoveMap { On | Off }}]
[UserDisplayMap { On | Off }]

table is a string representing the name of the table to be set.

Description

The Set Table statement controls settings that affect how and whether a table can be edited. You
can use Set Table to flag a table as read-only (so that the user will not be allowed to make changes
to the table). You can also use Set Table to activate or de-activate special editing modes which
disable safety mechanisms for the sake of improving editing performance.

Setting FastEdit Mode

Ordinarily, whenever a table is edited (either by the user or by a MapBasic application), MapInfo
Professional does not immediately write the edit to the affected table. Instead, MapInfo Professional
stores information about the edit to a temporary file known as a transaction file. By writing to a
transaction file instead of writing directly to a table, MapInfo Professional gives the user the
opportunity to later discard the edits (for example, by choosing File > Revert).

If you use the Set Table statement to set FastEdit mode to On, MapInfo Professional writes edit
information directly to the table, instead of performing the intermediate step of writing the edit
information to a transaction file. Turning on FastEdit mode can make subsequent editing operations
substantially faster.

While FastEdit mode is on, table edits take effect immediately, even if you do not issue a Commit
Table statement. Use FastEdit mode with caution; there is no opportunity to discard edits by
choosing File > Close or File > Revert.

You can only turn FastEdit mode on for normal, base tables; you cannot turn on FastEdit for a
temporary, query table such as Query1. You cannot turn on FastEdit mode for a table that already
has unsaved changes. You cannot turn on FastEdit mode for a linked table.

CAUTION: While a table is open in FastEdit mode, other network users cannot open that
table. After you have completed all edits to be made in FastEdit mode, issue a
Commit Table statement or a Rollback statement to reset the file so that other
network users can access it.

If you include the optional ReadOnly clause, the table is set to read-only, so that the user cannot edit
the table for the remainder of the MapInfo Professional session. The Set Table statement does not
allow you to turn read-only mode off. You can also activate read-only mode by adding the ReadOnly
keyword to the Open Table statement.

Ordinarily, whenever an edit is made, MapInfo Professional stores information about the edit in
memory, so that the user has the option of choosing Edit > Undo. If you use the Set Table
statement to set Undo mode to Off, MapInfo Professional does not save undo information for each
edit; this can make subsequent editing operations substantially faster.
MapBasic 11.0 690 Reference

Chapter 9:
Set Table statement
Managing Seamless Tables

A seamless table defines a list of other tables that you can treat as a group. See the MapInfo
Professional documentation for an introduction to seamless tables.

The Seamless clause enables or disables the seamless behavior for a table. Specify Seamless Off
to disable seamless behavior, so that you can access the individual rows that define a seamless
table. Specify Seamless On to restore seamless behavior. If you include the Preserve keyword, the
effect is permanent; MapInfo Professional writes a change to the table. If you omit the Preserve
keyword, the effect is temporary, only lasting for the remainder of the session.

The User… clauses allow you to limit the actions that the user can perform on a table. These
clauses are useful if you want to prevent the user from accidentally opening, closing, or changing
tables or windows.

These clauses limit the user-interface only; in other words, UserMap Off prevents the user from
opening the table in a Map window, but does not prevent a MapBasic program from doing so.

You cannot use these clauses on Cosmetic layers.

Example

The following statement prevents the World table from appearing in the Close Table dialog box.

Set Table World UserClose Off

See Also:

TableInfo() function

Example Effect

UserMap Off Table will not appear in the New Map Window or Add Layer dialog
boxes.

UserBrowse Off Table will not appear in the New Browser Window dialog box.

UserClose Off Table will not appear in the Close Table dialog box.

UserEdit Off Table will not be editable through the user interface: Browser and Info
windows are not editable, and the map layer cannot be made editable.

UserRemoveMap Off If this table appears in a Map window, the Remove Layers button (in the
Layer Control window) is disabled for this table.

UserDisplayMap Off If this table appears in a Map window, the Visible On/Off check box (in
the Layer Control window) is disabled for this table.
MapBasic 11.0 691 Reference

Chapter 9:
Set Target statement
Set Target statement

Purpose

Sets or clears the map editing target object(s). You can issue this statement from the MapBasic
Window in MapInfo Professional.

Syntax

Set Target { On | Off }

Description

Use the Set Target statement to set or clear the editing target object(s); this corresponds to
choosing MapInfo Professional's Objects > Set Target and Objects > Clear Target menu items.
Some of MapInfo Professional's advanced editing operations require that an editing target be
designated; for example, you must designate an editing target before calling the Objects Split
statement. For an introduction to using the editing target, see the MapInfo Professional
documentation.

Using the Set Target On statement corresponds to choosing Objects > Set Target. The current set
of selected objects becomes the editing target (or an error is generated if no objects are selected).

Using the Set Target Off statement corresponds to choosing Objects > Clear Target.

See Also:

Objects Combine statement, Objects Erase statement, Objects Intersect statement, Objects
Overlay statement, Objects Split statement

Set Window statement

Purpose

Changes the size, position, title, or status of a window, and controls the printer, paper size, and
margins used by MapInfo Professional. This statement has been updated to accommodate the anti-
aliasing choices for vector, text, and image objects. The new code is in bold. You can issue this
statement from the MapBasic Window in MapInfo Professional.

Syntax

Set Window window_id
[Position (x, y) [Units paper_units]]
[Width win_width [Units paper_units]]
[Height win_height [Units paper_units]]
[Font...]
[Enhanced { On | Off }]
[Smooth [Vector { None | Antialias}] [Text { None | Antialias}]

[Image { None | Low | High }]]
[Min | Max | Restore]
[Front]
MapBasic 11.0 692 Reference

Chapter 9:
Set Window statement
[Title { new_title | Default }]
[Help [{ File help_file | File Default | Off } [Permanent]]

[Contents] [ID context_ID] [{ Show | Hide }]
[Printer { Default | Name printer_name }

[Orientation { Portrait | Landscape }]
[Copies number]
[Papersize number]
[Border { On | Off }]
[TrueColor { On | Off }]
[Dither { Halftone | ErrorDiffusion }]
[Method { Device | Emf | PrintOsbm}]
[Transparency

[Raster { Device | ROP }]
[Vector { Device | Internal }]]
[Margins

[Left d1] [Right d2] [Top d3] [Bottom d4]
Units paper_units] }]

[Export { Default |
[Border { On | Off }]
[TrueColor { On | Off }]
[Dither { Halftone | ErrorDiffusion }]
[Transparency

[Raster { Device | ROP }]
[Vector { Device | Internal }]]

[Scale Patterns { On | Off }]
[Antialiasing { On | Off }]
[Threshold threshold_value]
[MaskSize size_value]
[Filter filter_value]

]
[ScrollBars { On | Off }]
[Autoscroll { On | Off }]
[Parent HWND]
[ReadOnly | Default Access]
[Table table_name Rec record_number]
[Show | Hide]
[Smart Pan { On | Off }]
[SysMenuClose { On | Off }]
[Snap [Mode { On | Off }] [Threshold { pixel_tolerance | Default }]

window_id is an integer window identifier or a special window name (for example, Help).

x states the desired distance from the left of MapInfo Professional's workspace to the left edge of the
window.

y states the desired distance from the top of MapInfo Professional's workspace to the top edge of the
window.

paper_units is a string representing a paper unit name (for example, “cm” for centimeters).

The Font clause specifies a text style.

win_width is the desired width of the window.

win_height is the desired height of the window.
MapBasic 11.0 693 Reference

Chapter 9:
Set Window statement
new_title is a string expression representing a new title for the window.

help_file is the name of a help file (for example, “FILENAME.HLP” on Windows).

context_ID is an integer help file context ID which identifies a specific help topic.

printer_name identifies a printer. The printer can be local or networked to the computer on which
MapInfo Professional is running.

Method determines whether printing will go directly to the device driver or if MapInfo Professional will
generate a Windows Enhanced Metafile first and then send the file to the printer or MapInfo will use
an Offscreen bitmap to create the output first. EMF method enables the printing of maps with raster
images that may not have printed at all in earlier versions, and that use substantially smaller spool
files. Offscreen bitmap is invoked depending upon the type of translucent content in the map and
enhanced rendering state of the window. However setting OSBM from this window means that
printing will use Offscreen bitmaps regardless of the translucency and anti alias settings.

number is the number of copies of a print job that should be sent to the printer.

HWND is an integer window handle. The window specified by HWND will become the parent of the
window specified by window_id; however, only Legend, Statistics, Info, Ruler, and Message
windows may be re-parented in this manner.

table_name is the name of an open table to use with the Info window.

record_number is an integer: specify 1 or larger to display a record in the Info window, or specify 0 to
display a “No Record” message.

Enhanced sets the version of the rendering technology used to display and print graphics.

The On parameter enables the enhanced rendering technology and is set when the user selects
the Enable Enhanced Rendering check box in the MapInfo Professional. The Off option
disables the enhanced rendering technology and is set when the user does not select the
Enable Enhanced Rendering check box in MapInfo Professional.
MapBasic 11.0 694 Reference

Chapter 9:
Set Window statement
Smooth sets the new rendering technology enhancements for anti-aliasing vector, text and labels,
and images.

The Smooth options (Vector, Text, and Image) require that the Enhanced parameter
be set to On. MapBasic will throw an error if you turn Enhanced Off and set any of the
Smooth options to an option other than None.

Vector - sets the vector smoothing options for vectors.
None indicates that smoothing is turned off and the vector line and border objects are drawn
without anti-aliasing.
Antialias indicates that smoothing is turned on and the vector objects. This option requires
that the Enhanced parameter be set to On.

Text - sets the text smoothing options for n-n-curved labels and the non-curved labels and text
objects.

The None parameter indicates that smoothing is turned off for rotated and horizontal labels
and text objects.
The Antialias parameter indicates that smoothing is turned on for rotated and horizontal
labels and text objects. This option requires that the Enhanced parameter be set to On.

Image - sets the raster image smoothing options.
None indicates that the smoothing is turned off for raster images.
Low indicates that the smoothing is turned on for raster images using a bilinear interpolation
method. Using this method, the application displays better quality raster images than None
but not as good as High. Using the Low option, the application displays raster images slower
than when None is used but faster than when High is used. This option requires that the
Enhanced parameter be set to On.
High indicates that the smoothing is turned on for raster images using a bicubic interpolation
method. Using this method, the application displays better quality raster images than Low but
results in slower display performance. This option requires that the Enhanced parameter be
set to On.

Printer specifies window-specific overrides for printing.

Export specifies window-specific overrides for exporting.

Default will use the default values found in the output preferences corresponding to printing and/or
exporting.

Name printer_name specifies the name of the printer to use.

Orientation Portrait prints the document using portrait orientation.

Orientation Landscape prints the document using landscape orientation.

Copies number specifies how many copies of the document to print.

Papersize number is the paper size information for the window. These numbers are universal for all
printers under the Windows operating system. For example, 1 corresponds to Letter size, and 5
corresponds to Legal papersize. This number can be found in the MapBasic file, PAPERSIZE.DEF.
Some printer drivers (for example big size plotters) can use their own numbering for identifying
paper size. These numbers could be different from numbers that are provided in MapBasic definition
MapBasic 11.0 695 Reference

Chapter 9:
Set Window statement
file “PaperSize.def”. Because of this, users with different printer drivers may not identify paper size
information stored in a workspace correctly. In that case, paper size will be reset to the printer
default value.

Border determines whether an additional black edged rectangle will be drawn around the extents of
the window being printed or exported.

Truecolor determines whether to generate 24-bit true color output if it is possible to do so. If
Truecolor is turned off, the output will be generated using 256 colors.

Dither determines which dithering method to use when it is necessary to convert a 24-bit image to
256 colors. This option is used when outputting raster and grid images. Dithering will occur if
Truecolor is turned off or if the output device is not capable of supporting 24-bit color.

Method is a keyword that determines whether printing will go directly to the device driver or if
MapInfo Professional will generate a Windows Enhanced Metafile first and then send that file to the
printer. This method enables the printing of maps with raster images that may not have printed at all
in earlier versions, and that use substantially smaller spool files.

Transparency Raster Internal has been removed; however, if present, the keyword will still be
parsed without error to allow for compatibility with previous versions.

Transparency Raster determines how transparent pixels should be rendered. Select Device or
ROP dependent upon your printer driver or export file format. You may need to determine your
selection after trying each and determining which option produces the best output for you.

Transparency Raster ROP corresponds to the Use ROP Method to Display Transparent Raster
option in the MapInfo Professional user interface (Preferences > Output, File > Print > Advanced
button, and File > Save Window As > Advanced button). If ROP is selected, the transparent image
is rendered using a raster operation (ROP) to handle the transparent pixels. This method is used to
draw transparent (non-translucent) images onscreen; however, it does not always work well when
printing. You will need to experiment to determine if your printer driver handles ROP correctly. If you
are exporting an image using the Save Window As command, this option is beneficial if the output
format is a metafile (EMF or WMF). Using the ROP method allows any underlying data to be
rendered in the original form.

Transparency Raster Device prevents MapInfo Professional from performing any special handling
when printing raster or grid images that contain transparency. The image will be generated using the
same method that is used to display the image(s) on screen, but there may be some problems with
the output.

Transparency Vector Internal causes MapInfo Professional to perform special handling when
outputting transparent fill patterns or transparent bitmap symbols.

Transparency Vector Device prevents MapInfo Professional performing special handling when
outputting transparent fill patterns or transparent bitmap symbols. This may cause problems with the
output.

Margins User can set printer margins as floating point values in desired units. These values may be
increased by the printer driver if the printer margins are smaller than physically possible on a
particular printer.
MapBasic 11.0 696 Reference

Chapter 9:
Set Window statement
Antialiasing determines whether anti-aliasing filter is used during image exporting. Antialiasing is
ignored when images are exported to EMF or WMF formats, and when exporting the contents of a
Browser window.

Threshold specifies a value that indicates which pixels to smooth. The application of the ant-
aliasing filter on the image associates a value with each pixel. Only pixels with values above
threshold_value are smoothed. If threshold_value is set to zero, than all pixels are smoothed.
threshold_value should be in the range from 0 to 255.

MaskSize specifies a value that indicates the size of the anti-aliasing mask. For example, a value of
three indicates an anti-aliasing mask of 3x3. If user sets mask size_value too high, then the resulting
image can become too blurry.

Filter specifies which anti-aliasing filter to apply. Currently MapInfo Professional supports 6 different
filters as listed in the table below.

Description

The Set Window statement customizes an open window, setting such options as the window's size,
position, status, font, or title.

The window_id parameter can be an integer window identifier, which you can obtain by calling the
FrontWindow() function and the WindowInfo() function. Alternately, when you use the Set
Window statement to affect a special MapInfo Professional window, such as the Statistics window,
you can identify the window by its name (for example, Statistics) or by its code (for example,
WIN_STATISTICS); codes are defined in MAPBASIC.DEF.

The table below lists the window names and window codes which you can use as the window_id
parameter.

Filter ID Description

FILTER_VERTICALLY_AND_HOR
IZONTALLY

0 Anti-alias image vertically and horizontally.

FILTER_ALL_DIRECTIONS_1 1 Anti-alias image in all directions

FILTER_ALL_DIRECTIONS_2 2 Anti-alias image in all directions. The filter used for
this option is different than
FILTER_ALL_DIRECTIONS_1 and gets better
results for anti-aliasing text.

FILTER_DIAGONALLY 3 Anti-alias image diagonally.

FILTER_HORIZONTALLY 4 Anti-alias image horizontally

FILTER_VERTICALLY 5 Anti-alias image vertically
MapBasic 11.0 697 Reference

Chapter 9:
Set Window statement
The optional Position clause controls the window's position in the MapInfo Professional workspace.
The upper left corner of the workspace has the position 0, 0. The optional Width and Height clauses
control the window's size. Window position and size values use paper units settings, such as “in”
(inches) or “cm” (centimeters). MapBasic has a current paper units setting, which defaults to inches;
a MapBasic program can change this setting through the Set Paper Units statement. A Set
Window statement can override the current paper units by including the optional Units subclause
within the Position, Width, and/or Height clauses.

If the statement includes the optional Max keyword, the window will be maximized (it will occupy all
of MapInfo Professional's work space). If the statement includes the optional Min keyword, the
window will be minimized (it will be reduced, appearing only as a small icon in the lower part of the
screen). If a window is already minimized or maximized, and if the statement includes the optional
Restore keyword, the window is restored to its previous size.

If the statement includes the optional Front keyword, MapBasic makes the window the active
window; this is also known as setting the focus on the window. The window comes to the front, as if
the user had clicked on the window's title bar.

The statement may always specify a Position clause or a Front clause, regardless of the type of
window specified. However, some of the clauses in the Set Window statement apply only to certain
types of windows. For example, the Ruler Tool window may not be re-sized, maximized or
minimized.

Window name Window description

MapInfo The frame window of the entire MapInfo Professional application. You can also
refer to this window by its define: WIN_MAPINFO. (The MapInfo application
window cannot be renamed).

MapBasic The MapBasic window. You can also refer to this window by the Define code:
WIN_MAPBASIC.

Help The Help window. You can also refer to this window by the Define code:
WIN_HELP.

Statistics The Statistics window. You can also refer to this window by the Define code:
WIN_STATISTICS.

Legend The Theme Legend window. You can also refer to this window by the Define
code: WIN_LEGEND.

Info The Info Tool window (which appears when the user uses the Info tool). You
also can refer to this window by the Define code: WIN_INFO.

Ruler The window displayed when the user uses the Ruler tool. You can also refer to
this window by the Define code: WIN_RULER.

Message The Message window (which appears when you issue a Print statement). You
can also refer to this window by the Define code: WIN_MESSAGE.
MapBasic 11.0 698 Reference

Chapter 9:
Set Window statement
To change the window's title, include the optional Title clause. The Application window title (the main
“MapInfo” title bar) cannot be changed unless the user is running a runtime version of MapInfo
Professional.

The SysMenuClose clause lets you disable the Close command in the window's system menu (the
menu that appears when a user clicks the box in the upper-left corner of a window). Disabling the
Close command only affects the user interface; MapBasic programs can still close the window by
issuing Close Window statement. The following example disables the Close command of the
active window:

Set Window FrontWindow() SysMenuClose Off

Before version 10.5, you could enable or disable the Close button regardless of the toolbar’s
floating or docking state. As of version 10.5, you cannot enable or disable the Close button
when the toolbar is docked. You can only change the state when it is floating or floating and
hidden.

Help Window Syntax
To control the online Help window, specify the Help keyword instead of the integer window_id
argument. For example, the following statement displays topic 23 from a custom help file:

Set Window Help File "custom.hlp" ID 23

The File help_file clause sets which help file is active. On Windows, this action automatically
displays the Help window (unless you also include the Hide keyword). Specifying File Default resets
MapInfo Professional to use the standard MapInfo Professional help, but does not display the help
file. MapInfo Professional has only one help file setting, which applies to all MapBasic applications
that are running. If one application sets the current help file, other applications may be affected.

The Off clause turns off MapInfo Professional's help, so that pressing F1 on an MapInfo
Professional dialog has no effect. Use the Off clause if you are integrating MapInfo Professional
functionality into another application (for example, a Visual Basic program), if you want to prevent
the user from seeing MapInfo Professional help. (MapInfo Professional help contains references to
MapInfo Professional's menu names, which may not be available in your Visual Basic program.)

The Permanent clause sets MapInfo Professional to always use the help file specified by help_file,
even when the user presses F1 on an MapInfo Professional dialog box. (On Windows, if you omit
the Permanent keyword, MapInfo Professional resets the help system to use MAPINFOW.HLP
whenever the user presses F1 on an MapInfo Professional dialog box.) The Permanent setting lasts
for the remainder of the MapInfo Professional session, or until you specify a Set Window Help
File… statement.

To control which help topic appears in the help window, include the Contents keyword (to display
the Contents screen) or the ID clause (to display a specific topic).

MapBasic does not include a help compiler. For more information on working with online help, see
the MapBasic User Guide.
MapBasic 11.0 699 Reference

Chapter 9:
Set Window statement
What to do if MapInfo Professional Resets the Help System to use MapInfoW.hlp

The MapInfo Professional Help System is called MapInfoW.chm, but your Set Window Statement for
MapBasic Help may be referencing an older file called MapInfoW.hlp. You may need to change the
reference to Mapinfow.hlp to Mapinfow.chm.

On Windows, if you omit the Permanent keyword, MapInfo Professional resets the help system to
use MapInfoW.hlp whenever the user presses F1 on an MapInfo Professional dialog box. The
Permanent setting lasts for the remainder of the MapInfo Professional session, or until you specify a
Set Window Help File statement.

Map or Layout Window Syntax
The ScrollBars clause only applies to Map windows. Use the ScrollBars clause to show or hide
scroll-bars on a Map window.

The Autoscroll clause applies to Map and Layout windows. By default, the autoscroll feature is on
for every Map and Layout window. In other words, users can scroll a Map or Layout by selecting a
draggable tool (such as the Zoom In tool), clicking and dragging to the edge of the window. To
prevent users from autoscrolling, specify Autoscroll Off. To determine whether a window has
autoscroll turned on, call the WindowInfo() function.

Smart Pan changes the status of the window's panning. When Smart Pan is turned on for a Map
window or a Layout window, panning and scrolling use off-screen bitmaps to reduce the number of
white flashes. The default for Smart Pan is off.

When Smart Pan is activated for a Layout window, redraw is only affected when the Grabber tool is
used.

When Smart Pan is activated for a Map window, there will be different effects depending on the
method of moving the map. The Grabber tool automatically paints the exposed area as you grab and
move the map. The map will move more slowly than when Smart Pan is off. A more complex map
will move more slowly. Scrollbars and autoscrolling perform similarly to the Grabber tool, but the
speed of the scrolling is not affected by smart panning. When the MapBasic command Set Map is
used to center or pan with Smart Redraw on, the Map window changes without white flashes unless
the map is repositioned in such a way that a complete redraw is required.

If off-screen bitmaps have been turned off, then Smart Pan in a Map window behaves like a
Layout window.

Floating Window (Legend, Ruler, etc.) Syntax
The Parent clause allows you to specify a new parent window for a Legend, Statistics, Info, Ruler, or
Message window; this clause is only supported on Windows. The window specified by window_id
becomes a popup window, attached to the window specified by HWND.

Re-parenting a window in this manner changes the window's integer ID value. To return a
window to its original parent (MapInfo Professional), specify zero as the HWND.
MapBasic 11.0 700 Reference

Chapter 9:
Set Window statement
The ReadOnly / Default Access clause applies to the Info, Browser, and Legend windows. This
clause controls whether the window is read-only. If you specify ReadOnly, the window does not
allow editing. If you specify Default Access, the window reflects the read/write state of the table it's
displaying. This works for the main legend and cartographic legends created with the Create
Legend statement or the Create Cartographic Legend statement.

The Table clause allows you to display a specific row in the Info window; this clause is only valid
when window_id refers to the Info window. Using the Table clause displays the Info window, if it was
not already visible.

The Show or Hide clause allows you to show or hide any window that supports show/hide
operations (for example, the Ruler window). It can also be used in the MapInfo Professional
application window.

Controlling the Printer
By default, windows are printed using the global printer device. This is initialized to the default
Windows printer or the MapInfo Professional preferred printer, depending on how the user has set
preferences. Using the Name clause an application, workspace, or the MapBasic window can
override the printer preferences for an individual document. Several settings for the printer can also
be controlled by using additional command clauses. Also, when the printer settings are changed
through the user interface, appropriate MapBasic commands are generated internally. These
overrides are saved with the workspace commands for the affected windows, so they will be
reapplied when the workspace is reopened. An override can be removed from a window by running
a Set Window Printer Default command.

If Scale Patterns is set to On, fill patterns are scaled based on the ratio of the output device’s
resolution to the screen resolution.

Attribute codes, WIN_INFO_PRINTER_NAME (21), WIN_INFO_PRINTER_ORIENT (22) or
WIN_INFO_PRINTER_COPIES (23), are also returned with WindowInfo() function.

Example

Set Window frontwindow()
Printer Name "\\Discovery\HP 2500CP"

Orientation Portrait
Copies 10

To find out the window's printer name, start MapInfo Professional, go to File > Page Setup.
Click the Printer button. Use the printer name found in that dialog box.

Controlling Snap Tolerance
You can set snap to a particular pixel tolerance for a given window, set snap back to the default snap
tolerance for a given window, or retrieve the current snap tolerance for a given window. You can also
turn snap on/off for a given window, or retrieve information about whether snap is on/off for a
window.
MapBasic 11.0 701 Reference

Chapter 9:
Set Window statement
Snap mode settings for a particular window can be queried using new attribute parameters in the
WindowInfo() function. Snap mode and tolerance can be set for each Map and Layout window.
These settings are saved in the workspace for each window.

Example

Dim win_id As Integer
Open Table "world"
Map From world
win_id = FrontWindow()
Set Window win_id Width 5 Height 3

Saving a .WOR that Can Be Opened in Localized/Unlocalized Versions
Before MapInfo Professional/MapBasic version 9.0.2, if you created a workspace file containing a
layout and then sent it to another MapInfo Professional user working in a different locale, the
workspace would error when the user tried to open it. This occurred because the map name would
change due to the change in language.

We have created a registry entry workaround to prevent this error and allow users in different locales
to open the workspaces without error. You must enter this registry entry manually.

To prevent map name errors due to the change in locale:

1. From the command line, type regedit. The Registry Editor window displays.

2. Go to My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Mapinfo\Mapinfo\Common.

3. Right-click and select New > DWORD value to create a new DWORD registry entry.

4. Rename the entry WriteWindowTitle and press Enter. The Edit DWORD value dialog box
displays.

5. Type 1 in the Value data field and click OK to save your entry.

6. Close MapInfo Professional and reopen it.

This corrects the problem by writing the name of the table explicitly in the Layout. This prevents the
name change when the file changes locales.

See Also:

Browse statement, Graph statement, Layout statement, Map statement, Set Paper Units
statement
MapBasic 11.0 702 Reference

Chapter 9:
Sgn() function
Sgn() function

Purpose

Returns -1, 0, or 1, to indicate that a specified number is negative, zero, or positive (respectively).
You can issue this statement from the MapBasic Window in MapInfo Professional.

Syntax

Sgn(num_expr)

num_expr is a numeric expression.

Return Value

Float (-1, 0, or 1)

Description

The Sgn() function returns a value of -1 if the num_expr is less than zero, a value of 0 (zero) if
num_expr is equal to zero, or a value of 1 (one) if num_expr is greater than zero.

Example

Dim x As Integer
x = Sgn(-0.5)

' x now has a value of -1

See Also:

Abs() function
MapBasic 11.0 703 Reference

Chapter 10:
Shade statement
Shade statement

Purpose

Creates a thematic map layer and adds it to an existing Map window. You can issue this statement
in the MapBasic window in MapInfo Professional.

Syntax

See the following sections:

• Shading by Ranges of Values
• Shading by Individual Values
• Dot Density
• Graduated Symbols
• Pie Charts
• Bar Charts

Description

The Shade statement creates a thematic map layer and adds the layer to an existing Map window.
The Shade statement corresponds to MapInfo Professional's Map > Create Thematic Map menu
item. For an introduction to thematic mapping and the Create Thematic Map menu item, see the
MapInfo Professional documentation.

Between sessions, MapInfo Professional preserves thematic settings by storing a Shade statement
in the workspace file. Thus, to see an example of the Shade statement, you could create a Map,
choose the Map > Create Thematic Map command, save the workspace (for example,
THEME.WOR), and examine the workspace in a MapBasic text edit window. You could then copy
the Shade statement in your MapBasic program. Similarly, you can see examples of the Shade
statement by opening MapInfo Professional's MapBasic Window before you choose Map > Create
Thematic Map.

Shading by Ranges of Values

Syntax

Shade [Window window_id]
{ layer_id | layer_name }
With Metadata
With expr
[Ignore value_to_ignore]
Ranges
[Apply { Color | Size | All }]
[Use { Color | Size | All } [Line...] [Brush...]

[Symbol...]
]
{ [From Variable float_array Style Variable style_array] |

 minimum : maximum [Pen...] [Line...] [Brush...]
MapBasic 11.0 704 Reference

Chapter 10:
Shade statement
[Symbol...] [, minimum : maximum [Pen...]
[Line...] [Brush...] [Symbol...] ...]

}
[Style Replace { On | Off }]
[Default [Pen...] [Line...] [Brush...] [Symbol...]]

window_id is the integer window identifier of a Map window.

layer_id is the layer identifier of a layer in the Map (one or larger).

layer_name is the name of a layer in the Map.

expr is the expression by which the table will be shaded, such as a column name.

value_to_ignore is a value to be ignored; this is usually zero (when using numerical expressions) or
a blank string (when using string expressions); no thematic object will be created for a row if the
row's value matches the value to be ignored.

float_array is an array of float values initialized by a Create Ranges statement.

style_array is an array of Pen, Brush or Symbol values initialized by a Create Styles statement.

minimum is the minimum numeric value for a range.

maximum is the maximum numeric value for a range.

Description

The optional window_id clause identifies which Map is to be shaded; if no window_id is provided,
MapBasic shades the topmost Map window.

The Shade statement must specify which layer to shade thematically, even if the Map window has
only one layer. The layer may be identified by number (layer_id), where the topmost map layer has a
layer_id value of one, the next layer has a layer_id value of two, etc. Alternately, the Shade
statement can identify the map layer by name (for example, “world”).

Each Shade statement must specify an expr expression clause. MapInfo Professional evaluates this
expression for each object in the table being shaded; following the Shade statement, MapInfo
Professional chooses each object's display style based on that record's expr value. The expression
typically includes the names of one or more columns from the table being shaded.

If you specify With Metadata, any theme metadata contained in the open table is used to create the
Individual or Ranged Value theme.

The keywords following the expr clause dictate which type of shading MapInfo Professional will
perform. The Ranges keyword results in a shaded map where each object falls into a range of
values.

The Pen clause specifies a line style (for example, MakePen(width, pattern, color)) to use for the
borders of filled objects (for example, regions).

The Line clause specifies a line style to use for lines, polylines, and arcs. The syntax of the Line
clause is identical to the Pen clause, except for the keyword Line appearing in place of Pen.

The Brush clause specifies a fill style (for example, MakeBrush(pattern, forecolor, backcolor)).

The Symbol clause specifies a symbol style (for example, MakeSymbol(shape, color, size)).
MapBasic 11.0 705 Reference

Chapter 10:
Shade statement
For the specific syntax of a Ranges map, see Syntax Shading by Ranges of Values.

In a Ranges map, you can use the From Variable and Style Variable clauses to read pre-
calculated sets of range information from array variables. The array variables must have been
initialized using the Create Ranges statement and the Create Styles statement. For an example
of using arrays in Shade statements, see Create Ranges statement.

If you specify either the Ranges or Values keyword, the statement can include the optional Default
clause. This clause lets you specify the graphic styles used by the “all others” range. If a row does
not fall into any of the specified ranges, MapInfo Professional assigns the row to the all-others
range. If the Shade statement does not read range settings from array variables, then the Ranges
keyword is followed by from one to sixteen explicit range descriptions. Each range description
consists of a pair of numeric values (separated by a colon), followed by the graphic styles that
MapInfo Professional should use to display objects belonging to that range. If a record's expr value
is greater than or equal to the minimum value, and less than the maximum value, then that record
belongs to that range. The range descriptions are separated by commas.

Open Table "states"
Map From states
Shade states With Pop_1990 Ranges

4827000:29280000 Brush (2,0,201326591) ,
1783000: 4827000 Brush (8,0,16777215) ,
449000: 1783000 Brush (5,0,16777215)

If you are shading regions, specify Brush clauses to control the region fill styles. If you are shading
points, specify Symbol clauses. If you are shading linear objects (lines, polylines, or arcs) specify
Line clauses, not Pen clauses; the syntax is identical, except that you substitute the keyword Line
instead of the keyword Pen. (In a Shade statement, the Pen clause controls the style for the borders
of filled objects, such as regions.)

Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

You can use the Apply clause to control which display attributes MapInfo Professional applies to the
shaded objects.
MapBasic 11.0 706 Reference

Chapter 10:
Shade statement
If you omit the Apply clause, Apply All is the default.

The Use clause lets you control whether MapInfo Professional applies all of the style elements from
the range styles, or only some of the style elements. This is best illustrated by example. The
following example shades the table WorldCap, which contains points. This example does not include
a Use clause.

Shade WorldCap With Cap_Pop Ranges
Apply All
0 : 300000 Symbol(35,YELLOW,9) ,
300000 : 900000 Symbol(35,GREEN,18) ,
900000 : 20000000 Symbol(35,BLUE,27)

In this thematic map, each range appears exactly as its Symbol clause dictates: Points in the low
range appear as 9-point, yellow stars (code 35 is a star shape); points in the medium range appear
as 18-point, green stars; points in the high range appear as 27-point, blue stars.

The following example shows the same statement with the addition of a Use Size clause.

Shade WorldCap With Cap_Pop Ranges
Apply All

Use Size Symbol(34, RED, 24) ' <<<<< Note!

0 : 300000 Symbol(35,YELLOW,9) ,
300000 : 900000 Symbol(35,GREEN,18) ,
900000 : 20000000 Symbol(35,BLUE,27)

The Use Size clause provides its own Symbol style: Shape 34 (circle), in red.

Because of the Use Size clause, MapInfo Professional uses only the size values from the latter
Symbol clauses (9, 18, 27 point); MapInfo Professional ignores the other display attributes (for
example, YELLOW, GREEN, BLUE). The thematic map shows red circles, because the Use Size

Apply clause Effect

Apply Color The shading only changes the colors of objects in the map. Point objects appear
in their original shape and size, but the thematic shading controls the point
colors. Line objects appear in their original pattern and thickness, but the
thematic shading controls the line colors. Filled objects appear in their original fill
pattern, but the thematic shading controls the foreground color.

Apply Size The shading only changes the sizes of point objects and the thickness of linear
objects. Point objects appear in their original shape and color, but the thematic
shading controls the symbol sizes. Line objects appear in their original pattern
and color, but the shading controls the line thickness.

Apply All The shading controls all display attributes: symbol shape, symbol size, line
pattern, line thickness, and color.
MapBasic 11.0 707 Reference

Chapter 10:
Shade statement
Symbol clause specifies red circles. The end result: Points in the low range appear as 9-point, red
circles; points in the medium range appear as 18-point, red circles; points in the high range appear
as 27-point, red circles.

If you specify Use Color instead of Use Size, MapInfo Professional uses only the colors from the
latter Symbol clauses. The map will show yellow, green, and blue circles, all at 24-point size.

Specifying Use All has the same effect as leaving out the Use clause.

The Use clause is only valid if you specify Apply All (or if you omit the Apply clause entirely).

Shading by Individual Values

Syntax

Shade [Window window_id]
{ layer_id | layer_name }
With Metadata
With expr
[Ignore value_to_ignore]
Values const [Pen...] [Line...] [Brush...] [Symbol...]

[, const [Pen...] [Line...] [Brush...] [Symbol...] ...]
[Vary { Color | All }]

[Style Replace { On | Off }]
[Default [Pen...] [Brush...] [Symbol...]]

window_id is the integer window identifier of a Map window.

layer_id is the layer identifier of a layer in the Map (one or larger).

layer_name is the name of a layer in the Map.

expr is the expression by which the table will be shaded, such as a column name.

value_to_ignore is a value to be ignored; this is usually zero (when using numerical expressions) or
a blank string (when using string expressions); no thematic object will be created for a row if the
row's value matches the value to be ignored.

const is a constant numeric expression or a constant string expression.

Description

The optional window_id clause identifies which Map is to be shaded; if no window_id is provided,
MapBasic shades the topmost Map window.

The Shade statement must specify which layer to shade thematically, even if the Map window has
only one layer. The layer may be identified by number (layer_id), where the topmost map layer has a
layer_id value of one, the next layer has a layer_id value of two, etc. Alternately, the Shade
statement can identify the map layer by name (for example, “world”).

Each Shade statement must specify an expr expression clause. MapInfo Professional evaluates this
expression for each object in the table being shaded; following the Shade statement, MapInfo
Professional chooses each object's display style based on that record's expr value. The expression
typically includes the names of one or more columns from the table being shaded.
MapBasic 11.0 708 Reference

Chapter 10:
Shade statement
If you specify With Metadata, any theme metadata contained in the open table is used to create the
Individual or Ranged Value theme.

The keywords following the expr clause dictate which type of shading MapInfo Professional will
perform. The Values keyword creates a map where each unique value has its own display style.

The Pen clause specifies a line style (for example, MakePen(width, pattern, color)) to use for the
borders of filled objects (for example, regions).

The Line clause specifies a line style to use for lines, polylines, and arcs. The syntax of the Line
clause is identical to the Pen clause, except for the keyword Line appearing in place of Pen.

The Brush clause specifies a fill style (for example, MakeBrush(pattern, forecolor, backcolor)).

The Symbol clause specifies a symbol style (for example, MakeSymbol(shape, color, size)).

For the specific syntax of an Individual Values map, see Syntax Shading by Individual Values.

In a Values map, the keyword Values is followed by from one to 255 value descriptions. Each value
description consists of a unique value (string or numeric), followed by the graphic styles that MapInfo
Professional should use to display objects having that exact value. If a record's expr value is exactly
equal to one of the Shade statement's value descriptions, then that record's object will be displayed
with the appropriate graphic style. The value descriptions are separated by commas.

If the Shade statement specifies either the Ranges or Values keyword, the statement can include
the optional Default clause. This clause lets you specify the graphic styles used by the “all others”
range. If a row does not fall into any of the specified ranges, MapInfo Professional assigns the row to
the all-others range. The Vary clause sets how the objects will vary in appearance. The default is
Vary All. If Vary All is specified, all of the display tools for each range are applied in the theme. If
Vary Color is specified, only the color for the specified range is applied.

Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes. This enables transparent patterns to be displayed on the same layer.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

The following example assumes that the UK_Sales table has a column called Sales_Rep; this
column contains the name of the sales representative who handles the accounts for a sales territory
in the United Kingdom. The Shade statement will display each region in a shade which depends
upon that region's salesperson. Thus, all regions assigned to Bob will appear in one color, while all
regions assigned to Jan will appear in another color, etc.

Open Table "uk_sales"
Map From uk_sales

Shade 1 With Proper$(Sales_Rep)
Ignore ""
Values

"Alan" ,
"Amanda" ,
"Bob" ,
"Jan"
MapBasic 11.0 709 Reference

Chapter 10:
Shade statement
Dot Density

Syntax

Shade [Window window_id]
{ layer_id | layer_name }
With expr
Density dot_value { Circle | Square }
Width dot_size
[Color color]

window_id is the integer window identifier of a Map window.

layer_id is the layer identifier of a layer in the Map (one or larger).

layer_name is the name of a layer in the Map.

expr is the expression by which the table will be shaded, such as a column name.

dot_value is the numeric value associated with each dot in a dot density map.

dot_size is the size, in pixels, of each dot on a dot density map.

color is the RGB value for the color of the dots in a dot density map.

Description

The optional window_id clause identifies which Map is to be shaded; if no window_id is provided,
MapBasic shades the topmost Map window.

The Shade statement must specify which layer to shade thematically, even if the Map window has
only one layer. The layer may be identified by number (layer_id), where the topmost map layer has a
layer_id value of one, the next layer has a layer_id value of two, etc. Alternately, the Shade
statement can identify the map layer by name (for example, “world”).

Each Shade statement must specify an expr expression clause. MapInfo Professional evaluates this
expression for each object in the table being shaded; following the Shade statement, MapInfo
Professional chooses each object's display style based on that record's expr value. The expression
typically includes the names of one or more columns from the table being shaded.

The keywords following the expr clause dictate which type of shading MapInfo Professional will
perform. The Density keyword creates a dot density map.

For the specific syntax of a Dot Density map, see Syntax Dot Density.

In a Density map, the keyword Density is followed by a dot_value clause. You can specify either a
Circle or Square thematic style. Note that a map layer must include regions in order to provide the
basis for a meaningful dot density map; this is because the number of dots displayed in each region
represent some sort of density value for that region. For example, each dot might represent one
thousand households.

In a dot density map, a numeric expr value is calculated for each region; the dot_value represents a
numeric value as well. MapInfo Professional decides how many dots to draw in a given region by
dividing that region's expr value by the map's dot_value setting. Thus, if a region has an expr value
of 100, and the Shade statement specifies a dot_value of 5, then MapInfo Professional draws 20
dots in that region, because each dot represents a quantity of 5.
MapBasic 11.0 710 Reference

Chapter 10:
Shade statement
The keyword Width is followed by dot_size. This specifies how large the dots should be, in terms of
pixels. For Circle dot style, the dot_size can be 2 to 25 pixels in width. For Square dot style, the
dot_size can be 1 to 25 pixels. The optional Color clause is used to set the color of the dots.

The following example creates a dot density map using the States table's Pop_1990 column, (which
in this case indicates the number of households per state, circa 1990). The resultant dot density map
will show many 4-pixel dots; each dot representing 60,000 households.

Open Table "states"
Map From states
shade window 176942288 7
with Pop_1990
density 600000 circle width 4
color 255

For backwards compatibility, the older MapBasic syntax (version 7.5 or earlier) is still
supported.

Graduated Symbols

Syntax

Shade [Window window_id]
{ layer_id | layer_name }
With expr
Graduated min_value : symbol_size max_value : symbol_size

Symbol...
[Inflect Symbol...]
[Vary Size By { "LOG" | "SQRT" | "CONST" }]

window_id is the integer window identifier of a Map window.

layer_id is the layer identifier of a layer in the Map (one or larger).

layer_name is the name of a layer in the Map.

expr is the expression by which the table will be shaded, such as a column name.

max_value is a number,

min_value is a number,

symbol_size is the point size to use for symbols having the appropriate value.

Description

The optional window_id clause identifies which Map is to be shaded; if no window_id is provided,
MapBasic shades the topmost Map window.

The Shade statement must specify which layer to shade thematically, even if the Map window has
only one layer. The layer may be identified by number (layer_id), where the topmost map layer has a
layer_id value of one, the next layer has a layer_id value of two, etc. Alternately, the Shade
statement can identify the map layer by name (for example, “world”).
MapBasic 11.0 711 Reference

Chapter 10:
Shade statement
Each Shade statement must specify an expr expression clause. MapInfo Professional evaluates this
expression for each object in the table being shaded; following the Shade statement, MapInfo
Professional chooses each object's display style based on that record's expr value. The expression
typically includes the names of one or more columns from the table being shaded.

The keywords following the expr clause dictate which type of shading MapInfo Professional will
perform. The Graduated keyword results in a graduated symbols map.

For the specific syntax of a Graduated map, see Syntax Graduated Symbols.

In a Graduated map, the keyword Graduated is followed by a pair of value:symbol_size clauses.
The first of the value:symbol_size clauses specifies what size symbol corresponds to the minimum
value, and the second of the value:symbol_size clauses specifies what size symbol corresponds to
the maximum value. MapInfo Professional uses intermediate symbol sizes for rows having values
between the extremes.

A Symbol clause dictates what type of symbol should appear (circle, star, etc.). If you include the
optional Inflect clause, which specifies a second Symbol style, MapInfo Professional uses the
secondary symbol style to draw symbols for rows having negative values.

The following example creates a graduated symbols map showing profits and losses. Stores
showing a profit are represented as green triangles, pointing up. The Shade statement also includes
an Inflection clause, so that stores showing a net loss appear as red triangles, pointing down.

Shade stores With Net_Profit
Graduated
0.0:0 15000:24
Symbol(36, GREEN, 24)
Inflect Symbol(37, RED, 24)
Vary Size By "SQRT"

The optional Vary Size By clause controls how differences in numerical values correspond to
differences in symbol sizes. If you omit the Vary Size By clause, MapInfo Professional varies the
symbol size using the “SQRT” (square root) method, which assigns increasingly larger point sizes as
the square roots of the values increase. When you vary by square root, each symbol's area is
proportionate to the row's value; thus, if one row has a value twice as large as another row, the row
with the larger value will have a symbol that occupies twice as much area on the map.

Having twice the area is not the same as having twice the point size. When you double an
object's point size, its area quadruples, because you are increasing both height and width.

Pie Charts

Syntax

Shade [Window window_id]
 { layer_id | layer_name | Selection }
With expr [, expr...]
[Half] Pie [Angle angle] [Counter]
[Fixed] [Max Size chart_size [Units unitname]

[At Value max_value [Vary Size By {"LOG" | "SQRT" | "CONST" }]]]
MapBasic 11.0 712 Reference

Chapter 10:
Shade statement
[Border Pen...]
[Position [{ Left | Right | Center }] [{ Above | Below | Center }]]
[Style Brush... [, Brush...]]

window_id is the integer window identifier of a Map window.

layer_id is the layer identifier of a layer in the Map (one or larger).

layer_name is the name of a layer in the Map.

expr is the expression by which the table will be shaded, such as a column name.

angle is the starting angle, in degrees, of the first wedge in a pie chart.

chart_size is a float size, representing the maximum height of each pie or bar chart.

unitname is a paper unit name (for example, “in” for inches, “cm” for centimeters).

max_value is a number, used in the At Value clause to control the heights of Pie and Bar charts. For
each record, if the sum of the column expressions equals the max_value, that record's Pie or Bar
chart will be drawn at the chart_size height; the charts are smaller for rows with smaller sums.

Description

The optional window_id clause identifies which Map is to be shaded; if no window_id is provided,
MapBasic shades the topmost Map window.

The Shade statement must specify which layer to shade thematically, even if the Map window has
only one layer. The layer may be identified by number (layer_id), where the topmost map layer has a
layer_id value of one, the next layer has a layer_id value of two, etc. Alternately, the Shade
statement can identify the map layer by name (for example, “world”).

Each Shade statement must specify an expr expression clause. MapInfo Professional evaluates this
expression for each object in the table being shaded; following the Shade statement, MapInfo
Professional chooses each object's display style based on that record's expr value. The expression
typically includes the names of one or more columns from the table being shaded.

The keywords following the expr clause dictate which type of shading MapInfo Professional will
perform. The Pie keyword specify thematically constructed charts.

The Pen clause specifies a line style (for example, MakePen(width, pattern, color)) to use for the
borders of filled objects (for example, regions).

The Brush clause specifies a fill style (for example, MakeBrush(pattern, forecolor, backcolor)).

For the specific syntax of a Pie map, see Syntax Pie Charts.

In a Pie map, MapInfo Professional creates a small pie chart for each map object to be shaded. The
With clause specifies a comma-separated list of two or more expressions to comprise each thematic
pie.

If you place the optional keyword Half before the keyword Pie, MapInfo Professional draws half-
pies; otherwise, MapInfo Professional draws whole pies.

The optional Angle clause specifies the starting angle of the first pie wedge, specified in degrees.
The default start angle is 180.
MapBasic 11.0 713 Reference

Chapter 10:
Shade statement
The optional Counter keyword specifies that wedges are drawn in counter-clockwise order, starting
at the start angle.

The Max Size clause controls the sizes of the pie charts, in terms of paper units (for example, “in” for
inches). If you include the Fixed keyword, all charts are the same size.

For example, the following statement produces pie charts, all of the same size:

Shade sales_95 With phone_sales, retail_sales
Pie Fixed
Max Size 0.25 Units "in"

To vary the sizes of Pie charts, omit the Fixed keyword and include the At Value clause. For
example, the following statement produces a theme where the size of the Pie charts varies. If a
record has a sum of 85,000 its Pie chart will be 0.25 inches tall; records having smaller values are
shown as smaller Pie charts.

Shade sales_95 With phone_sales, retail_sales
Pie
Max Size 0.25 Units "in" At Value 85000

The optional Vary Size By clause controls how MapInfo Professional varies the Pie chart size. This
clause is discussed above (see Graduated Symbols).

Each chart is placed on the original map object's centroid, unless a Position clause is used.

The Style clause specifies a comma-separated list of Brush styles; specify one Brush style for each
expression specified in the With clause. Brush style settings are optional; if you omit these settings,
MapInfo Professional uses any Brush preferences saved by the user.

The following example creates a thematic map layer which positions each pie chart directly above
each map object's centroid.

Shade sales_95 With phone_sales, retail_sales
Pie Angle 180
Max Size 0.5 Units "in" At Value 85000

Vary Size By "SQRT"
Border Pen (1, 2, 0)
Position Center Above
Style Brush(2, RED, 0), Brush(2, BLUE, 0)

Bar Charts

Syntax

Shade [Window window_id]
{ layer_id | layer_name | Selection }
With expr [, expr...]
{ Bar [Normalized] | Stacked Bar [Fixed] }
[Max Size chart_size [Units unitname]

[At Value max_value [Vary Size By {"LOG" | "SQRT" | "CONST" }]]
[Border Pen...]
[Frame Brush...]
[Width value [Units unitname]]
MapBasic 11.0 714 Reference

Chapter 10:
Shade statement
[Position [{ Left | Right | Center }] [{ Above | Below | Center }]]
[Style Brush... [, Brush...]]

window_id is the integer window identifier of a Map window.

layer_id is the layer identifier of a layer in the Map (one or larger).

layer_name is the name of a layer in the Map.

expr is the expression by which the table will be shaded, such as a column name.

chart_size is a float size, representing the maximum height of each pie or bar chart.

max_value is a number, used in the At Value clause to control the heights of Pie and Bar charts. For
each record, if the sum of the column expressions equals the max_value, that record's Pie or Bar
chart will be drawn at the chart_size height; the charts are smaller for rows with smaller sums.

unitname is a paper unit name (for example, “in” for inches, “cm” for centimeters).

value

Description

The optional window_id clause identifies which Map is to be shaded; if no window_id is provided,
MapBasic shades the topmost Map window.

The Shade statement must specify which layer to shade thematically, even if the Map window has
only one layer. The layer may be identified by number (layer_id), where the topmost map layer has a
layer_id value of one, the next layer has a layer_id value of two, etc. Alternately, the Shade
statement can identify the map layer by name (for example, “world”).

Each Shade statement must specify an expr expression clause. MapInfo Professional evaluates this
expression for each object in the table being shaded; following the Shade statement, MapInfo
Professional chooses each object's display style based on that record's expr value. The expression
typically includes the names of one or more columns from the table being shaded.

The keywords following the expr clause dictate which type of shading MapInfo Professional will
perform. The Bar keyword specify thematically constructed charts.

The Pen clause specifies a line style (for example, MakePen(width, pattern, color)) to use for the
borders of filled objects (for example, regions).

The Brush clause specifies a fill style (for example, MakeBrush(pattern, forecolor, backcolor)).

For the specific syntax of a Bar map, see Syntax Bar Charts.

In a Bar map, MapInfo Professional creates a small bar chart for each map object. The With clause
specifies a comma-separated list of expressions to comprise each thematic chart.

If you place the optional keyword Stacked before the keyword Bar, MapInfo Professional draws a
stacked bar chart; otherwise, MapInfo Professional draws bars side-by-side. If you omit the keyword
Stacked, you can include the keyword Normalized to specify that the bars have independent
scales.
MapBasic 11.0 715 Reference

Chapter 10:
Sin() function
When you create a Stacked bar chart map, you can include the optional Fixed keyword to specify
that all bar charts in the thematic layer should appear in the same size (for example, half an inch tall)
regardless of the numeric values for that map object. If you omit the Fixed keyword, MapInfo
Professional sizes each object's bar chart according to the net sum of the values in the chart.

The Frame Brush clause specifies a fill style used for the background behind the bars.

The Position clause controls both the orientation of the bar charts (horizontal or vertical bars) and
the position of the charts relative to object centroids. If the Position clause specifies Left or Right,
the bars are horizontal, otherwise the bars are vertical.

The Style clause specifies a comma-separated list of Brush styles. Specify one Brush style for each
expression specified in the With clause.

The following example creates a thematic map layer which positions each bar chart directly above
each map object's centroid.

Shade sales_93
With phone_sales, retail_sales
Bar
Max Size 0.4 Units "in" At Value 1245000
Vary Size By "CONST"
Border Pen (1, 2, 0)
Position Center Above
Style Brush(2, RED, 0), Brush(2, BLUE, 0)

See Also:

Create Ranges statement, Create Styles statement, Map statement, Set Legend statement,
Set Map statement, Set Shade statement

Sin() function

Purpose

Returns the sine of a number. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

Sin(num_expr)

num_expr is a numeric expression representing an angle in radians.

Return Value

Float
MapBasic 11.0 716 Reference

Chapter 10:
Space$() function
Description

The Sin() function returns the sine of the numeric num_expr value, which represents an angle in
radians. The result returned from Sin() will be between one and negative one. To convert a degree
value to radians, multiply that value by DEG_2_RAD. To convert a radian value into degrees,
multiply that value by RAD_2_DEG. The codes DEG_2_RAD and RAD_2_DEG are defined in
MAPBASIC.DEF.

Example

Include "mapbasic.def"
Dim x, y As Float
x = 30 * DEG_2_RAD
y = Sin(x)
' y will now be equal to 0.5
' since the sine of 30 degrees is 0.5

See Also:

Acos() function, Asin() function, Atn() function, Cos() function, Tan() function

Space$() function

Purpose

Returns a string consisting only of spaces. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

Space$(num_expr)

num_expr is a SmallInt numeric expression.

Return Value

String

Description

The Space$() function returns a string num_expr characters long, consisting entirely of space
characters. If the num_expr value is less than or equal to zero, the Space$() function returns a null
string.

Example

Dim filler As String
filler = Space$(7)
' filler is now equal to the string " "
' (7 spaces)
Note "Hello" + filler + "world!"
'this displays the message "Hello world!"
MapBasic 11.0 717 Reference

Chapter 10:
SphericalArea() function
See Also:

String$() function

SphericalArea() function

Purpose

Returns the area using as calculated in a Latitude/Longitude non-projected coordinate system using
great circle based algorithms. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

SphericalArea(obj_expr, unit_name)

obj_expr is an object expression.

unit_name is a string representing the name of an area unit (for example, “sq km”).

Return Value

Float

Description

The SphericalArea() function returns the area of the geographical object specified by obj_expr.
The function returns the area measurement in the units specified by the unit_name parameter; for
example, to obtain an area in acres, specify “acre” as the unit_name parameter. See Set Area Units
statement for the list of available unit names.

The SphericalArea() function will always return the area as calculated in a Latitude/Longitude non-
projected coordinate system using spherical algorithms. A value of -1 will be returned for data that is
in a NonEarth coordinate system since this data cannot be converted into a Latitude/longitude
coordinate system.

Only regions, ellipses, rectangles, and rounded rectangles have any area. By definition, the
SphericalArea() of a point, arc, text, line, or polyline object is zero. The SphericalArea() function
returns approximate results when used on rounded rectangles. MapBasic calculates the area of a
rounded rectangle as if the object were a conventional rectangle.

Examples

The following example shows how the SphericalArea() function can calculate the area of a single
geographic object. Note that the expression tablename.obj (as in states.obj) represents the
geographical object of the current row in the specified table.

Dim f_sq_miles As Float
Open Table "states"
Fetch First From states
f_sq_miles = Area(states.obj, "sq mi")
MapBasic 11.0 718 Reference

Chapter 10:
SphericalConnectObjects() function
You can also use the SphericalArea() function within the Select statement, as shown in the
following example.

Select state, SphericalArea(obj, "sq km")
From states Into results

See Also:

CartesianArea() function, SphericalArea() function

SphericalConnectObjects() function

Purpose

Returns an object representing the shortest or longest distance between two objects. You can call
this function from the MapBasic window in MapInfo Professional.

Syntax

SphericalConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Return Value

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there
are multiple instances where the minimum or maximum distance exists (e.g., the two points returned
are not uniquely the shortest distance and there are other points representing “ties”) then these
functions return one of the instances. There is no way to determine if the object returned is uniquely
the shortest distance.

SphericalConnectObjects() returns a Polyline object connecting object1 and object2 in the
shortest (min == TRUE) or longest (min == FALSE) way using a spherical calculation method. If
the calculation cannot be done using a spherical distance method (e.g., if the MapBasic coordinate
system is NonEarth), then this function will produce an error.

SphericalDistance() function

Purpose

Returns the distance between two locations. You can call this function from the MapBasic Window in
MapInfo Professional. You can call this function from the MapBasic window in MapInfo Professional.
MapBasic 11.0 719 Reference

Chapter 10:
SphericalObjectDistance() function
Syntax

SphericalDistance(x1, y1, x2, y2, unit_name)

x1 and x2 are x-coordinates (for example, longitude).

y1 and y2 are y-coordinates (for example, latitude).

unit_name is a string representing the name of a distance unit (for example,”km”).

Return Value

Float

Description

The SphericalDistance() function calculates the distance between two locations.

The function returns the distance measurement in the units specified by the unit_name parameter;
for example, to obtain a distance in miles, specify “mi” as the unit_name parameter. See Set
Distance Units statement for the list of available unit names.

The x- and y-coordinate parameters must use MapBasic's current coordinate system. By default,
MapInfo Professional expects coordinates to use a Latitude/Longitude coordinate system. You can
reset MapBasic's coordinate system through the Set CoordSys statement.

The SphericalDistance() function always returns a value as calculated in a Latitude/Longitude
non-projected coordinate system using great circle based algorithms. A value of -1 will be returned
for data that is in a NonEarth coordinate system since this data cannot be converted into a
Latitude/longitude coordinate system.

Example

Dim dist, start_x, start_y, end_x, end_y As Float
Open Table "cities"
Fetch First From cities
start_x = CentroidX(cities.obj)
start_y = CentroidY(cities.obj)
Fetch Next From cities
end_x = CentroidX(cities.obj)
end_y = CentroidY(cities.obj)
dist = SphericalDistance(start_x,start_y,end_x,end_y,"mi")

See Also:

CartesianDistance() function, Distance() function

SphericalObjectDistance() function

Purpose

Returns the distance between two objects. You can call this function from the MapBasic window in
MapInfo Professional.
MapBasic 11.0 720 Reference

Chapter 10:
SphericalObjectLen() function
Syntax

SphericalObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Return Value

Float

Description

SphericalObjectDistance() returns the minimum distance between object1 and object2 using a
spherical calculation method with the return value in unit_name. If the calculation cannot be done
using a spherical distance method (e.g., if the MapBasic coordinate system is NonEarth), then this
function will produce an error.

SphericalObjectLen() function

Purpose

Returns the geographic length of a line or polyline object. You can call this function from the
MapBasic window in MapInfo Professional.

Syntax

SphericalObjectLen(obj_expr, unit_name)

obj_expr is an object expression.

unit_name is a string representing the name of a distance unit (for example, “km”).

Return Value

Float

Description

The SphericalObjectLen() function returns the length of an object expression. Note that only line
and polyline objects have length values greater than zero; to measure the circumference of a
rectangle, ellipse, or region, use the Perimeter() function.

The SphericalObjectLen() function always returns a value as calculated in a Latitude/Longitude
non-projected coordinate system using spherical algorithms. A value of -1 will be returned for data
that is in a NonEarth coordinate system since this data cannot be converted into a Latitude/longitude
coordinate system.

The SphericalObjectLen() function returns a length measurement in the units specified by the
unit_name parameter; for example, to obtain a length in miles, specify “mi” as the unit_name
parameter. See Set Distance Units statement for the list of valid unit names.
MapBasic 11.0 721 Reference

Chapter 10:
SphericalOffset() function
Example

Dim geogr_length As Float
Open Table "streets"
Fetch First From streets
geogr_length = SphericalObjectLen(streets.obj, "mi")
' geogr_length now represents the length of the
' street segment, in miles

See Also:

CartesianObjectLen() function, SphericalObjectLen() function

SphericalOffset() function

Purpose

Returns a copy of the input object offset by the specified distance and angle using a spherical
DistanceType. You can call this function from the MapBasic window in MapInfo Professional.

Syntax

SphericalOffset(object, angle, distance, units)

object is the object being offset.

angle is the angle to offset the object.

distance is the distance to offset the object.

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

This function produces a new object that is a copy of the input object offset by distance along angle
(in degrees with horizontal in the positive X-axis being 0 and positive being counterclockwise). The
unit string, similar to that used for the ObjectLen() function or the Perimeter() function, is the unit
for the distance value. The DistanceType used is Spherical. If the coordinate system of the input
object is NonEarth, an error will occur, since Spherical DistanceTypes are not valid for NonEarth.
This is signified by returning a NULL object. The coordinate system used is the coordinate system of
the input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Latitude/Longitude, the shape of the object remains
the same, but the area of the object will change. This is because you are picking one offset delta in
degrees, and the actual measured distance for a degree is different at different locations.
MapBasic 11.0 722 Reference

Chapter 10:
SphericalOffsetXY() function
For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into
the coordinate system's units. If the coordinate system is Latitude/Longitude, the conversion to
degrees uses the fixed point. The actual converted distance measurement could vary at different
locations on the object. The distance from the input object and the new offset object is only
guaranteed to be exact at the single fixed point used.

Example

SphericalOffset(Rect, 45, 100, "mi")

See Also:

SphericalOffsetXY() function

SphericalOffsetXY() function

Purpose

Returns a copy of the input object offset by the specified x- and -offset values using a Spherical
DistanceType. You can call this function from the MapBasic window in MapInfo Professional.

Syntax

SphericalOffsetXY(object, xoffset, yoffset, units)

object is the object being offset.

xoffset and yoffset are the distance along the x- and y-axes to offset the object.

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

The SphericalOffsetXY() function produces a new object that is a copy of the input object offset by
xoffset along the x-axis and yoffset along the y-axis. The unit string, similar to that used for the
ObjectLen() function or the Perimeter() function, is the unit for distance values. The
DistanceType used is Spherical. If the coordinate system of the input object is NonEarth, an error
will occur, since Spherical DistanceTypes are not valid for NonEarth. This is signified by returning a
NULL object. The coordinate system used is the coordinate system of the input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Latitude/Longitude, the shape of the object remains
the same, but the area of the object will change. This is because you are picking one offset delta in
degrees, and the actual measured distance for a degree is different at different locations.
MapBasic 11.0 723 Reference

Chapter 10:
SphericalPerimeter() function
For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into
the coordinate system's units. If the coordinate system is Latitude/Longitude, the conversion to
degrees uses the fixed point. The actual converted distance measurement could vary at different
locations on the object. The distance from the input object and the new offset object is only
guaranteed to be exact at the single fixed point used.

Example

SphericalOffsetXY(Rect, 92, -22, "mi")

See Also:

SphericalOffset() function

SphericalPerimeter() function

Purpose

Returns the perimeter of a graphical object. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

SphericalPerimeter(obj_expr, unit_name)

obj_expr is an object expression.

unit_name is a string representing the name of a distance unit (for example, “km”).

Return Value

Float

Description

The SphericalPerimeter() function calculates the perimeter of the obj_expr object. The
SphericalPerimeter() function is defined for the following object types: ellipses, rectangles,
rounded rectangles, and polygons. Other types of objects have perimeter measurements of zero.
The SphericalPerimeter() function returns a length measurement in the units specified by the
unit_name parameter; for example, to obtain a length in miles, specify “mi” as the unit_name
parameter. See Set Distance Units statement for the list of valid unit names.

The SphericalPerimeter() function always returns a value as calculated in a Latitude/Longitude
non-projected coordinate system using spherical algorithms. A value of -1 will be returned for data
that is in a NonEarth coordinate system since this data cannot be converted into a Latitude/longitude
coordinate system. The SphericalPerimeter() function returns approximate results when used on
rounded rectangles. MapBasic calculates the perimeter of a rounded rectangle as if the object were
a conventional rectangle.
MapBasic 11.0 724 Reference

Chapter 10:
Sqr() function
Example

The following example shows how you can use the SphericalPerimeter() function to determine the
perimeter of a particular geographic object.

Dim perim As Float
Open Table "world"
Fetch First From world
perim = SphericalPerimeter(world.obj, "km")
' The variable perim now contains
' the perimeter of the polygon that's attached to
' the first record in the World table.

You can also use the SphericalPerimeter() function within the Select statement. The following
Select statement extracts information from the States table, and stores the results in a temporary
table called Results. Because the Select statement includes the SphericalPerimeter() function,
the Results table will include a column showing each state's perimeter.

Open Table "states"
Select state, Perimeter(obj, "mi")

From states
Into results

See Also:

CartesianPerimeter() function, Perimeter() function

Sqr() function

Purpose

Returns the square root of a number. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

Sqr(num_expr)

num_expr is a positive numeric expression.

Return Value

Float

Description

The Sqr() function returns the square root of the numeric expression specified by num_expr. Since
the square root operation is undefined for negative real numbers, num_expr should represent a
value greater than or equal to zero.

Taking the square root of a number is equivalent to raising that number to the power 0.5.
Accordingly, the expression Sqr(n) is equivalent to the expression n ^ 0.5; the Sqr() function,
however, provides the fastest calculation of square roots.
MapBasic 11.0 725 Reference

Chapter 10:
StatusBar statement
Example

Dim n As Float
n = Sqr(25)

See Also:

Cos() function, Sin() function, Tan() function

StatusBar statement

Purpose

Displays or hides the status bar, or displays a brief message on it. You can issue this statement in
the MapBasic Window in MapInfo Professional.

Syntax

StatusBar { Show | Hide }
[Message message]
[ViewDisplayPopup { On | Off }]
[EditLayerPopup { On | Off }]

message is a message to display on the status bar.

Description

Use the StatusBar statement to show or hide the status bar, or to display a brief message on the
status bar.

To print a message to the status bar, use the optional Message clause.

StatusBar Message "Calculating coordinates..."

MapInfo Professional automatically updates the status bar as the user selects various buttons and
menu items. Therefore, a message displayed on the status bar may disappear quickly. Therefore,
you should not rely on status bar messages to display important prompts.

To display a message that does not disappear, use the Print statement to print a message to the
Message window.

Use the ViewDisplayPopup parameter to allow the user to change view from the status bar. If this
parameter is set to On, the user will be able to change the zoom level, scale, and cursor location
settings from the status bar.

Use the EditLayerPopup parameter to allow the user to set the editable layer of a Map window from
the status bar. If this parameter is set to On, the user will be able to select the editable layer from the
status bar.

See Also:

Note statement, Print statement
MapBasic 11.0 726 Reference

Chapter 10:
Stop statement
Stop statement

Purpose

Suspends a running MapBasic application, for debugging purposes. You can issue this statement in
the MapBasic Window in MapInfo Professional.

Syntax

Stop

Restrictions

You cannot issue a Stop statement from within a user-defined function or within a dialog box's
handler procedure; therefore you cannot issue a Stop statement to debug a Dialog statement while
the dialog box is still on the screen.

Description

The Stop statement is a debugging aid. It suspends the application which is running, and returns
control to the user; presumably, the user in this case is a MapBasic programmer who is debugging a
program.

When the Stop occurs, a message appears in the MapBasic window identifying the program line
number of the Stop.

Following a Stop, you can use the MapBasic window to investigate the current status of the
program. If you type:

? Dim

into the MapBasic window, MapInfo Professional displays a list of the local variables in use by the
suspended program. Similarly, if you type:

? Global

into the MapBasic window, MapInfo Professional displays a list of the global variables in use.

To display the contents of a variable, type a question mark followed by the variable name. To modify
the contents of the variable, type a statement of this form:

variable_name = new_value

where variable_name is the name of a local or global variable, and new_value is an expression
representing the new value to assign to the variable.

To resume the execution of the application, choose File > Continue; note that, while a program is
stopped, Continue appears on the File menu instead of Run. You can also restart a program by
typing a Continue statement into the MapBasic window.

During a Stop, MapInfo Professional keeps the application file open. As long as this file remains
open, the application cannot be recompiled. If you use a Stop statement, and you then wish to
recompile your application, choose File > Continue before attempting to recompile.
MapBasic 11.0 727 Reference

Chapter 10:
Str$() function
See Also:

Continue statement

Str$() function

Purpose

Returns a string representing an expression (for example, a printout of a number). You can call this
function from the MapBasic window in MapInfo Professional.

Syntax

Str$(expression)

expression is a numeric, Date, Pen, Brush, Symbol, Font, logical, or Object expression.

Return Value

String

Description

The Str$() function returns a string which represents the value of the specified expression.

If expression is a negative number, the first character in the returned string is the minus sign (-). If
expression is a positive number, the first character in the string is a space.

Depending on the number of digits of accuracy in the expression you specify, and depending on how
many of the digits are to the left of the decimal point, the Str$() function may return a string which
represents a rounded value. If you need to control the number of digits of accuracy displayed in a
string, use the Format$() function.

If expression is an Object expression, the Str$() function returns a string, indicating the object type:
Arc, Ellipse, Frame, Line, Point, Polyline, Rectangle, Region, Rounded Rectangle, or Text.

If expression is an Object expression of the form tablename.obj and if the current row from that table
has no graphic object attached, Str$() returns a null string.

Passing an uninitialized Object variable to the Str$() function generates an error.

If expression is a Date, the output from Str$() depends on how the user's computer is configured.
For example, the following expression:

Str$(NumberToDate(19951231))

might return “12/31/1995” or “1995/12/31” (etc.) depending on the date formatting in use on the
user's computer. To control how Str$() formats dates, use the Set Format statement.

If expression is a number, the Str$() function uses a period as the decimal separator, even if the
user's computer is set up to use another character as decimal separator. The Str$() function never
includes thousands separators in the return string. To produce a string that uses the thousands
separator and decimal separator specified by the user, use the FormatNumber$() function.
MapBasic 11.0 728 Reference

Chapter 10:
String$() function
Example

Dim s_spelled_out As String, f_profits As Float
f_profits = 123456
s_spelled_out = "Annual profits: $" + Str$(f_profits)

See Also:

Format$() function, FormatNumber$() function, Set Format statement, Val() function

String$() function

Purpose

Returns a string built by repeating a specified character some number of times. You can call this
function from the MapBasic window in MapInfo Professional.

Syntax

String$(num_expr, string_expr)

num_expr is a positive integer numeric expression.

string_expr is a string expression.

Return Value

String

Description

The String$() function returns a string num_expr characters long; this result string consists of
num_expr occurrences of the first character from the string_expr string. Thus, the num_expr
expression should be a positive integer value, indicating the desired length of the result (in
characters).

Example

Dim filler As String
filler = String$(5, "ABCDEFGH")
' at this point, filler contains the string "AAAAA"
' (5 copies of the 1st character from the string)

See Also:

Space$() function
MapBasic 11.0 729 Reference

Chapter 10:
StringCompare() function
StringCompare() function

Purpose

Performs case-sensitive string comparisons. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

StringCompare(string1, string2)

string1 and string2 are string expressions.

Return Value

SmallInt: -1 if first string precedes second; 1 if first string follows second; zero if strings are equal.

Description

The StringCompare() function performs case-sensitive string comparisons. MapBasic string
comparisons which use the “=” operator are case-insensitive. Thus, a comparison expression such
as the following:

If "ABC" = "abc" Then

evaluates as TRUE, because string comparisons are case-insensitive.

The StringCompare() function performs a case-sensitive string comparison and returns an
indication of how the strings compare.

Example

The function call StringCompare("ABC", "abc") returns a value of -1, since “A” precedes “a” in
the set of character codes.

See Also:

Like() function, StringCompareIntl() function

Return value: When:

-1 first string precedes the second string, alphabetically

0 the two strings are equal

1 first string follows the second string, alphabetically
MapBasic 11.0 730 Reference

Chapter 10:
StringCompareIntl() function
StringCompareIntl() function

Purpose

Performs language-sensitive string comparisons. You can call this function from the MapBasic
window in MapInfo Professional.

Syntax

StringCompareIntl(string1, string2)

string1 and string2 are the string expressions being compared.

Return Value

SmallInt: -1 if first string precedes second; 1 if first string follows second; zero if strings are equal.

Description

The StringCompareIntl() function performs language-sensitive string comparisons. Call this
function if you need to determine the alphabetical order of two strings, and the strings contain
characters that are outside the ordinary U.S. character set (for example, umlauts).

The comparison uses whatever language settings are in use on the user's computer. For example, a
Windows user can control language settings through the Control Panel.

See Also:

Like() function, StringCompare() function

StringToDate() function

Purpose

Returns a Date value, given a string. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

StringToDate(datestring)

datestring is a string expression representing a date.

Return value: When:

-1 first string precedes the second string, using the current language setting

0 the two strings are equal

1 first string follows the second string, using the current language setting
MapBasic 11.0 731 Reference

Chapter 10:
StringToDate() function
Return Value

Date

Description

The StringToDate() function returns a Date value, given a string that represents a date. MapBasic
interprets the date string according to the date-formatting options that are set up on the user's
computer. Computers within the U.S. are usually configured to format dates as Month/Day/Year, but
computers in other countries are often configured with a different order (for example,
Day/Month/Year) or a different separator character (for example, a period instead of a /). To force
the StringToDate() function to apply U.S. formatting conventions, use the Set Format statement.

To avoid the entire issue of how the user's computer is set up, call the NumberToDate()
function instead of StringToDate(). The NumberToDate() function is not affected by how
the user's computer is set up.

The datestring argument must indicate the month (1 - 12, represented as one or two digits) and the
day of the month (1 - 31, represented as one or two digits). You can specify the year as a four-digit
number or as a two-digit number, or you can omit the year entirely. If you do not specify a year,
MapInfo Professional uses the current year. If you specify the year as a two-digit number (for
example, 96), MapInfo Professional uses the current century or the century as determined by the
Set Date Window statement

Example

The following example specifies date strings with U.S. formatting: Month/Day/Year. Before calling
StringToDate(), this program calls the Set Format statement to guarantee that the U.S. date
strings are interpreted correctly, regardless of how the system is configured.

Dim d_start, d_end As Date

Set Format Date "US"
d_start = StringToDate("12/17/92")
d_end = StringToDate("01/02/1995")
Set Format Date "Local"

In this example, the variable Date1 = 19890120, Date2 = 20101203 and MyYear = 1990.

DIM Date1, Date2 as Date
DIM MyYear As Integer

Set Format Date "US"
Set Date Window 75
Date1 = StringToDate("1/20/89")
Date2 = StringToDate("12/3/10")
MyYear = Year("12/30/90")

These results are due to the Set Date Window statement which allows you to control the century
value when given a two-digit year.

See Also:

NumberToDate() function, Set Format statement, Str$() function
MapBasic 11.0 732 Reference

Chapter 10:
StringToDateTime function
StringToDateTime function

Purpose

Returns a DateTime value given a string that represents a date and time. MapBasic interprets the
date/time string according to the date and time-formatting options that are set up on the user's
computer. At least one space must be between the date and time. See StringToDate() function
and StringToTime function for details. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

StringToDateTime (String)

Return Value

DateTime

Example

Copy this example into the MapBasic window for a demonstration of this function.

dim strX as string
dim Z as datetime
strX = "19990912041345789"
Z = StringtoDateTime(strX)
Print FormatDate$(Z)
Print FormatTime$(Z,"hh:mm:ss.fff tt")

StringToTime function

Purpose

Returns a Time value given a string that represents a time. MapBasic interprets the time string
according to the time-formatting options that are set up on the user's computer. However, either 12
or 24-hour time representations are accepted. In addition, the less significant components of a time
may be omitted. In other words, the hour must be specified, but the minutes, seconds, and
milliseconds are optional. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

StringToTime (String)

Return Value

Time
MapBasic 11.0 733 Reference

Chapter 10:
StyleAttr() function
Example

Copy this example into the MapBasic window for a demonstration of this function.

dim strY as string
dim X as time
strY = "010203000"
X = StringtoTime(strY)
Print FormatTime$ (X,"hh:mm:ss.fff tt")

StyleAttr() function

Purpose

Returns one attribute of a Pen, Brush, Font, or Symbol style. You can call this function from the
MapBasic window in MapInfo Professional.

Syntax

StyleAttr(style, attribute)

style is a Pen, Brush, Font, or Symbol style value.

attribute is an integer code specifying which component of the style should be returned.

Return Value

string or integer, depending on the attribute parameter.

Description

The StyleAttr() function returns information about a Pen, Brush, Symbol, or Font style.

Each style type consists of several components. For example, a Brush style definition consists of
three components: pattern, foreground color, and background color. When you call the StyleAttr()
function, the attribute parameter controls which style attribute is returned.

The attribute parameter must be one of the codes in the table below. Codes in the left column (for
example, PEN_WIDTH) are defined in MAPBASIC.DEF.

attribute setting ID StyleAttr() returns:

BRUSH_PATTERN 1 Integer, indicating the Brush style's pattern.

BRUSH_FORECOLOR 2 Integer, indicating the Brush style's foreground color, as an
RGB value.

BRUSH_BACKCOLOR 3 Integer, indicating the Brush style's background color as an
RGB value, or -1 if the brush has a transparent background.

FONT_NAME 1 String, indicating the Font name.
MapBasic 11.0 734 Reference

Chapter 10:
StyleAttr() function
FONT_STYLE 2 Integer value, indicating the Font style (0 = Plain, 1 = Bold,
etc.); see Font clause for details.

FONT_POINTSIZE 3 Integer indicating the Font size, in points.

If the Text object is in a mappable table (as opposed
to a Layout window), the point size is returned as
zero, and the text height is dictated by the Map
window's current zoom.

FONT_FORECOLOR 4 Integer value representing the RGB color of the font
foreground.

FONT_BACKCOLOR 5 Integer value representing the RGB color of the font
background, or -1 if the font has a transparent background.
If the font style includes a halo, the RGB color represents
the halo color.

PEN_WIDTH 1 Integer, indicating the Pen style's line width, in pixels or
points.

PEN_PATTERN 2 Integer, indicating the Pen style's pattern.

PEN_COLOR 4 Integer, indicating the Pen style's RGB color value.

PEN_INDEX 5 Integer, representing the pen index number from the pen
pattern.

PEN_INTERLEAVED 6 Logical, TRUE if line style is interleaved.

SYMBOL_KIND 7 Integer, indicating the type of symbol: 2 for TrueType
symbols; 3 for bitmap file symbols.

SYMBOL_CODE 1 Integer, indicating the Symbol style's shape code. Applies to
TrueType symbols.

SYMBOL_COLOR 2 Integer, indicating the Symbol style's color as an RGB value.

SYMBOL_POINTSIZE 3 Integer from 1 to 48, indicating the Symbol's size, in points.

SYMBOL_ANGLE 4 Float number, indicating the rotation angle of a TrueType
symbol.

SYMBOL_FONT_NAME 5 String, indicating the name of the font used by a TrueType
symbol.

attribute setting ID StyleAttr() returns:
MapBasic 11.0 735 Reference

Chapter 10:
StyleOverrideInfo() function
Error Conditions

ERR_FCN_ARG_RANGE (644) error is generated if an argument is outside of the valid range.

Example

The following example uses the CurrentPen() function to determine the pen style currently in use
by MapInfo Professional, then uses the StyleAttr() function to determine the thickness of the pen, in
pixels.

Include "mapbasic.def"
Dim cur_width As Integer
cur_width = StyleAttr(CurrentPen(), PEN_WIDTH)

See Also:

Brush clause, Font clause, Pen clause, Symbol clause, MakeBrush() function, MakeFont()
function, MakePen() function, MakeSymbol() function

StyleOverrideInfo() function
Returns information about a specific display style override.

Syntax

StyleOverrideInfo (window_id, layer_number, override_index, attribute)

window_id is the integer window identifier of a Map window.

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer);
to determine the number of layers in a Map window, call the MapperInfo() function.

override_index is an integer index (1-based) for the override definition within the layer.

attribute is a code indicating the type of information to return; see table below.

Return Value

Return value depends on attribute parameter.

SYMBOL_FONT_STYLE 6 Integer, indicating the style attributes of a TrueType symbol
(0 = plain, 1 = Bold, etc.). See Symbol clause for a listing of
possible values.

SYMBOL_CUSTOM_NAME 8 String, indicating the file name used by a bitmap file symbol.

SYMBOL_CUSTOM_STYLE 9 Integer, indicating the style attributes of a bitmap file symbol
(0 = plain, 1 = show background, etc.). See Symbol clause
for a listing of possible values.

attribute setting ID StyleAttr() returns:
MapBasic 11.0 736 Reference

Chapter 10:
StyleOverrideInfo() function
Description

This function returns information about the specified display style override for one layer in an
existing Map window. The layer_number must be a valid layer (1 is the topmost table layer, and so
on). The attribute parameter must be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.

Attribute Code ID LayerInfo() Return Value

STYLE_OVR_INFO_NAME 1 Style override name.

STYLE_OVR_INFO_VISIBILITY 2 Smallint value, indicating whether the style
override is visible; Return value will be one of
the values:

• STYLE_OVR_INFO_VIS_OFF (0)
override is disabled/off; never visible

• STYLE_OVR_INFO_VIS_ON (1)
override is currently visible in the map

• STYLE_OVR_INFO_VIS_ZOOM (2)
override is currently not visible because it's
outside the map zoom range

STYLE_OVR_INFO_ZOOM_MIN 3 Float value, indicating the minimum zoom value
at which the style override displays.

STYLE_OVR_INFO_ZOOM_MAX 4 Float value, indicating the maximum zoom value
at which the style override displays.

STYLE_OVR_INFO_ARROWS 5 Logical value; TRUE if override displays
direction arrows on linear objects.

STYLE_OVR_INFO_NODES 6 Logical value; TRUE if override displays object
nodes.

STYLE_OVR_INFO_CENTROIDS 7 Logical value; TRUE if override displays object
centroids.

STYLE_OVR_INFO_ALPHA 8 SmallInt value, representing the alpha factor for
the specified override.

• 0=fully transparent.
• 255=fully opaque.

STYLE_OVR_INFO_TRANSLUCENCY 9 SmallInt value, representing the translucency
percentage for the specified override.

• 100=fully transparent.
• 0=fully opaque.
MapBasic 11.0 737 Reference

Chapter 10:
StyleOverrideInfo() function
Example

StyleOverrideInfo(nMID, nLayer, nOverride, STYLE_OVR_INFO_PEN_COUNT)

See Also:

LabelOverrideInfo() function, LayerStyleInfo() function, Set Map statement, LayerInfo()
function

STYLE_OVR _INFO_LINE 10 Pen style used for displaying linear objects. If
there are multiple styles, the bottom Pen style is
returned.

STYLE_OVR _INFO_PEN 11 Pen style used for displaying the borders of filled
objects. If there are multiple styles, the bottom
Pen style is returned.

STYLE_OVR_INFO_BRUSH 12 Brush style used for displaying filled objects. If
there are multiple styles, the bottom Brush style
is returned.

STYLE_OVR_INFO_SYMBOL 13 Symbol style used for displaying point objects. If
there are multiple styles, the bottom Symbol
style is returned.

STYLE_OVR_INFO_FONT 14 Font style used for displaying text objects. If
there are multiple styles, the bottom Font style is
returned.

STYLE_OVR_INFO_SYMBOL_COUNT 15 SmallInt value, indicating the number of multiple
SYMBOL styles.

STYLE_OVR_INFO_LINE_COUNT 16 SmallInt value, indicating the number of multiple
LINE styles.

STYLE_OVR_INFO_PEN_COUNT 17 SmallInt value, indicating the number of multiple
PEN styles.

STYLE_OVR_INFO_BRUSH_COUNT 18 SmallInt value, indicating the number of multiple
BRUSH styles.

STYLE_OVR_INFO_FONT_COUNT 19 SmallInt value, indicating the number of multiple
FONT styles.

Attribute Code ID LayerInfo() Return Value
MapBasic 11.0 738 Reference

Chapter 10:
Sub…End Sub statement
Sub…End Sub statement

Purpose

Defines a procedure, which can then be called through the Call statement.

Syntax

Sub proc_name [([ByVal] parameter As var_type [, ...])]
 statement_list

End Sub

proc_name is the name of the procedure.

parameter is the name of a procedure parameter.

var_type is a standard MapBasic variable type (for example, integer) or a custom variable Type.

statement_list is a list of zero or more statements comprising the body of the procedure.

Restrictions

You cannot issue a Sub…End Sub statement through the MapBasic window.

Description

The Sub…End Sub statement defines a sub procedure (often, simply called a procedure). Once a
procedure is defined, other parts of the program can call the procedure through the Call statement.

Every Sub…End Sub definition must be preceded by a Declare Sub statement.

A procedure may have zero or more parameters. parameter is the name of the parameter; each of a
procedure's parameters must be unique. If a sub procedure has two or more parameters, they must
be separated by commas.

By default, each sub procedure parameter is defined “by reference.” When a sub procedure has a
by-reference parameter, the caller must specify the name of a variable as the parameter.
Subsequently, if the sub procedure alters the contents of the by-reference parameter, the caller's
variable will reflect the change. This allows the caller to examine the results returned by the sub
procedure. Alternately, any or all sub procedure parameters may be passed “by value” if the
keyword ByVal appears before the parameter name in the Sub statement. When a parameter is
passed by value, the sub procedure receives a copy of the value of the caller's parameter
expression; thus, the caller can pass any expression, rather than having to pass the name of a
variable. A sub procedure can alter the contents of a ByVal parameter without having any impact on
the status of the caller's variables.

A procedure can take an array as a parameter. To declare a procedure parameter as an array, place
parentheses after the parameter name in the Sub…End Sub statement (as well as in the Declare
Sub statement). The following example defines a procedure which takes an array of Integers as a
parameter.

Sub ListProcessor(items() As Integer)
MapBasic 11.0 739 Reference

Chapter 10:
Symbol clause
When a sub procedure expects an array as a parameter, the procedure's caller must specify the
name of an array variable, without the parentheses.

If a sub procedure's local variable has the same name as an existing global variable, all of the sub
procedure's references to that variable name will access the local variable.

A sub procedure terminates if it encounters an Exit Sub statement.

You cannot pass arrays, custom Type variables, or Alias variables as ByVal (by-value) parameters
to sub procedures. However, you can pass any of those data types as by-reference parameters.

Example

In the following example, the sub procedure Cube cubes a number (raises the number to the power
of three), and returns the result. The sub procedure takes two parameters; the first parameter
contains the number to be cubed, and the second parameter passes the results back to the caller.

Declare Sub Main
Declare Sub Cube(ByVal original As Float, cubed As Float)

Sub Main
Dim x, result As Float
Call Cube(2, result)
' result now contains the value: 8 (2 x 2 x 2)
x = 1
Call Cube(x + 2, result)
' result now contains the value: 27 (3 x 3 x 3)

End Sub

Sub Cube (ByVal original As Float, cubed As Float)
' Cube the "original" parameter value, and store
' the result in the "cubed" parameter.
cubed = original ^ 3

End Sub

See Also:

Call statement, Declare Sub statement, Dim statement, Exit Sub statement, Function…End
Function statement, Global statement

Symbol clause

Purpose

Specifies a symbol style for point objects. You can use this clause in the MapBasic Window in
MapInfo Professional.
MapBasic 11.0 740 Reference

Chapter 10:
Symbol clause
MapInfo 3.0 Symbols

Syntax

Symbol (shape, color, size)

shape is an integer, 31 or larger, specifying which character to use from MapInfo Professional's
standard symbol set. To create an invisible symbol, use 31; see table below. The standard set of
symbols includes symbols 31 through 67, but the user can customize the symbol set by using the
Symbol application.

color is an integer RGB color value; see RGB() function.

size is an integer point size, from 1 to 48.

Description

The Symbol clause specifies the settings that dictate the appearance of a point object. Note
that Symbol is a clause, not a complete MapBasic statement. Various object-related
statements, such as Create Point, allow you to specify a Symbol clause; this lets you specify
the symbol style of the new object.

Some MapBasic statements (for example, Alter Object…Info OBJ_INFO_SYMBOL) take a
Symbol expression as a parameter (for example, the name of a Symbol variable), rather than a full
Symbol clause (the keyword Symbol followed by the name of a Symbol variable).

The following table lists the standard symbol shapes that are available when you use MapInfo 3.0
symbols:
MapBasic 11.0 741 Reference

Chapter 10:
Symbol clause
Example

The following example shows how a Set Map statement can incorporate a Symbol clause. Set
Map statement below specifies that symbol objects in the mapper's first layer should be displayed
using symbol 34 (a filled circle), filled in red, at a size of eighteen points.

Include "mapbasic.def"

Set Map
Layer 1 Display Global
Global Symbol MakeSymbol(34,RED,18)

True Type Font

Syntax

Symbol (shape, color, size, fontname, fontstyle, rotation)

shape is an integer, 32 or larger, specifying which character to use from a TrueType font. To create
an invisible symbol, use 32.

color is an integer RGB color value; see RGB() function.

size is an integer point size, from 1 to 48.

fontname is a string representing a TrueType font name (for example, “WingDings”).

fontstyle is an integer code controlling attributes such as bold; see table below.

rotation is a floating-point number representing a rotation angle, in degrees.

Description

When you specify a TrueType font symbol, the fontstyle argument controls attributes such as Bold.
The following table lists the fontstyle values you can specify:

To specify two or more style attributes, add the values from the left column. For example, to specify
both the Bold and the Drop Shadow attributes, use a fontstyle value of 33. Styles 16 and 256 are
mutually exclusive.

fontstyle value Symbol Style

0 Plain

1 Bold

16 Border (black outline)

32 Drop Shadow

256 Halo (white outline)
MapBasic 11.0 742 Reference

Chapter 10:
Symbol clause
Custom Bitmap File

Syntax

Symbol (filename, color, size, customstyle)

filename is a string up to 31 characters long, representing the name of a bitmap file. The file must be
in the CustSymb directory.

color is an integer RGB color value; see RGB() function.

size is an integer point size, from 1 to 48.

customstyle is an integer code controlling color and background attributes. See table below.

Description

When you specify a custom symbol, the customstyle argument controls background, color, and
display size settings, as described in the following table.

Symbol Expression

Syntax

Symbol symbol_expr

symbol_expr is a Symbol expression, which can either be the name of a Symbol variable, or a
function call that returns a Symbol value, for example, MakeSymbol(shape, color, size).

customstyle value Symbol Style

0 The Show Background, the Apply Color, and the Display at Actual Size
settings are off; the symbol appears in its default state at the point size
specified by the size parameter. White pixels in the bitmap are displayed as
transparent, allowing whatever is behind the symbol to show through.

1 The Show Background setting is on; white pixels in the bitmap are opaque.

2 The Apply Color setting is on; non-white pixels in the bitmap are replaced
with the symbol's color setting.

3 Both Show Background and Apply Color are on.

4 The Display at Actual Size setting is on; the bitmap image is rendered at its
native width and height in pixels.

5 The Show Background and Display at Actual Size settings are on.

7 The Show Background, the Apply Color, and the Display at Actual Size
settings are on.
MapBasic 11.0 743 Reference

Chapter 10:
SystemInfo() function
See Also:

MakeCustomSymbol() function, MakeFontSymbol() function, MakeSymbol() function,
StyleAttr() function

SystemInfo() function

Purpose

Returns information about the operating system or software version. You can call this function from
the MapBasic window in MapInfo Professional.

Syntax

SystemInfo(attribute)

attribute is an integer code indicating which system attribute to query.

The MAPBASIC.DEF constant for this function is 18.

Return Value

SmallInt, logical, or string

Description

The SystemInfo() function returns information about MapInfo Professional's system status. The
attribute can be any of the codes listed in the table below. The codes are defined in MAPBASIC.DEF

.

attribute code ID SystemInfo() Return Value

SYS_INFO_APPLICATIONWND 7 Integer, representing the Windows HWND specified by
the Set Application Window statement (or zero if no
such HWND has been set).

SYS_INFO_APPVERSION 2 Integer value: the version number with which the
application was compiled, multiplied by 100.

SYS_INFO_CHARSET 5 String value: the name of the native character set.

SYS_INFO_COPYPROTECTED 6 Logical value: TRUE means the user is running a
copy-protected version of MapInfo Professional.

SYS_INFO_DATE_FORMAT 11 String: “US” or “Local” depending on the date
formatting in effect; for details, see Set Format
statement.
MapBasic 11.0 744 Reference

Chapter 10:
SystemInfo() function
SYS_INFO_DDESTATUS 8 Integer value, representing the number of elements in
the DDE execute queue. If the queue is empty,
SystemInfo() returns zero (if an incoming execute
would be enqueued) or -1 (if an execute would be
executed immediately).

SYS_INFO_DIG_INSTALLED 12 Logical value: TRUE if a digitizer is installed, along
with a compatible driver.

SYS_INFO_DIG_MODE 13 Logical value: TRUE if Digitizer Mode is on.

SYS_INFO_MAPINFOWND 9 Integer, representing a Windows HWND of the
MapInfo Professional frame window, or zero on non-
Windows platforms.

SYS_INFO_MDICLIENTWND 15 Integer, representing a Windows HWND of the
MapInfo Professional MDICLIENT window, or 0 on
non-Windows platforms.

SYS_INFO_MIPLATFORM 14 Integer value, indicating the type of MapInfo
Professional software that is running.

SYS_INFO_MIVERSION 3 Integer value, indicating the version of MapInfo
Professional that is currently running, multiplied by
100.

SYS_INFO_NUMBER_FORMAT 10 String: “9,999.9” or “Local” depending on the number
formatting in effect; for details, see Set Format
statement.

SYS_INFO_PLATFORM 1 Integer value, indicating the hardware platform on
which the application is running. The return value will
be PLATFORM_WIN.

SYS_INFO_PRODUCTLEVEL 16 Integer value, indicating the product level of the
version of MapInfo Professional that is running (for
example, 1100 for MapInfo Professional 11.0).

SYS_INFO_RUNTIME 4 Logical value: TRUE if invoked within a run-time
version of MapInfo Professional, FALSE otherwise.

attribute code ID SystemInfo() Return Value
MapBasic 11.0 745 Reference

Chapter 10:
TableInfo() function
Error Conditions

ERR_FCN_ARG_RANGE (644) error is generated if an argument is outside of the valid range.

Example

The following example uses the SystemInfo() function to determine what type of MapInfo software
is running. The program only calls a DDE-related procedure if the program is running some version
of MapInfo Professional.

Declare Sub DDE_Setup

If SystemInfo(SYS_INFO_PLATFORM) = PLATFORM_WIN Then
Call DDE_Setup

End If

TableInfo() function

Purpose

Returns information about an open table. Has a define for FME (Universal Data) tables. You can call
this function from the MapBasic window in MapInfo Professional.

Syntax

TableInfo(table_id, attribute)

table_id is a string representing a table name, a positive integer table number, or 0 (zero).

attribute is an integer code indicating which aspect of the table to return (see table of attributes
below). The following example returns the coordsys clause with bounds:

TableInfo(table_id, TAB_INFO_COORDSYS_CLAUSE)
TableInfo(table_id, 29)

SYS_INFO_APPIDISPATCH
(value=17)

17 Integer, representing the IDispatch OLE Automation
pointer for the MapInfo Application.

SYS_INFO_MIBUILD_NUMBER) 18 This function has an attribute to return the current build
number so you can distinguish between MapInfo
Professional point versions in MapBasic.

For example, SystemInfo(SYS_INFO_MIVERSION)
returns 850 for MapInfo Professional 8.5 and 8.5.2.
You can further distinguish between 8.5 and 8.5.2 with
SystemInfo(SYS_INFO_MIBUILD_NUMBER), which
returns 32 for 8.5, and 60 for 8.5.2.

attribute code ID SystemInfo() Return Value
MapBasic 11.0 746 Reference

Chapter 10:
TableInfo() function
Return Value

String, SmallInt, or logical, depending on the attribute parameter specified.

Description

The TableInfo() function returns one piece of information about an open table.

The table_id can be a string representing the name of the open table. Alternately, table_id can be a
table number. If table_id is 0 (zero), the TableInfo() function returns information about the most
recently opened, most recently created table; or a table that has just been renamed. This allows a
MapBasic program to determine the working name of a table in cases where the Open Table
statement did not include an As clause. If there are no open tables, or if the most recently-opened
table has already been closed, the TableInfo() function generates an error.

The attribute parameter can be any value from the table below. Codes in the left column (for
example, TAB_INFO_NAME) are defined in MAPBASIC.DEF.

attribute code ID TableInfo() returns

TAB_INFO_BROWSER_LIST 35 String result: indicates which columns will be
displayed in a browser. This information is stored in
table metadata. Return empty string if this
information is absent.

TAB_INFO_COORDSYS_CLAUSE 29 String result, indicating the table's CoordSys
clause, such as “CoordSys Earth Projection
1, 0". Returns empty string if table is not mappable.

TAB_INFO_COORDSYS_CLAUSE
_WITHOUT_BOUNDS

37 String result, representing the table's CoordSys
clause without bounds.

TableInfo(table_id,
TAB_INFO_COORDSYS_CLAUSE)

returns the coordsys clause without bounds

or

TableInfo(table_id, 29)

returns the coordsys clause with bounds

TAB_INFO_COORDSYS_MINX,
TAB_INFO_COORDSYS_MINY,
TAB_INFO_COORDSYS_MAXX,
TAB_INFO_COORDSYS_MAXY

25
26
27
28

Float results, indicating the minimum or maximum x
or y map coordinates that the table is able to store; if
table is not mappable, returns zero.
MapBasic 11.0 747 Reference

Chapter 10:
TableInfo() function
TAB_INFO_COORDSYS_NAME 30 String result, representing the name of the
coordinate system as listed in MAPINFOW.PRJ (but
without the optional “\p…” suffix that appears in
MAPINFOW.PRJ). Returns empty string if table is
not mappable, or if coordinate system is not found in
MAPINFOW.PRJ.

TAB_INFO_DESCRIPTION 38 String result: returns a table description string that
can be specified in a TAB file. If there is no
description in a TAB file, then it returns an empty
string.

TAB_INFO_EDITED 9 Logical result; TRUE if table has unsaved edits.

TAB_INFO_FASTEDIT 10 Logical result; TRUE if the table has FastEdit mode
turned on, FALSE otherwise. (See Set Table
statement for information on FastEdit mode.)

TAB_INFO_ISMANAGED 41 Logical result: TRUE if table is managed in a library
service.

TAB_INFO_MAPPABLE 5 Logical result; TRUE if the table is mappable.

TAB_INFO_MAPPABLE_TABLE 12 String result indicating the name of the table
containing graphical objects. Use this code when
you are working with a table that is actually a
relational join of two other tables, and you need to
know the name of the base table that contains the
graphical objects.

TAB_INFO_MINX,
TAB_INFO_MINY,
TAB_INFO_MAXX,
TAB_INFO_MAXY

20
21
22
23

Float results, indicating the minimum and maximum
x- and y-coordinates of all objects in the table.

TAB_INFO_NAME 1 String result, indicating the name of the table.

TAB_INFO_NCOLS 4 SmallInt, indicating the number of columns.

TAB_INFO_NREFS 31 SmallInt, indicating the number of other base tables
that reference this table. (Returns zero for most
tables, or non-zero in cases where a table is defined
as a join of two other tables, such as a StreetInfo
table.) May only be used with base tables
(TAB_TYPE_BASE).

TAB_INFO_NROWS 8 SmallInt, indicating the number of rows.

attribute code ID TableInfo() returns
MapBasic 11.0 748 Reference

Chapter 10:
TableInfo() function
TAB_INFO_NUM 2 SmallInt result, indicating the number of the table.

TAB_INFO_PARENTTABLEID 40 String result: returns the table ID from which this
TAB file was copied. If this was not created from
another TAB file, then it returns an empty string.

TAB_INFO_READONLY 6 Logical result; TRUE if the table is read-only.

TAB_INFO_SEAMLESS 24 Logical result; TRUE if seamless behavior is on for
this table.

TAB_INFO_SUPPORT_MZ 32 Logical result: TRUE if table supports m and z-
values.

TAB_INFO_TABFILE 19 String result, representing the table's full directory
path. Returns an empty string if the table is a query
table.

TAB_INFO_TABLEID 39 String result: returns the unique table ID for a TAB
file. If there is no Table ID in a TAB file, then it
returns an empty string.

TAB_INFO_TEMP 7 Logical result; TRUE if the table is temporary (for
example, QUERY1).

TAB_INFO_THEME_METADATA 36 Logical result; TRUE if the table has default theme
metadata.

attribute code ID TableInfo() returns
MapBasic 11.0 749 Reference

Chapter 10:
TableInfo() function
TAB_INFO_TYPE 3 SmallInt result, indicating the type of table. The
returned value will match one of these:

• TAB_TYPE_BASE (1)
if a normal or seamless table

• TAB_TYPE_RESULT (2)
if results of a query

• TAB_TYPE_VIEW (3)
if table is actually a view; for example, StreetInfo
tables are actually views

• TAB_TYPE_IMAGE (4)
if table is a raster image

• TAB_TYPE_LINKED (5)
if this table is linked

• TAB_TYPE_WMS (6)
if table is from a Web Map Service

• TAB_TYPE_WFS (7)
if table is from a Web Feature Service

• TAB_TYPE_FME (8)
if table is opened through FME

• TAB_TYPE_TILESERVER (9)
if table is a raster image from a Tile Server

TAB_INFO_UNDO 11 Logical result; TRUE if the undo system is being
used with the specified table, or FALSE if the undo
system has been turned off for the table through the
Set Table statement.

TAB_INFO_USERBROWSE 14 Logical result: FALSE if a Set Table statement has
set the UserBrowse option to Off.

TAB_INFO_USERCLOSE 15 Logical result: FALSE if a Set Table statement has
set the UserClose option to Off.

TAB_INFO_USERDISPLAYMAP 18 Logical result: FALSE if a Set Table statement has
set the UserDisplayMap option to Off.

TAB_INFO_USEREDITABLE 16 Logical result: FALSE if a Set Table statement has
set the UserEdit option to Off.

TAB_INFO_USERMAP 13 Logical result: FALSE if a Set Table statement has
set the UserMap option to Off.

TAB_INFO_USERREMOVEMAP 17 Logical result: FALSE if a Set Table statement has
set the UserRemoveMap option to Off.

attribute code ID TableInfo() returns
MapBasic 11.0 750 Reference

Chapter 10:
TableListInfo() function
Error Conditions

ERR_TABLE_NOT_FOUND (405) error is generated if the specified table was not available.

ERR_FCN_ARG_RANGE (644) error is generated if an argument is outside of the valid range.

Example

Include "mapbasic.def"
Dim i_numcols As SmallInt, L_mappable As Logical
Open Table "world"
i_numcols = TableInfo("world", TAB_INFO_NCOLS)
L_mappable = TableInfo("world", TAB_INFO_MAPPABLE)

TableInfo(table_id, TAB_INFO_COORDSYS_CLAUSE)
TableInfo(table_id, 29) - Returns the coordsys clause with bounds

See Also:

Open Table statement

TableListInfo() function

Purpose

Returns information about the Table List window.

Syntax

TableListInfo(attribute)

attribute is a code indicating the type of information to return; see table below.

Description

The TableListInfo() function returns one piece of information about the Table List window.

TAB_INFO_Z_UNIT 34 String result: indicates distance units used for z-
values. Return empty string if units are not specified.

TAB_INFO_Z_UNIT_SET 33 Logical result: TRUE if unit is set for z-values.

attribute code ID TableInfo() returns
MapBasic 11.0 751 Reference

Chapter 10:
TableListInfo() function
The attribute parameter is a value from the table below. Codes in the left column are defined in
MAPBASIC.DEF.

Examples

TableListInfo(TL_INFO_SEL_COUNT)

The following example uses this function in conjunction with a custom item on the Table List shortcut
menu.

include "mapbasic.def"
include "menu.def"
declare sub main
declare sub ShowTABPaths
'==
sub main
' Add new item to Table List context menu
 alter menu ID M_SHORTCUT_TLV_TABLES add
 "Show TAB path..." calling ShowTABPaths
end sub
'==
sub ShowTABPaths()
' Get the number of selected items
 dim selCount as integer
 selCount = TableListInfo(TL_INFO_SEL_COUNT)
' Print the table name and TAB file location fo all selected items
 dim index as integer
 for index = 1 to selCount
' Get the table id
 dim tableId as integer
 tableId = TableListSelectionInfo(index, TL_SEL_INFO_ID)
' Use the table in call to get the TAB path
 dim tablePath as string
 tablePath = TableInfo(tableId, TAB_INFO_TABFILE)
' Print the info
 print tableName + " - " + tablePath
 next
end sub

See Also:

TableListSelectionInfo() function

attribute code ID TableInfo() returns

TL_INFO_SEL_COUNT 1 Smallint result, indicating the number of selected
items.
MapBasic 11.0 752 Reference

Chapter 10:
TableListSelectionInfo() function
TableListSelectionInfo() function

Purpose

Returns information about a selected item in the Table List window.

Syntax

TableListSelectionInfo (selection_index, attribute)

selection_id is the index of a selected item in Table List.

attribute is a code indicating the type of information to return; see table below.

Description

The attribute parameter can be any value from the table below. Codes in the left column are defined
in MAPBASIC.DEF.

Example

TableListSelectionInfo(index, TL_SEL_INFO_ID)

See Also:

TableListInfo() function

Tan() function

Purpose

Returns the tangent of a number. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

Tan(num_expr)

num_expr is a numeric expression representing an angle in radians.

attribute code ID TableInfo() returns

TL_SEL_INFO_NAME 1 String result, representing the name of the selected.

TL_SEL_INFO_ID 2 Smallint value, indicating the id of the table
associated with the selected item. This value can be
used in calls to TableInfo().
MapBasic 11.0 753 Reference

Chapter 10:
TempFileName$() function
Return Value

Float

Description

The Tan() function returns the tangent of the numeric num_expr value, which represents an angle in
radians.

To convert a degree value to radians, multiply that value by DEG_2_RAD (0.01745329252). To
convert a radian value into degrees, multiply that value by RAD_2_DEG (57.29577951). (Note that
your program will need to Include “MAPBASIC.DEF” in order to reference DEG_2_RAD or
RAD_2_DEG).

Example

Include "mapbasic.def"

Dim x, y As Float

x = 45 * DEG_2_RAD
y = Tan(x)
' y will now be equal to 1,
' since the tangent of 45 degrees is 1

See Also:

Acos() function, Asin() function, Atn() function, Cos() function, Sin() function

TempFileName$() function

Purpose

Returns a name that can be used when creating a temporary file. You can call this function from the
MapBasic window in MapInfo Professional.

Syntax

TempFileName$(dir)

dir is the string that specifies the directory that will store the file; "" specifies the system temporary
storage directory.

Return Value

Returns a string that specifies a unique file name, including its path.

Description

Use the TempFileName$() function when you need to create a temporary file, but you do not know
what file name to use.
MapBasic 11.0 754 Reference

Chapter 10:
Terminate Application statement
When you call TempFileName$(), MapBasic returns a string representing a file name. The
TempFileName$() function does not actually create the file. To create the file, issue an Open File
statement.

If the dir parameter is an empty string (""), the returned file name will represent a file in the system's
temporary storage directory, such as “G:\TEMP\~MAP0023.TMP”.

In a networked environment, it is possible that two users could attempt to create the same file at the
same time. If you try to create a file using a filename returned by TempFileName$(), and an error
occurs because that file already exists, it is likely that another network user created the file moments
after your program called TempFileName$(). To reduce the likelihood of such file conflicts, issue
the Open File statement immediately after calling TempFileName$(). To eliminate all chances of
file sharing conflicts, create an error handler, and enable the error handler (by issuing an OnError
statement) before issuing the Open File statement.

See Also:

FileExists() function

Terminate Application statement

Purpose

Halts execution of a running or sleeping MapBasic application. You can issue this statement from
the MapBasic Window in MapInfo Professional.

Syntax

Terminate Application app_name

app_name is a string representing the name of the running application (for example,
“SCALEBAR.MBX”).

Description

If a MapBasic program creates custom menu items or ButtonPad buttons, that MapBasic program
can remain in memory, “sleeping,” until the user exits MapInfo Professional. To force a sleeping
application to halt, issue a Terminate Application statement. For example, if you need to halt an
application for debugging purposes, you can issue the Terminate Application statement from the
MapBasic Window.

If your application launches another MapBasic application (using the Run Application statement),
you can use the Terminate Application statement to halt the other MapBasic application.

Terminate Application allows one program to halt another program. The easiest way for a
program to halt itself is to issue an End Program statement.

See Also:

End Program statement, Run Application statement
MapBasic 11.0 755 Reference

Chapter 10:
TextSize() function
TextSize() function

Purpose

Returns the point size of a text object in a window. You can call this function from the MapBasic
window in MapInfo Professional.

Syntax

TextSize(window_id, text_obj)

window_id is the integer window identifier of a Map or Layout window. Call the FrontWindow()
function or the WindowID() function to obtain window identifiers.

text_obj is a text object.

If the text object is from a Map window, the window ID must be the ID of a Map window. If the
text object is from a Layout, the window ID must be the ID of a Layout window.

Return Value

Float

Description

The TextSize() function will return the point size of a text object in a window at its current zoom
level. This function correlates to selecting a text object and selecting Edit > Get Info or pressing F7.

Example

If the active window is a map and a text object is selected:

print TextSize(FrontWindow(), selection.obj)

See Also:

Font clause

Time() function

Purpose

The time function returns the current system time in string format. The time may be returned in 12-
or 24-hour time format. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

StringVar = Time(Format)
MapBasic 11.0 756 Reference

Chapter 10:
Timer() function
Description

StringVar is a string variable which will be given the system time in HH:MM:SS format. Format is an
integer value indicating the format of the string to return. The time will be returned in 24-hour format
if Format is 24. Any other value will return the time in 12-hour format.

Timer() function

Purpose

Returns the number of elapsed seconds. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

Timer()

Return Value

Integer

Description

The Timer() function returns the number of seconds that have elapsed since Midnight, January 1,
1970. By calling the Timer() function before and after a particular operation, you can time how long
the operation took (in seconds).

Example

Declare Sub Ubi

Dim start, elapsed As Integer

start = Timer()
Call Ubi
elapsed = Timer() - start

'
' elapsed now contains the number of seconds
' that it took to execute the procedure Ubi
'

ToolHandler procedure

Purpose

A reserved procedure name; works in conjunction with a special ToolButton (the MapBasic tool).
MapBasic 11.0 757 Reference

Chapter 10:
ToolHandler procedure
Syntax

Declare Sub ToolHandler
Sub ToolHandler

 statement_list
End Sub

statement_list is a list of statements to execute when the user clicks with the MapBasic tool.

Description

ToolHandler is a special-purpose MapBasic procedure name, which operates in conjunction with the
MapBasic tool.

Defining a ToolHandler procedure is a simple way to add a custom button to MapInfo Professional's
Main ButtonPad. However, the button associated with a ToolHandler procedure is restricted; you
cannot use custom icons or drawing modes with the ToolHandler's button. To create a custom
button which has no restrictions, use the Alter ButtonPad statement and Create ButtonPad
statement statements.

If the user runs an application which contains a procedure named ToolHandler, a plus-shaped tool
(the MapBasic tool) appears on the Main ButtonPad. The MapBasic tool is enabled whenever a
Browser, Map, or Layout window is the active window. If the user selects the MapBasic tool and
clicks in the Browser, Map, or Layout window, MapBasic automatically calls the ToolHandler
procedure.

A ToolHandler procedure can use the CommandInfo() function to determine where the user
clicked. If the user clicked in a Browser, the CommandInfo() function returns the row and column
where the user clicked. If the user clicked in a Map, the CommandInfo() function returns the map
coordinates of the location where the user clicked; these coordinates are in MapBasic's current
coordinate system (see Set CoordSys statement).

If the user clicked in a Layout window, the CommandInfo() function returns the layout coordinates
(for example, distance from the upper left corner of the page) where the user clicked; these
coordinates are in MapBasic's current paper units (see Set Paper Units statement).

By calling the CommandInfo() function, you can also detect whether the user held down the shift
key and/or the Control key while clicking. This allows you to write applications which react differently
to click events than to shift-click events.

To make the MapBasic tool the active tool, issue the statement:

Run Menu Command M_TOOLS_MAPBASIC

For a ToolHandler procedure to take effect, the user must run the application. If an application
contains a special procedure name—such as ToolHandler—the application “goes to sleep” when
the Main procedure runs out of statements to execute.

The Main procedure may be explicit or implied. The application is said to be “sleeping” because the
ToolHandler procedure is still in memory, although it may be inactive. If the user selects the
MapBasic tool and clicks with it, MapBasic automatically calls the ToolHandler procedure, so that
the procedure may react to the click event.
MapBasic 11.0 758 Reference

Chapter 10:
TriggerControl() function
When any procedure in an application executes the End Program statement, the application is
completely removed from memory. That is, a program which executes an End Program statement
is no longer sleeping—it is terminated altogether. So, you can use the End Program statement to
terminate a ToolHandler procedure once it is no longer wanted. Conversely, you should be careful
not to issue an End Program statement while the ToolHandler procedure is still needed.

Depending on the circumstances, a ToolHandler procedure may need to issue a Set CoordSys
statement before determining the coordinates of where the user clicked. If the ToolHandler
procedure is called because the user clicked in a Browser, no Set CoordSys statement is
necessary. If the user clicks in a Layout window, the ToolHandler procedure may need to issue a
Set CoordSys Layout statement before determining where the user clicked in the layout. If the
user clicks in a Map window, and the application's current coordinate system does not match the
coordinate system of the Map (because the application has issued a Set CoordSys statement), the
ToolHandler procedure may need to issue a Set CoordSys statement before determining where
the user clicked in the map.

Example

The following program sets up a ToolHandler procedure that will be called if the user selects the
MapBasic tool, then clicks on a Map, Browser, or Layout window. In this example, the ToolHandler
simply displays the location where the user clicked.

Include "mapbasic.def"
Declare Sub ToolHandler
Note "Ready to test the MapBasic tool."

Sub ToolHandler
Note "x:" + Round(CommandInfo(CMD_INFO_X), 0.1) + Chr$(10) +

" y:" + Round(CommandInfo(CMD_INFO_Y), 0.1)
End Sub

See Also:

CommandInfo() function

TriggerControl() function

Purpose

Returns the ID of the last dialog control chosen by the user. You can call this function from the
MapBasic window in MapInfo Professional.

Syntax

TriggerControl()

Return Value

Integer
MapBasic 11.0 759 Reference

Chapter 10:
TrueFileName$() function
Description

Within a Dialog statement’s handler procedure, the TriggerControl() function returns the control
ID of the last control which the user operated.

Each control in a dialog box can have its own dedicated handler procedure; alternately, one
procedure can act as the handler for two or more controls. A procedure which handles multiple
controls can use the TriggerControl() function to detect which control the user clicked.

Error Conditions

ERR_INVALID_TRIG_CONTROL (843) error is generated if the TriggerControl() function is called
when no dialog box is active.

See Also:

Alter Control statement, Dialog statement, Dialog Preserve statement, Dialog Remove
statement, ReadControlValue() function

TrueFileName$() function

Purpose

Returns a full file specification, given a partial specification. You can call this function from the
MapBasic window in MapInfo Professional.

Syntax

TrueFileName$(file_spec)

file_spec is a string representing a partial file specification (for example, “C:PARCELS.TAB”)

Description

This function returns a full file specification (including full drive name and full directory name), given
a partial specification.

In some circumstances, you may need to process a partial file specification. For example, on a DOS
system, the following file specification is partial (it includes a drive letter, C:, but it omits the current
directory name):

"C:parcels.tab"

If the current directory on drive C: is “\mapinfo\data” then the following function call:

TrueFileName$("C:parcels.tab")

returns the string:

"C:\mapinfo\data\parcels.tab"

If your application prompts the user to type in the name of a hard drive or file path, you may want to
use TrueFileName$() to expand the path entered by the user into a full path.
MapBasic 11.0 760 Reference

Chapter 10:
Type statement
The TrueFileName$() function does not verify the existence of the named file; it merely expands
the partial drive letter and directory path. To determine whether a file exists, use the FileExists()
function.

See Also:

ProgramDirectory$() function

Type statement

Purpose

Defines a custom variable type which can be used in later Dim statements and Global statements.

Syntax

Type type_name
element_name As var_type
[...]

End Type

type_name is the name you define for the data type.

element_name is the name you define for each element of the type.

var_type is the data type of that element.

Restrictions

Any Type statements must appear at the “global” level in a program file (for example, outside of any
sub procedure). You cannot issue a Type statement through the MapBasic window. You cannot
pass a Type variable as a by-value parameter to a procedure or function. You cannot write a Type
variable to a file using a Put statement.

Description

The Type statement creates a new data type composed of elements of existing data types. You can
address each element of a variable of a custom type using an expression structured as
variable_name.element_name. A Type can contain elements of other custom types and elements
which are arrays. You can also declare arrays of variables of a custom Type. You cannot copy the
entire contents of a Type variable to another Type variable using an assignment of the form
var_name = var_name.

Example

Type Person
fullname As String
age As Integer
dateofbirth As Date

End Type

Dim sales_mgr, sales_people(10) As Person
MapBasic 11.0 761 Reference

Chapter 10:
UBound() function
sales_mgr.fullname = "Otto Carto"
sales_people(1).fullname = "Melinda Robertson"

See Also:

Dim statement, Global statement, ReDim statement

UBound() function

Purpose

Returns the current size of an array. You can call this function from the MapBasic window in MapInfo
Professional.

Syntax

UBound(array)

array is the name of an array variable.

Return Value

Integer

Description

The UBound() function returns an integer value indicating the current size (or “upper bound”) of an
array variable.

Every array variable has an initial size, which can be zero or larger. This initial size is specified in the
variable's Dim statement or Global statement. However, an array's size can be reset through the
ReDim statement. The UBound() function returns an array's current size, as an integer value
indicating how many elements can currently be stored in the array. A MapBasic array can have up to
32,767 items.

Example

Dim matrix(10) As Float
Dim depth As Integer

depth = UBound(matrix)
' depth now has a value of 10

ReDim matrix(20)
depth = UBound(matrix)
' depth now has a value of 20

See Also:

Dim statement, Global statement, ReDim statement
MapBasic 11.0 762 Reference

Chapter 10:
UCase$() function
UCase$() function

Purpose

Returns a string, converted to upper-case. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

UCase$(string_expr)

string_expr is a string expression.

Return Value

String

Description

The UCase$() function returns the string which is the upper-case equivalent of the string expression
string_expr.

Conversion from lower to upper case only affects alphabetic characters (A through Z); numeric digits
and punctuation marks are not affected. Thus, the function call UCase$("A#12a") returns the
string value “A#12A”.

Example

Dim regular, upper_case As String

regular = "Los Angeles"
upper_case = UCase$(regular)
' upper_case now contains the value "LOS ANGELES"

See Also:
LCase$() function, Proper$() function

UnDim statement

Purpose

Undefines a variable. You can issue this statement in the MapBasic Window in MapInfo
Professional.

Syntax

UnDim variable_name

variable_name is the name of a variable that was declared through the MapBasic window or through
a workspace.
MapBasic 11.0 763 Reference

Chapter 10:
UnitAbbr$() function
Restrictions

The UnDim statement cannot be used in a compiled MapBasic program; it may only be used within
a workspace or entered through the MapBasic window.

Description

After you use the Dim statement to create a variable, you can use the UnDim statement to destroy
that variable definition. For example, suppose you type a Dim statement into the MapBasic window
to declare the variable X:

Dim X As Integer

Now suppose you want to redefine X to be a Float. The following statements redefine X:

UnDim X
Dim X As Float

See Also:
Dim statement, ReDim statement

UnitAbbr$() function

Purpose

Returns a string representing the abbreviated version of a standard MapInfo Professional unit name.
You can call this function from the MapBasic window in MapInfo Professional.

Syntax

UnitAbbr$(unit_name)

unit_name is a string representing a standard MapInfo Professional unit name (for example, “km”).

Return Value

String expression, representing an abbreviated unit name (for example, “km”)

Description

The unit_name parameter must be one of MapInfo Professional's standard, English-language unit
names, such as “km” (for kilometers) or “sq km” (for square kilometers).

The UnitAbbr$() function returns an abbreviated version of the unit name. The exact string
returned depends on whether the user is running the English-language version of MapInfo
Professional or a translated version. For example, if a user is running the German-language version
of MapInfo Professional, the following function call returns the German translation of “sq km”:

UnitAbbr$("sq km")
MapBasic 11.0 764 Reference

Chapter 10:
UnitName$() function
The UnitAbbr$() function can operate on units of distance, area, paper, and time. For a listing of
MapInfo Professional's standard distance unit names (for example, “km”), see Set Distance Units
statement. For a listing of area unit names (for example, “sq km”), see Set Area Units statement.
For a listing of paper unit names (for example, “in” for inches on a page layout), see Set Paper Units
statement. Time unit names include seconds (“sec”), minutes (“min”), and hours (“hr”).

The unit_name parameter can also be “degree” (in which case, UnitAbbr$() returns “deg”).

See Also:

Set Area Units statement, Set Distance Units statement, Set Paper Units statement,
UnitName$() function

UnitName$() function

Purpose

Returns a string representing the full version of a standard MapInfo Professional unit name. You can
call this function from the MapBasic window in MapInfo Professional.

Syntax

UnitName$(unit_name)

unit_name is a string representing a standard MapInfo Professional unit name (for example, “km”)

Return Value

String expression, representing a full unit name (for example, “kilometers”)

Description

The unit_name parameter must be one of MapInfo Professional's standard, English-language unit
names, such as “km” (for kilometers) or “sq km” (for square kilometers).

The UnitName$() function returns a string representing the full version of the unit name. The exact
string returned depends on whether the user is running the English-language version of MapInfo
Professional or a translated version. For example, if a user is running the French-language version
of MapInfo Professional, the following function call returns the French translation of “square
kilometers”:

UnitName$("sq km")

The UnitName$() function can operate on units of distance, area, paper, and time. For a listing of
MapInfo Professional's standard distance unit names (for example, “km”), see Set Distance Units
statement. For a listing of area unit names (for example, “sq km”), see Set Area Units statement.
For a listing of paper unit names (for example, “in” for inches on a page layout), see Set Paper Units
statement. Time unit names include seconds (“sec”), minutes (“min”), and hours (“hr”).

The unit_name parameter can also be “degree” (in which case, UnitName$() returns “degrees”).
MapBasic 11.0 765 Reference

Chapter 10:
Unlink statement
See Also:

Set Area Units statement, Set Distance Units statement, Set Paper Units statement,
UnitAbbr$() function

Unlink statement

Purpose

Unlinks a table which was downloaded and linked from a remote database with the Server Link
Table statement. You can issue this statement in the MapBasic Window in MapInfo Professional.

Syntax

Unlink TableName

TableName is the name of an open MapInfo linked table.

Description

Unlinking a table removes the link to the remote database. This statement doesn't work if edits are
pending (in other words, the user must first commit or rollback). All metadata associated with the
table linkage is removed. Fields that were marked non-editable are now editable. The end product is
a normal MapInfo base table.

Example

Unlink "City_1k"

See Also:

Commit Table statement, Server Link Table statement

Update statement

Purpose

Modifies one or more rows in a table. You can issue this statement in the MapBasic Window in
MapInfo Professional.

Syntax

Update table Set column = expr [, column = expr, ...]
[Where RowID = idnum]

table is the name of an open table.

column is the name of a column.

expr is an expression to assign to a column.

idnum is the number of a row in the table.
MapBasic 11.0 766 Reference

Chapter 10:
Update Window statement
Description

The Update statement modifies one or more columns in a table. By default, the Update statement
will affect all rows in the specified table. However, if the statement includes a Where Rowid clause,
only one particular row will be updated. The Set clause specifies what sort of changes should be
made to the affected row or rows.

To update the map object that is attached to a row, specify the column name Obj in the Set clause;
see example below.

Examples

In the following example, we have a table of employee data; each record states the employee's
department and salary. Let's say we wish to give a seven percent raise to all employees of the
marketing department currently earning less than $20,000. The example below uses a Select
statement to select the appropriate employee records, and then uses an Update statement to
modify the salary column accordingly.

Select * From employees
Where department ="marketing" And salary < 20000

Update Selection
Set salary = salary * 1.07

By using a Where RowID clause, you can tell MapBasic to only apply the Set operation to one
particular row of the table. The following example updates the salary column of the tenth record in
the employees table:

Update employees
Set salary = salary * 1.07
Where Rowid = 10

The next example stores a point object in the first row of a table:

Update sites
Set Obj = CreatePoint(x, y)
Where Rowid = 1

See Also:

Insert statement

Update Window statement

Purpose

Forces MapInfo Professional to process all pending changes to a window. You can issue this
statement in the MapBasic Window in MapInfo Professional.

Syntax

Update Window window_id

window_id is an integer window identifier.
MapBasic 11.0 767 Reference

Chapter 10:
URL clause
Description

The Update Window statement forces MapInfo Professional to process any pending window
display changes.

Under some circumstances, window operations performed by a MapBasic application do not appear
immediately. For example, if an application issues a Dialog statement immediately after modifying a
Map window, the changes to the Map window may not appear until after the user dismisses the
dialog box. To force MapInfo Professional to process pending display changes, use the Update
Window statement.

See Also:

Set Event Processing statement

URL clause

Purpose

Specifies the library service URL. You can use this clause in the MapBasic Window in MapInfo
Professional.

Syntax

URL url

url is a valid Library Service URL.

Description

The URL clause specifies the default Library Service URL to use. It checks that the input is a valid
Library Service URL, and displays an error message if it is not valid.

The default Library service URL is set to an empty string “” to indicate that the Library Service is not
currently set. Once set to a valid URL, you can reset the Library Service URL to an empty string to
reset it.

Example

Include "MAPBASIC.DEF"
Set LibraryServiceInfo URL
http://localhost:8080/LibraryService/LibraryService

See Also:

Set LibraryServiceInfo statement, LibraryServiceInfo() function
MapBasic 11.0 768 Reference

http://localhost:8080/LibraryService/LibraryService

Chapter 10:
USNGToPoint(string)
USNGToPoint(string)

Purpose

Converts a string representing an USNG (United States National Grid) coordinate into a point object
in the current MapBasic coordinate system. You can call this function from the MapBasic Window in
MapInfo Professional.

Syntax

USNGToPoint(string)

string is a string expression representing a USNG grid reference.

Return Value

Object.

Description

The returned point will be in the current MapBasic coordinate system, which by default is Long/Lat
(no datum). For the most accurate results when saving the resulting points to a table, set the
MapBasic coordinate system to match the destination table's coordinate system before calling
USNGToPoint(). This will prevent MapInfo Professional from doing an intermediate conversion to
the datumless Long/Lat coordinate system, which can cause a significant loss of precision.

Example 1

dim obj1 as Object
dim s_USNG As String
dim obj2 as Object
obj1 = CreatePoint(-74.669, 43.263)
s_USNG = PointToUSNG$(obj1)
obj2 = USNGToPoint(s_USNG)

Example 2

Open Table "C:\Temp\MyTable.TAB" as USNGfile
' When using the PointToUSNG$() or USNGToPoint() functions,
' it is very important to make sure that the current MapBasic
' coordsys matches the coordsys of the table where the
' point object is being stored.
'Set the MapBasic coordsys to that of the table used
Set CoordSys Table USNGfile
'Update a Character column (for example COL2) with USNG strings from
'a table of points
Update USNGfile

Set Col2 = PointToUSNG$(obj)
'Update two float columns (Col3 & Col4) with
'CentroidX & CentroidY information
'from a character column (Col2) that contains USNG strings.
MapBasic 11.0 769 Reference

Chapter 10:
Val() function
Update USNGfile
Set Col3 = CentroidX(USNGToPoint(Col2))

Update USNGtestfile ' USNGfile
Set Col4 = CentroidY(USNGToPoint(Col2))

Commit Table USNGfile
Close Table USNGfile

See Also:

PointToUSNG$(obj, datumid)

Val() function
Val() function

Purpose

Returns the numeric value represented by a string. You can call this function from the MapBasic
window in MapInfo Professional.

Syntax

Val(string_expr)

string_expr is a string expression.

Return Value

Float

Description

The Val() function returns a number based on the string_expr string expression. Val() ignores any
white spaces (tabs, spaces, line feeds) at the start of the string_expr string, then tries to interpret the
first character(s) as a numeric value. The Val() function then stops processing the string as soon as
it finds a character that is not part of the number. If the first non-white-space character in the string is
not a period, a digit, a minus sign, or an ampersand character (&), Val() returns zero. (The
ampersand is used in hexadecimal notation; see example below.)

If the string includes a decimal separator, it must be a period, regardless of whether the
user's computer is set up to use some other character as the decimal separator. Also, the
string cannot contain thousands separators. To remove thousands separators from a
numeric string, call the DeformatNumber$() function.

Example

Dim f_num As Float
f_num = Val("12 thousand")
' f_num is now equal to 12
MapBasic 11.0 770 Reference

Chapter 10:
Weekday() function
f_num = Val("12,345")
' f_num is now equal to 12

f_num = Val(" 52 - 62 Brunswick Ave")
' f_num is now equal to 52

f_num = Val("Eighteen")
' f_num is now equal to 0 (zero)

f_num = Val("&H1A")
' f_num is now equal to 26 (which equals hexadecimal 1A)

See Also:

DeformatNumber$() function, Format$() function, Set Format statement, Str$() function

Weekday() function

Purpose

Returns an integer from 1 to 7, indicating the weekday of a specified date. You can call this function
from the MapBasic window in MapInfo Professional.

Syntax

Weekday(date_expr)

date_expr is a date expression.

Return Value

SmallInt value from 1 to 7, inclusive; 1 represents Sunday.

Description

The Weekday() function returns an integer representing the day-of-the-week component (one to
seven) of the specified date.

The Weekday() function only works for dates on or after January 1, in the year 100. If date_expr
specifies a date before the year 100, the Weekday() function returns a value of zero.

Example

If Weekday(CurDate()) = 6 Then
'
' then the date is a Friday
'

End If
MapBasic 11.0 771 Reference

Chapter 10:
WFS Refresh Table statement
See Also:

CurDate() function, Day() function, Month() function, Year() function

WFS Refresh Table statement

Purpose

Refreshes a WFS table from the server. You can issue this statement in the MapBasic Window in
MapInfo Professional.

Syntax

WFS Refresh Table alias [using map [window id]]

alias is the an alias for an open registered WFS table.

If the table was created with a row filter where the geometry of the wfs table is within the current
mapper (the row filter operation will be ogc:BBOX and the value is CURRENT_MAPPER), then the
only data in the table will be what is inside the mapper’s bounds. Refreshing the table will use the old
mapper bounds and ignore any zoom or pan changes made since unless the optional using map is
used. In this case, the bounds of the current mapper will be used and any zoom and pan operations
that have occurred will be taken into account. If the window is not provided, then the topmost map
window is used for the bounds. Otherwise the bounds of the map window specified by the window id
will be used.

Specifying a row filter using the mapper bounds can speed up the initial display of the WFS table,
since it restricts the amount of data being transferred from the server.

Example

The following example refreshes the local table named watershed.

WFS Refresh Table watershed

If the WFS table was created with a row filter of the bounds of the mapper, and the mapper has been
panned, then the parts of the wfs table may not be displayed. To update the table so that it displays
everything in the current mapper, the following can be used.

WFS Refresh Table watershed Using Map

See Also:

Register Table statement, TableInfo() function

While…Wend statement

Purpose

Defines a loop which executes as long as a specified condition evaluates as TRUE.
MapBasic 11.0 772 Reference

Chapter 10:
While…Wend statement
Syntax

While condition
 statement_list

Wend

condition is a conditional expression which controls when the loop should stop.

statement_list is the group of statements to execute with each iteration of the loop.

Restrictions

You cannot issue a While…Wend statement through the MapBasic window.

Description

The While…Wend statement provides loop control. MapBasic evaluates the condition; if it is TRUE,
MapBasic will execute the statement_list (and then evaluate the condition again, etc.).

As long as the condition remains TRUE, MapBasic will repeatedly execute the statement_list. When
and if the condition becomes FALSE, MapBasic will skip the statement_list, and continue execution
with the first statement following the Wend keyword.

Note that a statement of this form:

While condition
 statement_list

Wend

is functionally identical to a statement of this form:

Do While condition
 statement_list

Loop

The While…Wend syntax is provided for stylistic reasons (for example, for the sake of those
programmers who prefer the While…Wend syntax over the Do…Loop statement syntax).

Example

Dim psum As Float, i As Integer
Open Table "world"
Fetch First From world
i = 1
While i <= 10

psum = psum + world.population
Fetch Next From world
i = i + 1

Wend

See Also:

Do…Loop statement, For…Next statement
MapBasic 11.0 773 Reference

Chapter 10:
WinChangedHandler procedure
WinChangedHandler procedure

Purpose

A reserved procedure, called automatically when a Map window is panned or zoomed, or whenever
a map layer is added or removed.

Syntax

Declare Sub WinChangedHandler
Sub WinChangedHandler

 statement_list
End Sub

statement_list is a list of statements to execute when the map is panned or zoomed.

Description

WinChangedHandler is a special-purpose MapBasic procedure name. If the user runs an
application containing a procedure named WinChangedHandler, the application “goes to sleep”
when the Main procedure runs out of statements to execute. As long as the sleeping application
remains in memory, MapBasic calls WinChangedHandler whenever a Map window's extents are
modified (for example, the Map is scrolled, zoomed or re-sized). Within the WinChangedHandler
procedure, call the CommandInfo() function to determine the integer window ID of the affected
window.

Multiple MapBasic applications can be “sleeping” at the same time. When a Map window changes,
MapBasic automatically calls all sleeping WinChangedHandler procedures, one after another.

Under some circumstances, MapBasic may call a WinChangedHandler procedure as a result of an
event which did not affect the map extents. For example, drawing a new object may trigger the
WinChangedHandler procedure. To halt a sleeping application and remove it from memory, use
the End Program statement.

Auto-scrolling Map Windows

MapInfo Professional automatically scrolls the Map window if the user clicks with the mouse and
then drags to the edge of the window. If the user auto-scrolls a Map window, MapInfo Professional
calls WinChangedHandler after the tool action is completed or canceled.

For example, if you use MapInfo Professional's Ruler tool and you autoscroll the window during
each segment, MapInfo Professional calls WinChangedHandler once, after you double-click to
complete the measurement (or after you press Esc to cancel the Ruler tool). If the user auto-scrolls
while using a custom MapBasic tool, MapInfo Professional calls the tool's handler procedure, and
then calls WinChangedHandler.

MapInfo Professional will not call WinChangedHandler if the user auto-scrolls but then returns to
the original location before completing the operation or pressing Esc.

To disable the autoscroll feature, use the Set Window statement.
MapBasic 11.0 774 Reference

Chapter 10:
WinClosedHandler procedure
Example

For an example of using a WinChangedHandler procedure, see the OverView sample program.

See Also:

CommandInfo() function, WinClosedHandler procedure

WinClosedHandler procedure

Purpose

A reserved procedure, called automatically when a Map, Browse, Graph, Layout, Redistricting, or
MapBasic window is closed.

Syntax

Declare Sub WinClosedHandler

Sub WinClosedHandler
 statement_list

End Sub

statement_list is a list of statements to execute when a window is closed.

Description

WinClosedHandler is a special-purpose MapBasic sub procedure name. If the user runs an
application containing a procedure named WinClosedHandler, the application “goes to sleep” when
the Main procedure runs out of statements to execute. As long as the sleeping application remains
in memory, MapBasic automatically calls the WinClosedHandler procedure whenever a window is
closed.

Within the WinClosedHandler procedure, you can use issue the function call:

CommandInfo(CMD_INFO_WIN)

to determine the window identifier of the closed window.

When any procedure in an application executes the End Program statement, the
application is completely removed from memory. Thus, you can use the End Program
statement to terminate a WinClosedHandler procedure once it is no longer wanted.
Conversely, you should be careful not to issue an End Program statement while the
WinClosedHandler procedure is still needed.

Multiple MapBasic applications can be “sleeping” at the same time. When a window is closed,
MapBasic automatically calls all sleeping WinClosedHandler procedures, one after another.

See Also:

CommandInfo() function, EndHandler procedure, RemoteMsgHandler procedure,
SelChangedHandler procedure, ToolHandler procedure, WinChangedHandler procedure
MapBasic 11.0 775 Reference

Chapter 10:
WindowID() function
WindowID() function

Purpose

Returns a MapInfo Professional window identifier. You can call this function from the MapBasic
window in MapInfo Professional.

Syntax

WindowID(window_num)

window_num is a number or a numeric code; see table below.

Return Value

Integer

Description

A window identifier is an integer value which uniquely identifies an existing window. Several
MapBasic statements (for example, the Set Map statement) take window identifiers as parameters.

The following table lists the various ways that you can specify the window_num parameter:

Value of window_num Result

Positive SmallInt value (1, 2, … n) MapInfo Professional returns the window ID of a
document window, such as a Map or Browse
window. For example, if you specify 1, MapInfo
Professional returns the integer ID of the first
document window. Note that n is the number of
open document windows; call the NumWindows()
function to determine n.

Negative SmallInt value (-1,-2, …-m) MapInfo Professional returns the window ID of a
window, which may be a document window or a
floating window such as the Info window. Note that
m is the total number of windows owned by MapInfo
Professional; call the NumAllWindows() function
to determine m. Using this syntax, you could call
WindowID() within a loop to build a list of the ID
numbers of all open windows.
MapBasic 11.0 776 Reference

Chapter 10:
WindowInfo() function
Error Conditions

ERR_BAD_WINDOW_NUM (648) error is generated if the window_num parameter is invalid.

See Also:

FrontWindow() function, NumWindows() function

WindowInfo() function

Purpose

Returns information about a window. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

WindowInfo(window_spec, attribute)

window_spec is a number or a code that specifies which window you want to query.

attribute is an integer code indicating which information about the window to return.

Return Value

Depends on the attribute parameter.

Description

The WindowInfo() function returns one piece of information about an existing window.

Many of the values that you pass as the parameters to WindowInfo() are defined in the standard
MapBasic definitions file, MAPBASIC.DEF. Your program should Include “MAPBASIC.DEF” if you
are going to call WindowInfo().

Zero (0) MapInfo Professional returns the window ID of the
most recently opened document window, custom
Legend window, or ButtonPad; returns zero if no
windows are open.

Window code (for example, WIN_RULER) If you specify a window code with a value from 1001
to 1013, MapInfo Professional returns the ID of a
special window. Window codes are defined in
MAPBASIC.DEF. For example, the code
WIN_RULER (with a value of 1007) represents the
window used by MapInfo Professional's Ruler tool.

Value of window_num Result
MapBasic 11.0 777 Reference

Chapter 10:
WindowInfo() function
The following table lists the various ways that you can specify the window_spec parameter:

Value of window_spec Description

Integer window ID You can use an integer window ID (which you can
obtain by calling the WindowID() function or the
FrontWindow() function) to specify which window
you want to query.

Positive SmallInt value (1, 2, … n) The function queries a document window, such as a
Map or Browser window. For example, specify 1 to
retrieve information on the first document window.
Note that n is the number of open document
windows; call the NumWindows() function to
determine n.

Negative SmallInt value (-1,-2, …-m) The function queries a window, which may be a
document window or a floating window such as the
Info window. Note that m is the total number of
windows owned by MapInfo Professional; call the
NumAllWindows() function to determine m.
Using this syntax, you could call WindowInfo()
within a loop to query every open window.

Zero (0) The function queries the most recently-opened
window. If no windows are open, an error occurs.

Window code (for example, WIN_RULER) If you specify a window code with a value from 1001
to 1013, the function queries a special system
window. Window codes are defined in
MAPBASIC.DEF. For example, MAPBASIC.DEF
contains the code WIN_RULER (with a value of
1007), which represents the window used by
MapInfo Professional's Ruler tool.
MapBasic 11.0 778 Reference

Chapter 10:
WindowInfo() function
The attribute parameter dictates which window attribute the function should return. The attribute
parameter must be one of the codes from the table below:

attribute code ID WindowInfo(attribute) returns:

WIN_INFO_AUTOSCROLL 17 Logical value: TRUE if the autoscroll feature is
on for this window, allowing the user to scroll the
window by dragging to the window's edge. To
turn autoscroll on or off, use the Set Window
statement.

WIN_INFO_CLONEWINDOW 15 String value: a string of MapBasic statements
that can be used in a Run Command statement
to duplicate a window.

WIN_INFO_HEIGHT 5 Float value: window height (in paper units).

WIN_INFO_LEGENDS_MAP 10 Integer value: when you query a Legend window
created using the Create Legend statement,
this code returns the integer window ID of the
Map or Graph window that owns the legend.
When you query the standard Legend window,
returns 0.

WIN_INFO_ADORNMENTS_MAP — Overloaded with the same value as
WIN_INFO_LEGENDS_MAP (10). If the
WindowID is a Adornment, this will return the
WindowID of the Mapper used to create the
Adornment.

WIN_INFO_NAME 1 String value: the name of the window.

WIN_INFO_OPEN 11 Logical value: TRUE if the window is open (used
with special windows such as the Info window).

WIN_INFO_SMARTPAN 18 Logical value; TRUE if Smart Pan has been set
on.

WIN_INFO_STATE 9 SmallInt value: WIN_STATE_NORMAL if at
normal size, WIN_STATE_MINIMIZED (1) if
minimized, WIN_STATE_MAXIMIZED (2) if
maximized.

WIN_INFO_SYSMENUCLOSE 16 Logical value: FALSE indicates that a Set
Window statement has disabled the Close
command on the window's system menu.
MapBasic 11.0 779 Reference

Chapter 10:
WindowInfo() function
WIN_INFO_TABLE 10 String value: For Map windows, the name of the
window's “CosmeticN” table. For Layout
windows, the name of the window's “LayoutN”
table. For Browser or Graph windows, the name
of the table displayed in the window.

WIN_INFO_TOPMOST 8 Logical value: TRUE if this is the active window.

WIN_INFO_TYPE 3 SmallInt value: window type, such as
WIN_LAYOUT (3). See table below.

WIN_INFO_WIDTH 4 Float value: window width (in paper units).

WIN_INFO_WINDOWID 13 Integer value, representing the window's ID;
identical to the value returned by the
WindowID() function. This is useful if you pass
zero as the window_spec.

WIN_INFO_WND 12 Integer value. On Windows, the value represents
a Windows HWND for the window you are
querying.

WIN_INFO_WORKSPACE 14 String value: the string of MapBasic statements
that a Save Workspace operation would write to
a workspace to record the settings for this map.
Differs from WIN_INFO_CLONEWINDOW (15)
in that the results include Open Table
statement, etc.

WIN_INFO_X 6 Float value: the window's distance from the left
edge of the MapInfo Professional work area (in
paper units).

WIN_INFO_Y 7 Float value: the window's distance from the top
edge of the MapInfo Professional work area (in
paper units).

WIN_INFO_PRINTER_NAME 21 Returns string value with printer identifier (for
example, \\DISCOVERY\HP4_DEVEL)

WIN_INFO_PRINTER_ORIENT 22 Returns WIN_PRINTER_PORTRAIT (1) or
WIN_PRINTER_LANDSCAPE (2)

WIN_INFO_PRINTER_COPIES 23 Returns integer number of copies.

WIN_INFO_SNAPMODE 19 Returns a logical value. TRUE if snap mode is
on. FALSE if snap mode is off.

attribute code ID WindowInfo(attribute) returns:
MapBasic 11.0 780 Reference

Chapter 10:
WindowInfo() function
WIN_INFO_SNAPTHRESHOLD 20 Returns a SmallInt value representing the pixel
tolerance.

WIN_INFO_PRINTER_PAPERSIZE 24 Integer value. Refer to the PAPERSIZE.DEF file
(In the \MapInfo\MapBasic directory) for the
meaning of the return value.

WIN_INFO_PRINTER_LEFTMARGIN 25 Float value: left printer margin value in current
units.

WIN_INFO_PRINTER_RIGHTMARGI
N

26 Float value: right printer margin value in current
units.

WIN_INFO_PRINTER_TOPMARGIN 27 Float value: top margin value in current units.

WIN_INFO_PRINTER_BOTTOMMAR
GIN

28 Float value: bottom printer margin value in
current units.

WIN_INFO_PRINTER_BORDER (29) 29 String value: ON if a black border will be on the
printer output, OFF otherwise.

WIN_INFO_PRINTER_TRUECOLOR 30 String value: ON if use 24-bit true color to print
raster and grid images. This is possible when the
image is 24 bit and the printer supports more
than 256 colors, OFF otherwise.

WIN_INFO_PRINTER_DITHER 31 String value: return dithering method, which is
used when it is necessary to convert a 24-bit
image to 256 colors. Possible return values are
HALFTONE and ERRORDIFFUSION. This
option is used when printing raster and grid
images. Dithering will occur if
WIN_INFO_PRINTER_TRUECOLOR (30) is
disabled or if the printer color depth is 256 colors
or less.

WIN_INFO_PRINTER_METHOD 32 String value: possible return values are DEVICE,
EMF, or PRINTOSBM.

WIN_INFO_PRINTER_TRANSPRAST
ER

33 String value: possible return values are DEVICE
and INTERNAL.

WIN_INFO_PRINTER_TRANSPVECT
OR

34 String value: possible return values are DEVICE
and INTERNAL.

WIN_INFO_EXPORT_BORDER 35 String value: possible return values are ON and
OFF.

attribute code ID WindowInfo(attribute) returns:
MapBasic 11.0 781 Reference

Chapter 10:
WindowInfo() function
WIN_INFO_EXPORT_TRUECOLOR 36 String value: possible return values are ON and
OFF.

WIN_INFO_EXPORT_DITHER 37 String value: possible return values are
HALFTONE and ERRORDIFFUSION.

WIN_INFO_EXPORT_TRANSPRAST
ER

38 String value: possible return values are DEVICE
and INTERNAL.

WIN_INFO_EXPORT_TRANSPVECT
OR

39 String value: possible return values are DEVICE
and INTERNAL.

WIN_INFO_PRINTER_SCALE_PATT
ERNS

40 Logical value. TRUE if window is scaled on
printer output. FALSE if not scaled.

WIN_INFO_EXPORT_ANTIALIASING 41 String value: ON if a anti-aliasing filter will be
used for exporting, OFF otherwise.

WIN_INFO_EXPORT_THRESHOLD 42 Integer value between 0 and 255 that specifies
anti-aliasing threshold.

WIN_INFO_EXPORT_MASKSIZE 43 Integer value between 0 and 100

WIN_INFO_EXPORT_FILTER 44 Integer value that return one of possible anti-
aliasing filters:

• FILTER_VERTICALLY_AND_HORIZONTALLY
(0)

• FILTER_ALL_DIRECTIONS_1 (1)
• FILTER_ALL_DIRECTIONS_2 (2)
• FILTER_DIAGONALLY (3)
• FILTER_HORIZONTALLY (4)
• FILTER_VERTICALLY (5)

WIN_INFO_ENHANCED_RENDERIN
G

45 Logical value: TRUE if enhanced rendering is on
for this window. To turn enhanced rendering on
or off, use the Set Window statement.

WIN_INFO_SMOOTH_TEXT 46 String value: The string representation of the
current smooth text mode for the window. To
change the smooth mode, use the Set Window
statement.

attribute code ID WindowInfo(attribute) returns:
MapBasic 11.0 782 Reference

Chapter 10:
WindowInfo() function
If you specify WIN_INFO_TYPE as the attribute, WindowInfo() returns one of these values:

WIN_INFO_SMOOTH_IMAGE 47 String value: The string representation of the
current smooth image mode for the window. To
change the smooth mode, use the Set Window
statement.

WIN_INFO_SMOOTH_VECTOR 48 String value: The string representation of the
current smooth vector mode for the window. To
change the smooth mode, use the Set Window
statement.

attribute code ID WindowInfo(attribute) returns:

Window type ID Window description

WIN_MAPPER 1 Map window

WIN_BROWSER 2 Browse window

WIN_LAYOUT 3 Layout window

WIN_GRAPH 4 Graph window

WIN_BUTTONPAD 19 A ButtonPad window

WIN_TOOLBAR 25 The Toolbar window

WIN_CART_LEGEND 27 The Cartographic Legend window

WIN_3DMAP 28 The 3D Map window

WIN_ADORNMENT 32 A Adornment window

WIN_HELP 1001 The Help window

WIN_MAPBASIC 1002 The MapBasic window

WIN_MESSAGE 1003 The Message window (used with the Print statement)

WIN_RULER 1007 The Ruler window (displays the distances measured by the
Ruler tool)

WIN_INFO 1008 The Info window (displays data when the user clicks with the
Info tool)

WIN_LEGEND 1009 The Theme Legend window

WIN_STATISTICS 1010 The Statistics window

WIN_MAPINFO 1011 The MapInfo Professional application window
MapBasic 11.0 783 Reference

Chapter 10:
WinFocusChangedHandler procedure
Each Map window has a special, temporary table, which represents the “cosmetic layer” for that
map. These tables (which have names like “Cosmetic1”, “Cosmetic2”, etc.) are invisible to the
MapInfo Professional user. To obtain the name of a Cosmetic table, specify WIN_INFO_TABLE
(10). Similarly, you can obtain the name of a Layout window's temporary table (for example,
“Layout1”) by calling WindowInfo() with the WIN_INFO_TABLE (10) attribute.

Error Conditions

ERR_BAD_WINDOW (590) error is generated if the window_id parameter is invalid.

ERR_FCN_ARG_RANGE (644) error is generated if an argument is outside of the valid range.

Example

The following example opens the Statistics window if it isn't open already.

If Not WindowInfo(WIN_STATISTICS,WIN_INFO_OPEN) Then
Open Window WIN_STATISTICS

End If

See Also:

Browse statement, Graph statement, Map statement

WinFocusChangedHandler procedure

Purpose

A reserved procedure name, called automatically when the window focus changes.

Syntax

Declare Sub WinFocusChangedHandler

Sub WinFocusChangedHandler
 statement_list

End Sub

Description

If a MapBasic application contains a sub procedure called WinFocusChangedHandler, MapInfo
Professional calls the sub procedure automatically, whenever the window focus changes. This
behavior applies to all MapInfo Professional window types (Browsers, Maps, etc.). Within the
WinFocusChangedHandler procedure, you can obtain the integer window ID of the current window
by calling CommandInfo(CMD_INFO_WIN).

The WinFocusChangedHandler procedure should not use the Note statement and should not
open or close any windows. These restrictions are similar to those for other handlers, such as the
SelChangedHandler procedure.

The WinFocusChangedHandler procedure should be as short as possible, to avoid slowing
system performance.
MapBasic 11.0 784 Reference

Chapter 10:
Write # statement
Example

The following example shows how to enable or disable a menu item, depending on whether the
active window is a Map window.

Include "mapbasic.def"
Include "menu.def"
Declare Sub Main
Declare sub WinFocusChangedHandler
Sub Main

' At this point, we could create a custom menu item
' which should only be enabled if the current window
' is a Map window...

End Sub

Sub WinFocusChangedHandler
Dim i_win_type As SmallInt

i_win_type=WindowInfo(CommandInfo(CMD_INFO_WIN),WIN_INFO_TYPE)

If i_win_type = WIN_MAPPER Then
' here, we could enable a map-related menu item

Else
' here, we could disable a map-related menu item

End If
End Sub

See Also:

WinChangedHandler procedure

Write # statement

Purpose

Writes data to an open file.

Syntax

Write # file_num [, expr ...]

file_num is the number of an open file.

expr is an expression to write to the file.

Description

The Write # statement writes data to an open file. The file must have been opened in a sequential
mode which allows modification of the file (Output or Append).

The file_num parameter corresponds to the number specified in the As clause of the Open File
statement.
MapBasic 11.0 785 Reference

Chapter 10:
Year() function
If the statement includes a comma-separated list of expressions, MapInfo Professional automatically
inserts commas into the file to separate the items. If the statement does not include any
expressions, MapInfo Professional writes a blank line to the file.

The Write # statement automatically encloses string expressions in quotation marks within the file.
To write text to a file without quotation marks, use the Print # statement.

Use the Input # statement to read files that were created using Write #.

See Also:

Input # statement, Open File statement, Print # statement

Year() function

Purpose

Returns the year component of a date value. You can call this function from the MapBasic window in
MapInfo Professional.

Syntax

Year(date_expr)

date_expr is a date expression.

Return Value

SmallInt

Description

If the Set Date Window statement is off, then the year also depends on your system clock.

Examples

The following example shows how you can use the Year() function to extract only the year
component of a particular date value.

Dim sampleDate as Date
Set Date Window Off
sampleDate=StringToDate("10/1/98")
Print Year(sampleDate)
' 2098 (or 1998 if the computer's system date is set in the 1900's)
' because with date windowing off MapInfo uses the current century
Set Date Window 50
' now assume that two-digit dates fall in the period 1950-2049
print Year(sampleDate)
' still 2098, because date variable has already been assigned!
sampleDate=StringToDate("10/1/98")
' re-assign variable now that the date window has changed
print Year(sampleDate) ' 1998
Undim sampleDate
MapBasic 11.0 786 Reference

Chapter 10:
Year() function
The Year() function can also take a string, rather than a Date variable. In that case, implicit
conversion to date format occurs. The following example illustrates this:

Set Date Window Off
Print Year("10/1/99") ' prints 2099
Set Date Window 50
Print Year("10/1/99") ' prints 1999

You can also use the Year() function within the SQL Select statement. The following Select
statement selects only particular rows from the Orders table. This example assumes that the Orders
table has a Date column, called OrderDate. The Select statement's Where clause tells MapInfo
Professional to only select the orders from December of 1993.

Open Table "orders"
Select * From orders

Where Month(orderdate) = 12 And Year(orderdate) = 1993

See Also:

CurDate() function, Day() function, DateWindow() function, Month() function, Weekday()
function
MapBasic 11.0 787 Reference

Chapter 10:
Year() function
MapBasic 11.0 788 Reference

Chapter 10:
Year() function
MapBasic 11.0 789 Reference

Chapter 10:
Year() function
MapBasic 11.0 790 Reference

Chapter 10:
Year() function
MapBasic 11.0 791 Reference

Chapter 10:
Year() function
MapBasic 11.0 792 Reference

A

HTTP and FTP Libraries
This appendix details the HTTP and FTP libraries that enable MapBasic
programmers to use web-based technology. These libraries allow access to
RSS feeds and other web-based location information such as weather
information, traffic feeds, vehicle locations, etc., as well as the ability to set up
FTP connections and search, receive, and send files through a MapBasic
program. This library uses the common DEF files: HTTPLib.DEF,
HTTPType.DEF, and HTTPUtil.DEF, which are installed in <Your MapBasic
Installation Directory>\Samples\MapBasic\INC. Make sure you include these
files as header files into your programs. All the functionality described in this
appendix is also dependent on the presence of GmlXlat.dll which is installed
with MapInfo Professional.

We have provided sample applications that demonstrate the use of these
libraries. See Your MapBasic Installation
Directory\Samples\MapBasic\HTTPLib and Your MapBasic Installation
Directory\Samples\MapBasic\FTPLib for the specific samples.

All of the functions and procedures listed in this appendix are wrappers of the
corresponding methods of Microsoft MFC Classes. The wrapped classes
include CInternetSession, CHttpConnection, CFtpConnection, CHttpFile, and
CFtpFileFind. For more detailed information about the usage of the related
classes refer to the MSDN reference for MFC classes
(http://msdn2.microsoft.com/en-us/library/bk77x1wx(en-US,vs.80).aspx).

As this is a library, the functions and procedures listed in this
appendix do not execute from a MapBasic window in MapInfo
Professional.

http://msdn2.microsoft.com/en-us/library/bk77x1wx(en-US,vs.80).aspx

Chapter A: HTTP and FTP Libraries
MICloseContent() procedure
MICloseContent() procedure

Purpose

Closes and disposes of the CString handle and frees its memory.

Syntax

MICloseContent(ByVal hContent As CString)

hContent is the CString object handle to be disposed of.

Description

Use the MICloseContent() procedure to close and free the CString object handle, obtained by
calling the MIGetContent() function, when the handle is no longer in use.

See Also:

MIGetContent() function

MICloseFtpConnection() procedure

Purpose

Closes and disposes of the CFtpConnection handle and frees its memory.

Syntax

MICloseFtpConnection(ByVal hConnection As CFtpConnection)

hConnection is the CFtpConnection object handle to be disposed of.

Description

Use the MICloseFtpConnection() procedure to close and free the CFtpConnection handle,
obtained by calling the MIGetFtpConnection() function, when the handle is no longer in use.

See Also:

MIGetFtpConnection() function

MICloseFtpFileFind() procedure

Purpose

Closes and disposes of the CFtpFileFind handle and frees its memory.
MapBasic 11.0 794 Reference

Chapter A: HTTP and FTP Libraries
MICloseHttpConnection() procedure
Syntax

MICloseFtpFileFind(ByVal hFTPFind As CFtpFileFind)

hFTPFind is the handle to a CFtpFileFind object to be disposed of.

Description

Use the MICloseFtpFileFind() procedure to close and free the CFtpFileFind handle, obtained by
calling the MIGetFtpFileFind() function, when the handle is no longer in use.

See Also:

MIGetFtpFileFind() function

MICloseHttpConnection() procedure

Purpose

Closes and disposes of the CHttpConnection handle and frees its memory.

Syntax

MICloseHttpConnection(ByVal hConnection As CHttpConnection)

hConnection is the CHttpConnection object handle to be disposed of.

Description

Use the MICloseHttpConnection() to close and free the CHttpConnection handle, obtained by
calling the MIGetHttpConnection() function, when the handle is no longer in use.

See Also:

MIGetHttpConnection() function

MICloseHttpFile() procedure

Purpose

Closes and disposes of the CHttpFile handle and frees its memory.

Syntax

MICloseHttpFile(ByVal hFile As CHttpFile)

hFile is the CHttpFile object handle to be disposed of.
MapBasic 11.0 795 Reference

Chapter A: HTTP and FTP Libraries
MICloseSession() procedure
Description

Use the MICloseHttpFile() procedure to close and free the CHttpFile object handle, obtained by
calling the MIOpenRequest() function or the MIOpenRequestFull() function, when the handle is
no longer in use.

See Also:

MIOpenRequest() function, MIOpenRequestFull() function

MICloseSession() procedure

Purpose

Closes and disposes of the CInternetSession handle and frees its memory.

Syntax

MICloseSession(ByVal hSession As CInternetSession)

hSession is the CInternetSession object handle to be disposed of.

Description

Use the MICloseSession() procedure to close and free the CInternetSession handle, obtained by
calling the MICreateSession() function or the MICreateSessionFull() function, when the handle
is no longer in use.

See Also:

MICreateSession() function, MICreateSessionFull() function

MICreateSession() function

Purpose

Creates a CInternetSession object and returns the handle to it.

Syntax

MICreateSession(ByVal strAgent As String) As CInternetSession

strAgent is a string that identifies the name of the application or entity calling the Internet functions
(for example, “MapInfo Professional”). If the string is empty, the application name will be used.

Return Value

A handle to a CInternetSession object. If the call fails, Null is returned. To determine the cause of the
failure, call the MIGetErrorMessage() function.
MapBasic 11.0 796 Reference

Chapter A: HTTP and FTP Libraries
MICreateSessionFull() function
Description

MICreateSession() is the first Internet function called by an application. Use CInternetSession to
create and initialize a single, or several simultaneous Internet sessions, and, if necessary, to
describe your connection to a proxy server. If you want to perform service-specific (for example,
HTTP, FTP) actions on files located on a server, you must establish the appropriate connection with
that server. To open a particular kind of connection directly to a particular service, use the proper
functions, such as the MIGetHttpConnection() function or the MIGetFtpConnection() function.
For detailed information, refer to the Microsoft MSDN library.

The caller has to dispose of the handle by calling the MICloseSession() procedure when the
handle is no longer in use.

See Also:

MICloseSession() procedure

MICreateSessionFull() function

Purpose

Creates a CInternetSession object and returns the handle to it.

Syntax

MICreateSessionFull(ByVal strAgent As String, ByVal dwContext As Integer,
ByVal dwAccessType As Integer, ByVal strProxyName As String,
ByVal strProxyBypass As String, ByVal dwFlags As Integer
As CInternetSession

strAgent is a string that identifies the name of the application or entity calling the Internet functions
(for example, “MapInfo Professional”). If the string is empty, the application name is used.

dwContext is the context identifier for the operation.

dwAccessType is The type of access required. The following are the valid values, exactly one of
which may be supplied:

strProxyName is the name of the preferred CERN proxy if dwAccessType is set as
INTERNET_OPEN_TYPE_PROXY. Default is an empty string.

dwAccessType value Definition

INTERNET_OPEN_TYPE_PRECONFIG Connect using preconfigured settings in the registry.
This access type is set as default. To connect through
a TIS proxy, set dwAccessType to this value; you
then set the registry appropriately.

INTERNET_OPEN_TYPE_DIRECT Connect directly to Internet.

INTERNET_OPEN_TYPE_PROXY Connect through a CERN proxy.
MapBasic 11.0 797 Reference

Chapter A: HTTP and FTP Libraries
MIErrorDlg() function
strProxyBypass is a string that contains an option list of server addresses. These addresses may be
bypassed when using proxy access. If an empty string is supplied, the bypass list will be read from
the registry. This parameter is meaningful only if dwAccessType is set to
INTERNET_OPEN_TYPE_PROXY.

dwFlags indicates various caching options. The default is set to 0. The possible values include:

Return Value

A handle to a CInternetSession object. If the call fails, Null is returned. To determine the cause of the
failure, call the MIGetErrorMessage() function.

Description

MICreateSessionFull() is the first Internet function called by an application. Use CInternetSession
to create and initialize a single or several simultaneous Internet sessions and, if necessary, to
describe your connection to a proxy server. If you want to perform service-specific (for example,
HTTP, FTP) actions on files located on a server, you must establish the appropriate connection with
that server. To open a particular kind of connection directly to a particular service, use the proper
functions, such as the MIGetHttpConnection() function or the MIGetFtpConnection() function.
For detailed information, refer to the Microsoft MSDN library.

The caller has to dispose of the handle by calling the MICloseSession() procedure when the
handle is no longer in use.

See Also:

MICreateSession() function, MICloseSession() procedure

MIErrorDlg() function

Purpose

Displays an error message dialog box.

Displays a dialog box for the error that is passed to MIErrorDlg, if an appropriate dialog box exists.
The function also checks the headers of the specified CHttpFile for any hidden errors and displays a
dialog box if needed.

dwFlag value Definition

INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or in any gateway
servers.

INTERNET_FLAG_OFFLINE Download operations are satisfied through the persistent
cache only. If the item does not exist in the cache, an
appropriate error code is returned.
MapBasic 11.0 798 Reference

Chapter A: HTTP and FTP Libraries
MIErrorDlg() function
Syntax

MIErrorDlg(ByVal hFile As CHttpFile, ByVal dwError As Integer) As Integer

hFile is a CHttpFile handle.

dwError is the error code which is used to get the error message.

Return Value

Returns one of the following values, otherwise returns an error value.

Description

Use this function to get the error message in the form of a dialog box if an appropriate dialog box
exists. It also checks the headers for any hidden errors and displays a dialog box if needed. For
more information, refer to the Microsoft MSDN library. Allowable error codes are as follows:

Error Code Description

ERROR_SUCCESS The function completed successfully. In the case of
authentication this indicates that the user clicked the
Cancel button.

ERROR_CANCELLED The function was canceled by the user.

ERROR_INTERNET_FORCE_RETRY This indicates that the function needs to redo its
request. In the case of authentication this indicates that
the user clicked the OK button.

Error Code Description

ERROR_INTERNET_HTTP_TO_HTTPS_ON_
REDIR

Notifies the user of the zero crossing to and
from a secure site.

ERROR_INTERNET_INCORRECT_PASSWO
RD

Displays a dialog box requesting the user's
name and password.

ERROR_INTERNET_INVALID_CA Notifies the user that the function does not
recognize the certificate authority that
generated the certificate for this Secure Socket
Layer (SSL) site.

ERROR_INTERNET_POST_IS_NON_SECUR
E

Displays a warning about posting data to the
server through a nonsecure connection.
MapBasic 11.0 799 Reference

Chapter A: HTTP and FTP Libraries
MIFindFtpFile() function
For more information, refer to the Microsoft MSDN Library.

See Also:

MIOpenRequest() function, MISendRequest() function

MIFindFtpFile() function

Purpose

Finds an FTP file with the given CFtpFileFind handle.

Syntax

MIFindFtpFile(ByVal hFTPFind As CFtpFileFind, ByVal strName As String)
As SmallInt

hFTPFind is a CFtpFileFind handle.

strDirName is a string that contains the name of the file to find. If it is empty, the call performs a
wildcard search (*).

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

After calling MIFindFtpFile() to retrieve the first FTP file, you can call the MIFindNextFtpFile()
function to retrieve subsequent FTP files.

See Also:

MIGetFtpFileFind() function, MIFindNextFtpFile() function, MIGetFtpFileName() procedure,
MIIsFtpDirectory() function, MIIsFtpDots() function

ERROR_INTERNET_SEC_CERT_CN_INVALI
D

Indicates that the SSL certificate Common
Name (host name field) is incorrect. Displays an
Invalid SSL Common Name dialog box and lets
the user view the incorrect certificate. Also
allows the user to select a certificate in
response to a server request.

ERROR_INTERNET_SEC_CERT_DATE_INV
ALID

Notifies the user that the SSL certificate has
expired.

Error Code Description
MapBasic 11.0 800 Reference

Chapter A: HTTP and FTP Libraries
MIFindNextFtpFile() function
MIFindNextFtpFile() function

Purpose

Continues a file search begun with a call to the MIFindFtpFile() function with the given
CFtpFileFind handle.

Syntax

MIFindNextFtpFile(ByVal hFTPFind As CFtpFileFind) As SmallInt

hFTPFind is a CFtpFileFind handle.

Return Value

Nonzero if there are more files; zero if the file found is the last one in the directory or if an error
occurred.

Description

You must call MIfindNextFtpFile() at least once before calling any attribute function, such as
MIGetFtpFileName() procedure, MIIsFtpDirectory() function, and MIIsFtpDots() function.

See Also:

MIGetFtpFileFind() function, MIFindFtpFile() function, MIGetFtpFileName() procedure,
MIIsFtpDirectory() function, MIIsFtpDots() function

MIGetContent() function

Purpose

Gets the content of the file.

Syntax

MIGetContent(ByVal hFile As CHttpFile) As CString

hFile is a CHttpFile handle

Return Value

A handle to a CString object that contains the content of the file. If the call fails, Null is returned. To
determine the cause of the failure, call MIGetErrorMessage() function.

Description

MIGetContent() gets the content of a file and stores it in a CString object, which is an alternative to
the MIGetContentToFile() function. It has to remember that MIGetContentToFile and
MIGetContent are exclusive, which means you can only use one of them during the life time of a
CHttpFile object.
MapBasic 11.0 801 Reference

Chapter A: HTTP and FTP Libraries
MIGetContent() function
The caller has to dispose of the handle by calling the MICloseContent() procedure when the
handle is no longer in use.

See Also:

MIOpenRequest() function, MISendRequest() function, MICloseContent() procedure,
MIGetContentToFile() function
MapBasic 11.0 802 Reference

Chapter A: HTTP and FTP Libraries
MIGetContentBuffer() function
MIGetContentBuffer() function

Purpose

Gets the content in the format of a string with the given size.

Syntax

MIGetContentBuffer(ByVal hContent As CString, pBuffer As String,
ByVal nLen As Integer As SmallInt

hContent is a CString handle.

pBuffer is a reference to a string that receives the content of the file.

nLen is the size of pBuffer in number of characters or bytes.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Use MIGetContentBuffer() to get the content of the file in string format with a given size. You have
to allocate memory for pBuffer before calling this function.

See Also:

MIGetContent() function, MIGetContentLen() function, MIGetContentString() function.

MIGetContentLen() function

Purpose

Gets the content length.

Syntax

MIGetContentLen(ByVal hContent As CString) As Integer

hContent is a CString handle.

Return Value

The content length in number of characters or bytes. Zero could be either that the call fails or that
content is empty. To determine the cause of the failure, call the MIGetErrorMessage() function.

Description

Use MIGetContentLen() to get the content length of the file in number of characters or bytes.
MapBasic 11.0 803 Reference

Chapter A: HTTP and FTP Libraries
MIGetContentString() function
See Also:

MIGetErrorMessage() function

MIGetContentString() function

Purpose

Gets the content in the format of string.

Syntax

MIGetContentString(ByVal hContent As CString) As String

hContent s a CString handle.

Return Value

A string that contains the content of the file. To determine the cause of the failure if an empty string
is returned, call the MIGetErrorMessage() function.

Description

Use this function to get the content of the file in string format.

See Also:

MIGetContent() function, MIGetContentLen() function

MIGetContentToFile() function

Purpose

Saves the contents to a given file.

Syntax

MIGetContentToFile(ByVal hFile As CHttpFile,
ByVal strFileName As String As SmallInt

hFile is a CHttpFile handle

strFileName is a string that identifies the local file name that receives the content of hFile.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.
MapBasic 11.0 804 Reference

Chapter A: HTTP and FTP Libraries
MIGetContentType() function
Description

This function is used to save the content to a CHttpFile to a local file, which is an alternative to
MIGetContent. It will create a new file with given file name. If the file exists already, it is truncated to
0 length. It has to remember that MIGetContentToFile and MIGetContent are exclusive, which
means you can only use one of them during the life time of a CHttpFile object.

See Also:

MIOpenRequest() function, MISendRequest() function, MIGetContent() function.

MIGetContentType() function

Purpose

Gets the content type of the file.

Syntax

MIGetContentType(ByVal hFile As CHttpFile, pBuffer As String,
pBufferLength As Integer As SmallInt

hFile is a CHttpFile handle.

pBuffer is a reference to a string that receives the content type.

pBufferLength is a reference to an integer that contains the length of pBuffer in number of characters
or bytes on entry. When the function succeeds (a string is written to pBuffer), it contains the length of
the string in characters, minus 1 for the terminating NULL character.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Use MIGetContentType() to get the content type of the file in string format. For example, written
value in pBuffer could be “image/jpeg” or “text/html”.

See Also:

MIQueryInfo() function
MapBasic 11.0 805 Reference

Chapter A: HTTP and FTP Libraries
MIGetCurrentFtpDirectory() function
MIGetCurrentFtpDirectory() function

Purpose

Gets the name of the current directory on the FTP server with the given CFtpConnection handle.

Syntax

MIGetCurrentFtpDirectory(Byval hConnection As CFtpConnection,
pDirName As String, pLen As Integer As SmallInt

hConnection is a CFtpConnection handle.

pDirName is a reference to a string that receives the name of the directory.

pLen is a reference to an integer that contains the size of the buffer referenced by pDirName as
input; the number of characters stored to pDirName as output.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

The parameters pDirName can be either fully qualified, or partially qualified, file names relative to
the current directory. A backslash (\) or forward slash (/) can be used as the directory separator for
either name. MIGetCurrentFtpDirectory() translates the directory name separators to the
appropriate characters before they are used.

See Also:

MIGetFtpConnection() function, MISetCurrentFtpDirectory() function

MIGetErrorCode() function

Purpose

Retrieves the last error that was set as a result of a call to a function in this library.

Syntax

MIGetErrorCode() As Integer

Return Value

Error code of the last error set.
MapBasic 11.0 806 Reference

Chapter A: HTTP and FTP Libraries
MIGetErrorMessage() function
Description

MIGetErrorCode() is called if the function's return value indicates its failure and you want to know
the error code. To obtain an error message as a String, call the MIGetErrorMessage() function.

The error value retrieved is only set when certain errors occur during calls to other functions in the
HTTP and FTP API. It is primarily useful for determining which error occurred as a result of a call to
the MISendRequest() function or the MISendSimpleRequest() function so the correct value can
be passed to the MIErrorDlg() function.

See Also:

MIGetErrorMessage() function, MISendRequest() function, MISendSimpleRequest()
function, MIErrorDlg() function

MIGetErrorMessage() function

Purpose

Retrieves the last error message.

Syntax

MIGetErrorMessage() As String

Return Value

A string that contains the error message.

Description

MIGetErrorMessage() should be called immediately to get useful data when a function's return
value indicates its failure and you want to know the cause. Many of the returned errors are system-
set errors.

MIGetFileURL() function

Purpose

Gets the name of the HTTP file as a URL.

Syntax

MIGetFileURL(ByVal hFile As CHttpFile, pURL As String,
ByVal lURLLen As Integer) As SmallInt

hFile is a CHttpFile handle.

pURL is a reference to a string that receives the name of the HTTP file as a URL.

pURLLen is the size of pURL in number of characters or bytes.
MapBasic 11.0 807 Reference

Chapter A: HTTP and FTP Libraries
MIGetFtpConnection() function
Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Use MIGetFileURL() to get the name of the HTTP file as a URL.

See Also:

MISendRequest() function, MIOpenRequest() function

MIGetFtpConnection() function

Purpose

Establishes an FTP connection and gets a handle to a CFtpConnection object.

Syntax

MIGetFtpConnection(ByVal hSession As CInternetSession,
ByVal strServer As String, ByVal strUserName As String,
ByVal strPassword As String, ByVal nPort As INTERNET_PORT)
As CFtpConnection

hSession is a CinternetSession handle.

strServer is a string that contains the FTP server name.

strUserName is a string that specifies the name of the user to log in.

strPassword is a string that specifies the password to use to log in.

nPort is a number that identifies the TCP/IP port to use on the server.

Return Value

A handle to a CFtpConnection object. If the call fails, Null is returned. To determine the cause of the
failure, call the MIGetErrorMessage() function.

Description

MIGetFtpConnection() connects to an FTP server, creates and returns a handle to a
CFtpConnection object. It does not perform any specific operation on the server. If you intend to get
or put files, for example, you must perform those operations as separate steps.

The caller has to dispose of the handle by calling the MICloseFtpConnection() procedure when
the handle is no longer in use.

See Also:

MICloseFtpConnection() procedure, MIGetHttpConnection() function, MICreateSession()
function, MICreateSessionFull() function, MIParseURL() function.
MapBasic 11.0 808 Reference

Chapter A: HTTP and FTP Libraries
MIGetFtpFile() function
MIGetFtpFile() function

Purpose

Gets a file from an FTP server with the given CFtpConnection handle and stores it on the local.
machine.

Syntax

MIGetFtpFile(ByVal hConnection As CFtpConnection,
ByVal strRemoteFile As String, ByVal strLocalFile As String,
ByVal bFailIfExists As SmallInt, ByVal dwAttributes As Integer,
ByVal dwFlags As Integer) As SmallInt

hConnection is a CFtpConnection handle.

strRemoteFile is a string that contains the name of a file to retrieve from the FTP server.

strLocalFile is a string that contains the name of the file to create on the local system.

bFailIfExists indicates whether the file name may already be used by an existing file. If the local file
name already exists, and this parameter is TRUE, MIGetFtpFile() fails. Otherwise, MIGetFtpFile()
erases the existing copy of the file.

dwAttributes indicates the attributes of the file. This can be any combination of the following
FILE_ATTRIBUTE_* flags.

dwAttirbute value Definition

FILE_ATTRIBUTE_ARCHIVE The file is an archive file. Applications use this attribute to
mark files for backup or removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed. For a file, compression
means that all of the data in the file is compressed. For a
directory, compression is the default for newly created files
and subdirectories.

FILE_ATTRIBUTE_DIRECTORY The file is a directory.

FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is valid
only if used alone. All other file attributes override
FILE_ATTRIBUTE_NORMAL:

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be included in an ordinary
directory listing.

FILE_ATTRIBUTE_READONLY The file is read only. Applications can read the file but
cannot write to it or delete it.
MapBasic 11.0 809 Reference

Chapter A: HTTP and FTP Libraries
MIGetFtpFileFind() function
dwFlags specifies the conditions under which the transfer occurs. This parameter can be any of the
following values:

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Both strRemoteFile and strLocalFile can be either partially qualified file names relative to the current
directory, or fully qualified. A backslash (\) or forward slash (/) can be used as the directory
separator for either name.

See Also:

MIGetFtpConnection() function, MIPutFtpFile() function

MIGetFtpFileFind() function

Purpose

Gets a handle to a CFtpFileFind object.

Syntax

MIGetFtpFileFind(ByVal hConnection As CFtpConnection) As CFtpFileFind

FILE_ATTRIBUTE_SYSTEM The file is part of, or is used exclusively by, the operating
system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary storage. Applications
should write to the file only if absolutely necessary. Most of
the file's data remains in memory without being flushed to
the media because the file will soon be deleted.

dwAttirbute value Definition

dwFlags value Definition

FTP_TRANSFER_TYPE_ASCII Transfers the file using FTP's ASCII (Type A) transfer
method. Control and formatting information is converted
to local equivalents.

FTP_TRANSFER_TYPE_BINARY Transfers the file using FTP's Image (Type I) transfer
method. The file is transferred exactly as it exists with
no changes. This is the default transfer method.

FTP_TRANSFER_TYPE_UNKNOWN Defaults to FTP_TRANSFER_TYPE_BINARY.
MapBasic 11.0 810 Reference

Chapter A: HTTP and FTP Libraries
MIGetFtpFileName() procedure
hConnection is a CFtpConnection handle.

Return Value

A handle to a CFtpFileFind object. If the call fails, Null is returned. To determine the cause of the
failure, call the MIGetErrorMessage() function.

Description

The CFtpFileFind class aids in Internet file searches of FTP servers.

The caller has to dispose of the handle by calling MICloseFtpFileFind() procedure when the
handle is no longer in use.

See Also:

MIGetFtpConnection() function, MICloseFtpFileFind() procedure

MIGetFtpFileName() procedure

Purpose

Gets the name of the found file with the given CFtpFileFind handle.

Syntax

MIGetFtpFileName(ByVal hFTPFind As CFtpFileFind, pFileName As String,
ByVal bufferlen As Integer)

hFTPFind is a CFtpFileFind handle.

pFileName is a reference to a string that will receive the name of the found file.

bufferlen is the size of the buffer referenced by pFileName.

Description

You must call MIFindNextFtpFile() function at least once before calling MIGetFtpFileName().

See Also:

MIGetFtpFileFind() function, MIFindNextFtpFile() function, MIFindFtpFile() function

MIGetHttpConnection() function

Purpose

Establishes an HTTP connection and gets a handle to a CHttpConnection object.
MapBasic 11.0 811 Reference

Chapter A: HTTP and FTP Libraries
MIIsFtpDirectory() function
Syntax

MIGetHttpConnection(ByVal hSession As CInternetSession,
ByVal strServer As String, ByVal nPort As INTERNET_PORT
As CHttpConnection

hSession is a CinternetSession handle.

strServer is a string that contains the HTTP server name.

nPort is a number that identifies the TCP/IP port to use on the server.

Return Value

A handle to a CHttpConnection object. If the call fails, Null is returned. To determine the cause of the
failure, call the MIGetErrorMessage() function.

Description

MIGetHttpConnection() connects to an HTTP server, creates and returns a handle to a
CHttpConnection object. It does not perform any specific operation on the server. If you intend to
query an HTTP header, for example, you must perform this operation in separate steps.

The caller has to dispose of the handle by calling the MICloseHttpConnection() procedure when
the handle is no longer in use.

See Also:

MICloseHttpConnection() procedure, MIGetFtpConnection() function, MICreateSession()
function, MICreateSessionFull() function, MIParseURL() function

MIIsFtpDirectory() function

Purpose

Determines if the found file is a directory with the given CFtpFileFind handle.

Syntax

MIIsFtpDirectory(ByVal hFTPFind As CFtpFileFind) As SmallInt

hFTPFind is a CFtpFileFind handle.

Return Value

Nonzero if the found file is a directory; otherwise 0.

Description

You must call MIFindNextFtpFile() function at least once before calling MIIsFtpDirectory().
MapBasic 11.0 812 Reference

Chapter A: HTTP and FTP Libraries
MIIsFtpDots() function
See Also:

MIGetFtpFileFind() function, MIFindNextFtpFile() function, MIFindFtpFile() function,
MIGetFtpFileName() procedure

MIIsFtpDots() function

Purpose

Tests for the current directory and parent directory markers while iterating through files with the
given CFtpFileFind handle.

Syntax

MIIsFtpDots(ByVal hFTPFind As CFtpFileFind) As SmallInt

hFTPFind is a CFtpFileFind handle.

Return Value

Nonzero if the found file has the name “.” or “..”, which indicates that the found file is actually a
directory. Otherwise 0.

Description

You must call the MIFindNextFtpFile() function at least once before calling MIIsFtpDots().

See Also:

MIGetFtpFileFind() function, MIFindNextFtpFile() function, MIFindFtpFile() function,
MIGetFtpFileName() procedure

MIOpenRequest() function

Purpose

Opens an HTTP connection.

Syntax

MIOpenRequest(ByVal hConnection As CHttpConnection,
ByVal nVerb As Integer, ByVal strObjectName As String

) As CHttpFile

hConnection is a CHttpConnection handle.

nVerb is a number associated with the HTTP request type. Can be one of the following:

HTTP_VERB_POST
HTTP_VERB_GET
HTTP_VERB_HEAD
HTTP_VERB_PUT
MapBasic 11.0 813 Reference

Chapter A: HTTP and FTP Libraries
MIOpenRequestFull() function
HTTP_VERB_LINK
HTTP_VERB_DELETE
HTTP_VERB_UNLINK

strObjectName is a string containing the target object of the specified verb. This is generally a file
name, an executable module, or a search specifier.

Return Value

A handle to a CHttpFile object requested. If the call fails, Null is returned. To determine the cause of
the failure, call the MIGetErrorMessage() function.

Description

This function opens an HTTP connection and returns a handle to a CHttpFile object, which provides
services requesting and reading files on an HTTP server. If your Internet session reads data from an
HTTP server, you must get a handle to CHttpFile object.

The caller has to dispose of the handle by calling MICloseHttpFile() procedure when the handle is
no longer in use.

See Also:

MIGetHttpConnection() function, MIOpenRequestFull() function, MIParseURL() function

MIOpenRequestFull() function

Purpose

Opens an HTTP connection.

Syntax

MIOpenRequestFull(ByVal hConnection As CHttpConnection,
ByVal nVerb As Integer, ByVal strObjectName As String,
ByVal strReferer As String, ByVal dwContext As Integer,
ByVal strVersion As String, ByVal dwFlags As Integer)
As CHttpFile

hConnection is a CHttpConnection handle.

nVerb is a number associated with the HTTP request type. Can be one of the following:

• HTTP_VERB_POST
• HTTP_VERB_GET
• HTTP_VERB_HEAD
• HTTP_VERB_PUT
• HTTP_VERB_LINK
• HTTP_VERB_DELETE
• HTTP_VERB_UNLINK
MapBasic 11.0 814 Reference

Chapter A: HTTP and FTP Libraries
MIOpenRequestFull() function
strObjectName is a string containing the target object of the specified verb. This is generally a file
name, an executable module, or a search specifier.

strReferer is a string that specifies the address (URL) of the document from which the URL in the
request (strObjectName) was obtained. If the string is empty, no HTTP header is specified.

dwContext is the context identifier for the MIOpenRequestFull() operation. For detailed
information, refer to the Microsoft MSDN library.

strVersion is a string defining the HTTP version. If the string is empty, “HTTP/1.0” is used.

dwFlags is any combination of the following INTERNET_ FLAG_* flags:

Return Value

A handle to a CHttpFile object requested. If the call fails, Null is returned. To determine the cause of
the failure, call the MIGetErrorMessage() function.

Description

This function opens an HTTP connection and returns a handle to a CHttpFile object, which provides
services requesting and reading files on an HTTP server. If your Internet session reads data from an
HTTP server, you must get a handle to CHttpFile object. This function wraps the MFC function
OpenRequest which has an additional parameter to indicate accepted types. In this version, the
wrapper function always sets this parameter to NULL.

The caller has to dispose of the handle by calling the MICloseHttpFile() procedure when the
handle is no longer in use.

dwFlag value Definition

INTERNET_FLAG_RELOAD Forces a download of the requested file, object, or
directory listing from the origin server, not from the
cache.

INTERNET_ FLAG_DONT_CACHE Does not add the returned entry to the cache.

INTERNET_FLAG_MAKE_PERSISTENT Adds the returned entity to the cache as a
persistent entity. This means that standard cache
cleanup, consistency checking, or garbage
collection cannot remove this item from the cache.

INTERNET_ FLAG_SECURE Use secure transaction semantics. This translates
to using SSL/PCT and is only meaningful in HTTP
requests.

INTERNET_ FLAG_NO_AUTO_REDIRECT Used only with HTTP, specifies that redirection
should not be automatically handled in the
MISendRequest() function.
MapBasic 11.0 815 Reference

Chapter A: HTTP and FTP Libraries
MIParseURL() function
See Also:

MIGetHttpConnection() function, MIOpenRequest() function, MIParseURL() function

MIParseURL() function

Purpose

Parses a URL string and returns the type of service and its components.

Syntax

MIParseURL(ByVal strURL As String, pServiceType As Integer,
pServer As String, ByVal nServerLen As Integer,
pObject As String, ByVal nObjectLen As Integer,
pPort As INTERNET_PORT)
As SmallInt

strURL is a string that contains the URL to be parsed.

pServiceType is a reference to a integer that receives the type of Internet service. The possible
values are one of the following:

• INTERNET_SERVICE_FTP
• INTERNET_SERVICE_GOPHER
• INTERNET_SERVICE_HTTP
• AFX_INET_SERVICE_UNK
• AFX_INET_SERVICE_FILE
• AFX_INET_SERVICE_MAILTO
• AFX_INET_SERVICE_MID
• AFX_INET_SERVICE_CID
• AFX_INET_SERVICE_NEWS
• AFX_INET_SERVICE_NNTP
• AFX_INET_SERVICE_PROSPERO
• AFX_INET_SERVICE_TELNET
• AFX_INET_SERVICE_WAIS
• AFX_INET_SERVICE_AFS
• AFX_INET_SERVICE_HTTPS

strsServer is a reference to a string that specifies the first segment of the URL following the service
type.

nServerLen is the size of the buffer referenced by strsServer.

pObject is a reference to an object that the URL refers to (may be empty).

nObjectLen is the size of the buffer referenced by pObject.

pPort is a reference to an integer that contains the determined port number from either the Server or
Object portions of the URL, if either exists. The port number is used to identify the TCP/IP port to use
on the server.
MapBasic 11.0 816 Reference

Chapter A: HTTP and FTP Libraries
MIPutFtpFile() function
Return Value

Nonzero if the URL was successfully parsed; otherwise, 0 if it is empty or does not contain a known
Internet service type. To determine the cause of the failure, call the MIGetErrorMessage()
function.

Description

MIParseURL() parses a URL string and returns the type of service and its components. For
example, it parses URLs of the form: ftp://ftp.mysite.org/ and returns its components
stored as follows:

pServer == "ftp.mysite.org"
pObject == "/"
nPort == #port
pServiceType == INTERNET_SERVICE_FTP

MIPutFtpFile() function

Purpose

Stores a file on an FTP server with the given CFtpConnection handle.

Syntax

MIPutFtpFile(ByVal hConnection As CFtpConnection,
ByVal strLocalFile As String, ByVal strRemoteFile As String,
ByVal dwFlags As Integer)
As SmallInt

hConnection is a CFtpConnection handle.

strLocalFile is a string that contains the name of the file to send from the local system.

strRemoteFile is a string that contains the name of the file to create on the FTP server.

dwFlags specifies the conditions under which the transfer occurs. This parameter can be any of the
following values:

dwFlag value Definition

FTP_TRANSFER_TYPE_ASCII The file transfers using FTP ASCII (Type A) transfer
method. Converts control and formatting information to local
equivalents.

FTP_TRANSFER_TYPE_BINARY The file transfers data using FTP's Image (Type I) transfer
method. The file transfers data exactly as it exists, with no
changes. This is the default transfer method.
MapBasic 11.0 817 Reference

Chapter A: HTTP and FTP Libraries
MIQueryInfo() function
Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Both strRemoteFile and strLocalFile can be either partially qualified file names relative to the current
directory, or fully qualified. A backslash (\) or forward slash (/) can be used as the directory
separator for either name.

See Also:

MIGetFtpConnection() function, MIGetFtpFile() function

MIQueryInfo() function

Purpose

Returns response or request headers from an HTTP request.

Syntax

MIQueryInfo(ByVal hFile As CHttpFile, ByVal dwInfoLevel As Integer,
pBuffer As String, pBufferLength As Integer) As SmallInt

hFile is a CHttpFile handle.

dwInfoLevel is a combination of the attribute to query, and a modifier flag that specifies the type of
information requested: For a list of the modifier flags, refer to the Microsoft MSDN library.

pBuffer is a reference to a string that receives the information. For the attribute
HTTP_QUERY_CUSTOM, pBuffer is also an input indicating which header name to query.

pBufferLength is a reference to an integer that contains the length of pBuffer in number of characters
or bytes on entry. When the function succeeds (a string is written to pBuffer), it contains the length of
the string in characters minus 1 for the terminating NULL character.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Use this function to get response or request headers from an HTTP request. For a description of
attribute values, refer to the Microsoft MSDN library for information on Query Info flags
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wininet/wininet/query_info_flags.asp).

See Also:

MIOpenRequest() function, MISendRequest() function
MapBasic 11.0 818 Reference

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/query_info_flags.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/query_info_flags.asp

Chapter A: HTTP and FTP Libraries
MIQueryInfoStatusCode() function
MIQueryInfoStatusCode() function

Purpose

Gets the status code associated with an HTTP request.

Syntax

MIQueryInfoStatusCode(ByVal hFile As CHttpFile, pStatusCode As Integer
s SmallInt

hFile is a CHttpFile handle.

pStatusCode is a reference to an integer that receives the status code. Status codes indicate the
success or failure of the requested event. HTTP status codes fall into groups indicating the success
or failure of the request. The following tables outline the status code groups and the most common
HTTP status codes.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

HTTP Status Code Groups

Group Meaning

200-299 Success

300-399 Information

400-499 Request error

500-599 Server error

Common HTTP Status Codes

Status code Meaning

200 URL located, transmission follows.

400 Unintelligible request.

404 Requested URL not found.

405 Server does not support requested method.

500 Unknown server error.

503 Server capacity reached.
MapBasic 11.0 819 Reference

Chapter A: HTTP and FTP Libraries
MISaveContent() function
Description

Use this function to get the status code associated with an HTTP request. For information, refer to
the Microsoft MSDN library.

See Also:

MIOpenRequest() function, MISendRequest() function

MISaveContent() function

Purpose

Saves the content to a given file.

Syntax

MISaveContent(ByVal hContent As CString, ByVal strFileName As String
As SmallInt

hContent is a CString handle.

strFileName is a string that identifies the file name that receives the content.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

This function is used to save the content to a file. It will create a new file with the given file name. If
the file exists already, it is truncated to 0 length.

See Also:

MIGetContent() function

MISendRequest() function

Purpose

Sends a request to an HTTP server.

Syntax

MISendRequest(ByVal hFile As CHttpFile, ByVal strHeaders As String,
ByVal dwHeadersLen As Integer, ByVal strOptional As String,
ByVal dwOptionalLen As Integer, ByVal bAuthenticate As SmallInt
As SmallInt

hFile is a CHttpFile handle.
MapBasic 11.0 820 Reference

Chapter A: HTTP and FTP Libraries
MISendSimpleRequest() function
strHeaders is a string containing the name of the headers to send.

dwHeadersLen is the length of the headers identified by strHeaders.

strOptional is any optional data to send immediately after the request headers. This is generally
used for POST and PUT operations. This can be empty if there is no optional data to send.

dwOptionalLen is the length of strOptional.

bAuthenticate indicates whether to check authentication or not.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

This function sends a request to an HTTP server.

See Also:

MIOpenRequest() function, MIOpenRequestFull() function

MISendSimpleRequest() function

Purpose

Sends a request to an HTTP server.

Syntax

MISendSimpleRequest(ByVal hFile As CHttpFile,
ByVal bAuthenticate As SmallInt) As SmallInt

hFile is a CHttpFile handle.

bAuthenticate indicates whether to check authentication or not.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

This function sends a request to an HTTP server.

See Also:

MIOpenRequest() function, MIOpenRequestFull() function, MISendRequest() function
MapBasic 11.0 821 Reference

Chapter A: HTTP and FTP Libraries
MISetCurrentFtpDirectory() function
MISetCurrentFtpDirectory() function

Purpose

Changes to a different directory on the FTP server with the given CFtpConnection handle.

Syntax

MISetCurrentFtpDirectory(Byval hConnection As CFtpConnection,
Byval strDirName As String) As SmallInt

hConnection is a CFtpConnection handle.

strDirName is a string that contains the name of the directory.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

The pDirName parameter can be either a partially or fully qualified file name relative to the current
directory. A backslash (\) or forward slash (/) can be used as the directory separator for either
name.

MISetCurrentFtpDirectory() translates the directory name separators to the appropriate
characters before they are used.

See Also:

MIGetFtpConnection() function, MIGetCurrentFtpDirectory() function

MISetSessionTimeout() function

Purpose

Sets the time-out options for the Internet session.

Syntax

MISetSessionTimeout(ByVal hSession As CInternetSession,
ByVal Connect As Integer, ByVal Send As Integer,
ByVal Receive As Integer) As SmallInt

hSession is the CInternetSession object handle.

Connect is an integer that contains time-out value in millisecond to use for the Internet connection
request.

Send is an integer that contains the time-out value in milliseconds to use for sending a request.

Receive is an integer that contains the time-out value in milliseconds to use for receiving a request.
MapBasic 11.0 822 Reference

Chapter A: HTTP and FTP Libraries
MISetSessionTimeout() function
Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Use this function to set time-out values for the Internet session. The default value of each setting
(Connect, Send, Receive) is 0. For detailed information, refer to the Microsoft MSDN library.

See Also:

MICreateSession() function, MICreateSessionFull() function
MapBasic 11.0 823 Reference

B

XML Library
This appendix details the XML document library that enables MapBasic
programmers to create and parse XML documents and other web-based
technology. This library uses common DEF files: XMLLib.DEF and
XMLTypes.DEF, which are installed in <Your MapBasic Installation
Directory>\Samples\MapBasic\INC. Make sure you include these files as
header files into your programs. All the functionality described in this appendix
is also dependent on the presence of GmlXlat.dll which is installed with MapInfo
Professional.

All of the functions and procedures listed in this appendix are wrappers of the
corresponding methods of Microsoft XML Interfaces and Classes. Wrapped
classes include: IXMLDOMNode, IXMLDOMNodeList,
IXMLDOMNamedNodeMap, IXMLDOMSchemaCollection2, and
IXMLDOMDocument2. For more detailed information about the usage of the
related classes and interfaces refer to the MSDN reference
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/xmlsdk/html/39b17b9c-04c7-4fa8-bcee-1f7d57eefd74.asp

As this is a library, the functions and procedures listed in this
appendix do not execute from a MapBasic window in MapInfo
Professional.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/39b17b9c-04c7-4fa8-bcee-1f7d57eefd74.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/39b17b9c-04c7-4fa8-bcee-1f7d57eefd74.asp

Chapter B: XML Library
MIXmlAttributeListDestroy() procedure
MIXmlAttributeListDestroy() procedure

Purpose

Disposes of the MIXmlNamedNodeMap object and frees its memory.

Syntax

MIXmlNodeListDestroy(ByVal hXMLNodeList As MIXmlNodeList)

hXMLAttributeList is The MIXmlNamedNodeMap object handle to be disposed of.

Description

The caller has to call this function to free the MIXmlNamedNodeMap handle obtained by calling the
MIXmlGetAttributeList() function, when the handle is no longer in use.

See Also:

MIXmlGetAttributeList() function

MIXmlDocumentCreate() function

Purpose

Creates an MIXmlDocument object and gets a handle to the object.

Syntax

MIXmlDocumentCreate() As MIXmlDocument

Return Value

A handle to the MIXmlDocument object. If the call fails, Null is returned. To determine the cause of
the failure, call the MIGetErrorMessage() function.

Description

MIXmlDocumentCreate() creates and returns a handle to an MIXmlDocument object. It represents
the top level of the XML source.

The caller has to dispose of the handle by calling the MIXmlDocumentDestroy() procedure when
the handle is no longer in use.

See Also:

MIXmlDocumentDestroy() procedure
MapBasic 11.0 825 Reference

Chapter B: XML Library
MIXmlDocumentDestroy() procedure
MIXmlDocumentDestroy() procedure

Purpose

Disposes of the MIXmlDocument and frees its memory.

Syntax

MIXmlDocumentDestroy(ByVal hXMLDocument As MIXmlDocument)

hXMLDocument is the MIXmlDocument object handle to be disposed of.

Description

The caller has to call this function to close and free the MIXmlDocument handle obtained by calling
the MIXmlDocumentCreate() function when the handle is no longer in use.

See Also:

MIXmlDocumentCreate() function

MIXmlDocumentGetNamespaces() function

Purpose

Creates an MIXMLSchemaCollection object and gets a handle to the object.

Syntax

MIXmlDocumentGetNamespaces(ByVal hXMLDocument As MIXmlDocument)
As MIXMLSchemaCollection

hXMLDocument is the MIXmlDocument object handle.

Return Value

A handle to an MIXMLSchemaCollection object if successful; otherwise NULL.

Description

This method creates an MIXMLSchemaCollection object.

The caller has to dispose of the handle by calling the MIXmlSCDestroy() procedure when the
handle is no longer in use.

See Also:

MIXmlDocumentCreate() function, MIXmlSCDestroy() procedure
MapBasic 11.0 826 Reference

Chapter B: XML Library
MIXmlDocumentGetRootNode() function
MIXmlDocumentGetRootNode() function

Purpose

Retrieves the root element of the document.

Syntax

MIXmlDocumentGetRootNode(ByVal hXMLDocument As MIXmlDocument)
As MIXmlNode

hXMLDocument is the MIXmlDocument object handle.

Return Value

A handle to an MIXmlNode object representing the root element of the document if successful;
otherwise NULL.

Description

MIXmlDocumentGetRootNode() retrieves a handle to an MIXmlNode object that represents the
root of the XML document tree. It returns NULL if no root exists.

The caller has to dispose of the handle by calling the MIXmlNodeDestroy() procedure when the
handle is no longer in use.

See Also:

MIXmlDocumentCreate() function, MIXmlNodeDestroy() procedure

MIXmlDocumentLoad() function

Purpose

Loads an XML document from the specified location.

Syntax

MIXmlDocumentLoad(ByVal hXMLDocument As MIXmlDocument,
ByVal strPath As String, pbParsingError As SmallInt,
ByVal bValidate As SmallInt, ByVal bResolveExternals As SmallInt)
As SmallInt

hXMLDocument is the MIXmlDocument object handle.

strPath is a string containing the path/URL that specifies the location of the XML file.

pbParsingError is a reference to a SmallInt that indicates TRUE if the load succeeded; FALSE if the
load failed.

bValidate is a SmallInt that indicates whether the parser should validate this document. If TRUE (1),
it validates during parsing. If FALSE (0), it parses only for well-formed XML.
MapBasic 11.0 827 Reference

Chapter B: XML Library
MIXmlDocumentLoadXML() function
bResolveExternals is a SmallInt that indicates whether external definitions, resolvable namespaces,
document type definition (DTD) external subsets, and external entity references, are to be resolved
at parse time, independent of validation. When the bResolveExternals parameter is TRUE (1),
external definitions are resolved at parse time. This allows default attributes and data types to be
defined on elements from the schema and allows use of the DTD as a file inclusion mechanism. This
setting is independent of whether validation is to be performed, as indicated by the value of the
bValidate property. If externals cannot be resolved during validation, a validation error occurs. When
the value of bResolveExternals is FALSE (0), externals are not resolved and validation is not
performed.

Return Value

Nonzero if successful, otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

If the URL cannot be resolved or accessed or does not reference an XML document, this method
returns FALSE. Calling MIXmlDocumentLoad() on an existing document immediately discards the
content of the document. If loading an XML document from a resource, the load must be performed
asynchronously or the load will fail.

See Also:

MIXmlDocumentCreate() function, MIXmlDocumentLoadXML() function,
MIXmlDocumentLoadXMLString() function

MIXmlDocumentLoadXML() function

Purpose

Loads an XML document using the supplied string.

Syntax

MIXmlDocumentLoadXML(ByVal hXMLDocument As MIXmlDocument,
ByVal hContent As CString, pbParsingError As SmallInt,
ByVal bValidate As SmallInt, ByVal bResolveExternals As SmallInt)
As SmallInt

hXMLDocument is The MIXmlDocument object handle.

hContent is a CString handle to the string containing the XML string to load into this XML document
object. This string can contain an entire XML document or a well-formed fragment.

pbParsingError is a reference to a SmallInt that indicates TRUE (nonzero) if the load succeeded;
FALSE (0) if the load failed.

bValidate is a SmallInt that Indicates whether the parser should validate this document. If TRUE (1),
it validates during parsing. If FALSE (0), it parses only for well-formed XML.
MapBasic 11.0 828 Reference

Chapter B: XML Library
MIXmlDocumentLoadXMLString() function
bResolveExternals is a SmallInt that indicates whether external definitions, resolvable namespaces,
document type definition (DTD) external subsets, and external entity references, are to be resolved
at parse time, independent of validation. When the bResolveExternals parameter is TRUE (1),
external definitions are resolved at parse time. This allows default attributes and data types to be
defined on elements from the schema and allows use of the DTD as a file inclusion mechanism. This
setting is independent of whether validation is to be performed, as indicated by the value of the
bValidate property. If externals cannot be resolved during validation, a validation error occurs. When
the value of bResolveExternals is FALSE (0), externals are not resolved and validation is not
performed.

Return Value

Nonzero if successful, otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Calling MIXmlDocumentLoadXML() on an existing document immediately discards the content of
the document. It will work only with UTF-16 or UCS-2 encodings.

See Also:

MIXmlDocumentCreate() function, MIXmlDocumentLoad() function,
MIXmlDocumentLoadXMLString() function

MIXmlDocumentLoadXMLString() function

Purpose

Loads an XML document using a supplied string.

Syntax

MIXmlDocumentLoadXMLString(ByVal hXMLDocument As MIXmlDocument,
ByVal strXML As String, pbParsingError As SmallInt,
ByVal bValidate As SmallInt, ByVal bResolveExternals As SmallInt)
As SmallInt

hXMLDocument is the MIXmlDocument object handle.

strXML is a string containing the XML string to load into this XML document object. This string can
contain an entire XML document or a well-formed fragment.

pbParsingError is a reference to a SmallInt that indicates TRUE (nonzero) if the load succeeded;
FALSE (0) if the load failed.

bValidate is a SmallInt that Indicates whether the parser should validate this document. If TRUE (1),
it validates during parsing. If FALSE (0), it parses only for well-formed XML.

bResolveExternals is a SmallInt that indicates whether external definitions, resolvable namespaces,
document type definition (DTD) external subsets, and external entity references, are to be resolved
at parse time, independent of validation. When the bResolveExternals parameter is TRUE (1),
MapBasic 11.0 829 Reference

Chapter B: XML Library
MIXmlDocumentSetProperty() function
external definitions are resolved at parse time. This allows default attributes and data types to be
defined on elements from the schema and allows use of the DTD as a file inclusion mechanism. This
setting is independent of whether validation is to be performed, as indicated by the value of the
bValidate property. If externals cannot be resolved during validation, a validation error occurs. When
the value of bResolveExternals is FALSE (0), externals are not resolved and validation is not
performed.

Return Value

Nonzero if successful, otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

Calling MIXmlDocumentLoadXMLString() on an existing document immediately discards the
content of the document. It will work only with UTF-16 or UCS-2 encodings.

See Also:

MIXmlDocumentCreate() function, MIXmlDocumentLoad() function,
MIXmlDocumentLoadXML() function.

MIXmlDocumentSetProperty() function

Purpose

Sets the properties for the MIXmlDocument object.

Syntax

MIXmlDocumentSetProperty(ByVal hXMLDocument As MIXmlDocument,
ByVal strPropertyName As String, ByVal strPropertyValue As String)
As SmallInt

hXMLDocument is the MIXmlDocument object handle.

strPropertyName is a string that contains the name of the property to be set. For a list of properties
that can be set using this method, refer to the Microsoft MSDN library.

strPropertyValue is a string that contains the value of the specified property. For a list of property
values that can be set using this method, refer to the Microsoft MSDN library.

Return Value

Nonzero if successful; otherwise 0.

Description

This method sets the property on the MIXmlDocument object. There are some limitation on which
properties can be set using this method. For details, refer to the Microsoft MSDN library.
MapBasic 11.0 830 Reference

Chapter B: XML Library
MIXmlGetAttributeList() function
See Also:

MIXmlDocumentCreate() function, MIXmlDocumentLoad() function

MIXmlGetAttributeList() function

Purpose

Retrieves the MIXmlNamedNodeMap object with the given node.

Syntax

MIXmlGetAttributeList(ByVal hXMLNode As MIXmlNode) As MIXmlNamedNodeMap

hXMLNode is the MIXmlNode object handle.

Return Value

A handle to the MIXmlNamedNodeMap object that contains the nodes which can return attributes.
Returns NULL for all other node types.

Description

MIXmlGetAttributeList() creates an MIXmlNamedNodeMap object and returns the handle to the
object. This object only contains the nodes which can return attributes (Element, Entity, and Notation
nodes). Null is returned for all other node types. For the valid node types, a handle to an
MIXmlNamedNodeMap object is always returned; when there are no attributes on the element, the
list length is set to zero. For detailed information and the list of valid node types, refer to the
Microsoft MSDN library.

The caller has to dispose of the handle by calling the MIXmlAttributeListDestroy() procedure
when the returned handle is no longer in use.

See Also:

MIXmlDocumentGetRootNode() function, MIXmlAttributeListDestroy() procedure

MIXmlGetChildList() function

Purpose

Gets an MIXmlNodeList object that contains the children nodes of the given node instance.

Syntax

MIXmlGetChildList(ByVal hXMLNode As MIXmlNode) As MIXmlNodeList

hXMLNode is the MIXmlNode object handle.
MapBasic 11.0 831 Reference

Chapter B: XML Library
MIXmlGetNextAttribute() function
Return Value

A handle to the MIXmlNodeList object that contains the children nodes of the given node instance if
successful; otherwise NULL.

Description

MIXmlGetChildList() is used to get a list of children in the given node. An MIXmlNodeList object is
returned even if there are no children of the node. In such a case, the length of the list is set to 0.
This value depends on the value of the node type. For more information, refer to the Microsoft
MSDN library.

The caller has to dispose of the handle by calling the MIXmlNodeListDestroy() procedure when
the handle is no longer in use.

See Also:

MIXmlNodeListDestroy() procedure, MIXmlSelectNodes() function

MIXmlGetNextAttribute() function

Purpose

Returns the next node in the collection.

Syntax

MIXmlGetNextAttribute(ByVal hXMLAttributeList As MIXmlNamedNodeMap)
As MIXmlNode

hXMLAttributeList is the MIXmlNamedNodeMap object handle.

Return Value

A handle to the MIXmlNode object which refers to the next node in the collection if successful;
returns NULL if there is no next node.

Description

The iterator initially points before the first node in the list so that the first call to the
MIXmlGetNextAttribute() function returns the first node in the list. This functions returns NULL
when the current node is the last node or there are no items in the list.

The caller has to dispose of the returned handle by calling MIXmlNodeDestroy() procedure when
the handle is no longer in use.

See Also:

MIXmlGetAttributeList() function, MIXmlNodeDestroy() procedure
MapBasic 11.0 832 Reference

Chapter B: XML Library
MIXmlGetNextNode() function
MIXmlGetNextNode() function

Purpose

Returns the next node in the collection.

Syntax

MIXmlGetNextNode(ByVal hXMLNodeList As MIXmlNodeList) As MIXmlNode

hXMLNodeList is the MIXmlNodeList object handle.

Return Value

A handle to the MIXmlNode object which refers to the next node in the collection represented by,
hXMLNodeList, if successful; returns NULL if there is no next node.

Description

The iterator initially points before the first node in the list so that the first call to the
MIXmlGetNextNode() function returns the first node in the list. This functions returns NULL when
the current node is the last node or there are no items in the list.

The caller has to dispose of the returned handle by calling the MIXmlNodeDestroy() procedure
when the handle is no longer in use.

See Also:

MIXmlNodeDestroy() procedure, MIXmlSelectNodes() function, MIXmlGetChildList()
function

MIXmlNodeDestroy() procedure

Purpose

Disposes of the MIXmlNode object and frees its memory.

Syntax

MIXmlNodeDestroy(ByVal hXMLNode As MIXmlNode)

hXMLNode is the MIXmlNode object handle to be disposed of.

Description

The caller has to call this function to free a MIXmlNode object handle obtained, such as by calling
MIXmlDocumentGetRootNode() function, when the handle is no longer in use.

See Also:

MIXmlDocumentDestroy() procedure
MapBasic 11.0 833 Reference

Chapter B: XML Library
MIXmlNodeGetAttributeValue() function
MIXmlNodeGetAttributeValue() function

Purpose

Retrieves the text associated with the specified name.

Syntax

MIXmlNodeGetAttributeValue(ByVal hXMLNode As MIXmlNode,
ByVal strAttributeName As String, pValue As String,
ByVal nLen As Integer) As SmallInt

hXMLNode is the MIXmlNode object handle.

strAttributeName is a string specifying the name of the attribute.

pValue is a reference to a string that receives the node value of the specified attribute.

nLen is the size of the buffer referenced by pValue.

Return Value

Nonzero if successful; otherwise 0.

Description

MIXmlNodeGetAttributeValue() first finds out if there is a valid MIXmlNamedNodeMap object with
the given node, hXMLNode. As it is stated in MIXmlGetAttributeList() function, this object only
contains the nodes which can return attributes (Element, Entity, and Notation nodes). When there is
a valid MIXmlNamedNodeMap object and the specified name is found in the object, its node value
will fill in pValue.

See Also:

MIXmlGetAttributeList() function, MIXmlNodeGetValue() function

MIXmlNodeGetFirstChild() function

Purpose

Retrieves the first child of the given node instance.

Syntax

MIXmlNodeGetFirstChild(ByVal hXMLNode As MIXmlNode) As MIXmlNode

hXMLNode is the MIXmlNode object handle.

Return Value

A handle to the MIXmlNode object which is the first child of the given node instance, hXMLNode, if
successful; otherwise NULL.
MapBasic 11.0 834 Reference

Chapter B: XML Library
MIXmlNodeGetName() function
Description

MIXmlNodeGetFirstChild() gets a handle to a MIXmlNode object that is the first child of the given
node instance. It returns NULL if no child exists.

The caller has to dispose of the handle by calling MIXmlNodeDestroy() procedure when the
handle is no longer in use.

See Also:

MIXmlNodeDestroy() procedure, MIXmlNodeGetParent() function

MIXmlNodeGetName() function

Purpose

Gets the node name of the given node instance.

Syntax

MIXmlNodeGetName(ByVal hXMLNode As MIXmlNode, pName As String,
ByVal nLen As Integer) As SmallInt

hXMLNode is the MIXmlNode object handle.

pName is a reference to a string that receives the node name, which varies depending on the node
type.

nLen is the size of the buffer referenced by pName.

Return Value

Nonzero if successful; otherwise 0.

Description

This function is used to get the node name with a given node. The node name is the qualified name
for the element, attribute, or entity reference. The node name value varies, depending on the note
type.

See Also:

MIXmlDocumentGetRootNode() function, MIXmlNodeGetText() function,
MIXmlNodeGetValue() function.
MapBasic 11.0 835 Reference

Chapter B: XML Library
MIXmlNodeGetParent() function
MIXmlNodeGetParent() function

Purpose

Retrieves the parent of the given node instance.

Syntax

MIXmlNodeGetParent(ByVal hXMLNode As MIXmlNode) As MIXmlNode

hXMLNode is the MIXmlNode object handle.

Return Value

A handle to the MIXmlNode object which is the parent of the given node instance, hXMLNode, if
successful; otherwise NULL.

Description

MIXmlNodegetParent() gets a handle to a MIXmlNode object that is the parent of the given node
instance. It returns NULL if no parent exists.

The caller has to dispose of the handle by calling the MIXmlNodeDestroy() procedure when the
handle is no longer in use.

See Also:

MIXmlNodeDestroy() procedure

MIXmlNodeGetText() function

Purpose

Gets the text content of the given node or the concatenated text representing the node and its
descendants.

Syntax

MIXmlNodeGetText(ByVal hXMLNode As MIXmlNode, pText As String,
ByVal nLen As Integer) As SmallInt

hXMLNode is the MIXmlNode object handle.

pText is a reference to a string that receives the text content of the given node and its descendants.
This value varies depending on the value of the note type.

nLen is the size of the buffer referenced by pText.

Return Value

Nonzero if successful; otherwise 0.
MapBasic 11.0 836 Reference

Chapter B: XML Library
MIXmlNodeGetValue() function
Description

MIXmlNodegettext() is used to get the node text with a given node instance. Its value varies,
depending on the node type. For more details and more precise control over text manipulation in an
XML document, refer to the Microsoft MSDN library.

See Also:

MIXmlDocumentGetRootNode() function, MIXmlNodeGetName() function,
MIXmlNodeGetValue() function

MIXmlNodeGetValue() function

Purpose

Gets the text associated with the given node instance.

Syntax

MIXmlNodeGetValue(ByVal hXMLNode As MIXmlNode, pValue As String,
ByVal nLen As Integer) As SmallInt

hXMLNode is the MIXmlNode object handle.

pValue is a reference to a string that receives the value, which varies depending on the node type.

nLen is the size of the buffer referenced by pValue.

Return Value

Nonzero if successful; otherwise 0.

Description

This function is used to get the node value with a given node instance. The node value varies,
depending on the node type.

See Also:

MIXmlDocumentGetRootNode() function, MIXmlNodeGetName() function,
MIXmlNodeGetText() function.

MIXmlNodeListDestroy() procedure

Purpose

Disposes of the MIXmlNodeList object and frees its memory.

Syntax

MIXmlNodeListDestroy(ByVal hXMLNodeList As MIXmlNodeList)
MapBasic 11.0 837 Reference

Chapter B: XML Library
MIXmlSCDestroy() procedure
hXMLNodeList is the MIXmlNodeList object handle to be disposed of.

Description

Use MIXmlNodeListDestroy() to free the MIXmlNodeList handle obtained with functions such as
the MIXmlSelectNodes() function, and the MIXmlGetChildList() function, when the
MIXmlNodeList handle is no longer in use.

See Also:

MIXmlDocumentDestroy() procedure, MIXmlGetChildList() function, MIXmlSelectNodes()
function

MIXmlSCDestroy() procedure

Purpose

Disposes of the MIXMLSchemaCollection object and frees its memory.

Syntax

MIXmlSCDestroy(ByVal hXMLSchemaCollection As MIXMLSchemaCollection)

hXMLSchemaCollection is the MIXMLSchemaCollection object handle to be disposed of.

Description

Use MIXmlSCDestroy() to free the MIXMLSchemaCollection handle obtained with a function such
as the MIXmlDocumentGetNamespaces() function, when the handle is no longer in use.

See Also:

MIXmlDocumentGetNamespaces() function

MIXmlSCGetLength() function

Purpose

Gets the number of namespaces currently in the collection.

Syntax

MIXmlSCGetLength(ByVal hXMLSchemaCollection As MIXMLSchemaCollection)
As Integer

hXMLSchemaCollection is the MIXMLSchemaCollection object handle.

Return Value

The number of namespaces currently in the collection.
MapBasic 11.0 838 Reference

Chapter B: XML Library
MIXmlSCGetNamespace() function
Description

MIXmlSCGetLength() allows you to retrieve the number of namespaces currently in the collection.

See Also:

MIXmlDocumentGetNamespaces() function, MIXmlSCGetNamespace() function

MIXmlSCGetNamespace() function

Purpose

Gets the namespace at the specified index.

Syntax

MIXmlSCGetNamespace(ByVal hXMLSchemaCollection As MIXMLSchemaCollection,
ByVal index As Integer, pNamespace As String, ByVal nLen As Integer)
As SmallInt

hXMLSchemaCollection is the MIXMLSchemaCollection object handle.

index is an integer that indicates the index between 0 and count -1.

pNamespace is a reference to a string that receives the name of the namespace.

nLen is the size of the buffer referenced by pNamespace.

Return Value

Nonzero if successful; otherwise 0. To determine the cause of the failure, call the
MIGetErrorMessage() function.

Description

MIXmlSCGetNamespace() allows you to iterate through the collection to discover its contents.

See Also:

MIXmlDocumentGetNamespaces() function, MIXmlSCGetLength() function

MIXmlSelectNodes() function

Purpose

Applies the specified pattern-matching operation to this node's context and returns the list of
matching nodes as an MIXmlNodeList object.

Syntax

MIXmlSelectNodes(ByVal hXMLNode As MIXmlNode, ByVal strPattern As String
) As MIXmlNodeList
MapBasic 11.0 839 Reference

Chapter B: XML Library
MIXmlSelectSingleNode() function
hXMLNode is the MIXmlNode object handle.

strPattern is a string specifying an XPath expression.

Return Value

A handle to an MIXmlNodeList object. It is the collection of nodes selected by applying the given
pattern-matching operation. If no nodes are selected, returns an empty collection. NULL is returned
if it fails.

Description

MIXmlSelectNodes() is used to get a collection of matching nodes as an MIXmlNodeList object
with the specified pattern-matching operation. The MIXmlSelectNodes() is similar to
MIXmlSelectSingleNode() function, but returns a list of all of the matching nodes rather than the
first matching node.

The caller has to dispose of the handle by calling MIXmlNodeListDestroy() procedure when the
handle is no longer in use.

See Also:

MIXmlNodeListDestroy() procedure, MIXmlSelectSingleNode() function,
MIXmlGetChildList() function

MIXmlSelectSingleNode() function

Purpose

Applies the specified pattern-matching operation to this node's context and returns the first matching
node as an MIXmlNode object.

Syntax

MIXmlSelectSingleNode(ByVal hXMLNode As MIXmlNode,
ByVal strPattern As String) As MIXmlNode

hXMLNode is the MIXmlNode object handle.

strPattern is a string specifying an XPath expression.

Return Value

A handle to the MIXmlNode object. Returns the first node that matches the given pattern-matching
operation. If no nodes match the expression, returns a NULL value.

Description

MIXmlSelectSingleNode() gets a handle to an MIXmlNode object that is the first matching node
with the given pattern-matching operation. It returns NULL if no child exists.
MIXmlSelectSingleNode() is similar to the MIXmlSelectNodes() function, but returns the first
matching node rather than a list of all the matching nodes.
MapBasic 11.0 840 Reference

Chapter B: XML Library
MIXmlSelectSingleNode() function
The caller has to dispose of the handle by calling the MIXmlNodeDestroy() procedure when the
handle is no longer in use.

MIXmlNodeDestroy() procedure, MIXmlSelectNodes() function
MapBasic 11.0 841 Reference

C

Character Code Table
The following table summarizes the displayable portion of the Windows Latin 1
character set. The range of characters from 32 (space) to 126 (tilde) are
identical in most other character sets as well. Special characters of interest: 9 is
a tab, 10 is a line feed, 12 is a form feed and 13 is a carriage return.

Chapter C: Character Code Table
MapBasic 11.0 843 Reference

D

Summary of Operators
Operators act on one or more values to produce a result. Operators can be
classified by the data types they use and the type result they produce.

Topics in this Section:

Numeric Operators. .845
Comparison Operators .845
Logical Operators. .846
Geographical Operators .846
Automatic Type Conversions .847
Wildcards .848

Chapter D: Summary of Operators
Numeric Operators
Numeric Operators
The following numeric operators act on two numeric values, producing a numeric result.

Two of these operators are also used in other contexts. The plus sign acting on a pair of strings
concatenates them into a new string value. The minus sign acting on a single number is a negation
operator, producing a numeric result. The ampersand also performs string concatenation.

Comparison Operators
The comparison operators compare two items of the same general type to produce a logical value of
TRUE or FALSE. Although you cannot directly compare numeric data with non-numeric data (e.g.,
string expressions), a comparison expression can compare integer, SmallInt, and float data types.
Comparison operators are often used in conditional expressions, such as If…Then.

Operator Performs Example

+ addition a + b

- subtraction a - b

* multiplication a * b

/ division a / b

\ integer divide (drop remainder) a \ b

Mod remainder from integer division a Mod b

^ exponentiation a ^ b

Operator Performs Example

- numeric negation - a

+ string concatenation a + b

& string concatenation a & b

Operator Returns TRUE if: Example

= a is equal to b a = b

<> a is not equal to b a <> b

< a is less than b a < b
MapBasic 11.0 845 Reference

Chapter D: Summary of Operators
Logical Operators
Logical Operators
The logical operators operate on logical values to produce a logical result of TRUE or FALSE:

Geographical Operators
The geographic operators act on objects to produce a logical result of TRUE or FALSE:

> a is greater than b a > b

<= a is less than or equal to b a <= b

>= a is greater than or equal to b a >= b

Operator Returns TRUE if: Example

Operator Returns TRUE if: Example

And both operands are TRUE a And b

Or either operand is TRUE a Or b

Not the operand is FALSE Not a

Operator Returns TRUE if: Example

Contains first object contains the centroid of the second
object

objectA Contains objectB

Contains Part first object contains part of the second object objectA Contains Part
objectB

Contains Entire first object contains all of the second object objectA Contains Entire
objectB

Within first object's centroid is within the second object objectA Within objectB

Partly Within part of the first object is within the second
object

objectA Partly Within
objectB

Entirely Within the first object is entirely inside the second
object

objectA Entirely Within
objectB

Intersects the two objects intersect at some point objectA Intersects objectB
MapBasic 11.0 846 Reference

Chapter D: Summary of Operators
Automatic Type Conversions
Precedence
A special type of operators are parentheses, which enclose expressions within expressions. Proper
use of parentheses can alter the order of processing in an expression, altering the default
precedence. The table below identifies the precedence of MapBasic operators. Operators which
appear on a single row have equal precedence. Operators of higher priority are processed first.
Operators of the same precedence are evaluated left to right in the expression (with the exception of
exponentiation, which is evaluated right to left).

For example, the expression 3 + 4 * 2 produces a result of 11 (multiplication is performed before
addition). The altered expression (3 + 4) * 2 produces 14 (parentheses cause the addition to be
performed first). When in doubt, use parentheses.

Automatic Type Conversions
When you create an expression involving data of different types, MapInfo performs automatic type
conversion in order to produce meaningful results. For example, if your program subtracts a Date
value from another Date value, MapBasic will calculate the result as an integer value (representing
the number of days between the two dates).

The table below summarizes the rules that dictate MapBasic's automatic type conversions. Within
this chart, the keyword Integer represents an integer value, which can be an integer variable, a
SmallInt variable, or an integer constant. The keyword Number represents a numeric expression
which is not necessarily an integer.

Precedence of MapBasic operators Operators

(Highest Priority) parenthesis

exponentiation

negation

multiplication, division, Mod, integer division

addition, subtraction

geographic operators

comparison operators, Like operator

Not

And

(Lowest Priority) Or
MapBasic 11.0 847 Reference

Chapter D: Summary of Operators
Wildcards
Wildcards
The LIKE operator uses the percent (%) and underscore (_) characters as wildcards.

Operator Combination of Operands Result

+ Date + Number Date

Number + Date Date

Integer + Integer Integer

Number + Number Float

Other + Other String

- Date - Number Date

Date - Date Integer

Integer - Integer Integer

Number - Number Float

* Integer * Integer Integer

Number * Number Float

/ Number / Number Float

\ Number \ Number Integer

MOD Number MOD Number Integer

^ Number ^ Number Float

Wildcard Performs Example

_ matches one character select * from table where Name
Like "New%" into Selection

% matches zero or more characters select * from table where Name
Like "New Yor_" into Selection
MapBasic 11.0 848 Reference

E

MapBasic Definitions
File
The following MAPBASIC.DEF file lists definitions and defaults useful when
programming in MapBasic. This file is installed in the MapBasic directory.

Chapter E: MapBasic Definitions File
MapBasic.DEF File
MapBasic.DEF File
'==

' MapInfo version 11.0 - System defines

'--

' This file contains defines useful when programming in the MapBasic

' language. There are three versions of this file:

' MAPBASIC.DEF - MapBasic syntax

' MAPBASIC.BAS - Visual Basic syntax

' MAPBASIC.H - C/C++ syntax

'--

' The defines in this file are organized into the following sections:

' General Purpose defines:

' macros, logical constants, angle conversion, colors, string length

' BrowserInfo() defines

' ButtonPadInfo() defines

' ColumnInfo() and column type defines

' CommandInfo() and task switch defines

' DateWindow() defines

' FileAttr() and file access mode defines

' GetFolderPath$() defines

' GetPreferencePath$() defines

' IntersectNodes() parameters

' LabelInfo() defines

' GroupLayerInfo() defines

' LayerListInfo() defines

' LayerInfo(), display mode, label property, layer type, hotlink defines

' LegendInfo() and legend orientation defines

' LegendFrameInfo() and frame type defines

' LegendStyleInfo() defines

' LibraryServiceInfo() defines

' LocateFile$() defines

' Map3DInfo() defines

' MapperInfo(), display mode, calculation type, and clip type defines

' MenuItemInfoByID() and MenuItemInfoByHandler() defines

' ObjectGeography() defines
MapBasic 11.0 850 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
' ObjectInfo() and object type defines

' PrismMapInfo() defines

' SearchInfo() defines

' SelectionInfo() defines

' Server statement and function defines

' SessionInfo() defines

' Set Next Document Style defines

' StringCompare() return values

' StyleAttr() defines

' SystemInfo(), platform, and version defines

' TableInfo() and table type defines

' WindowInfo(), window type and state, and print orientation defines

' Abbreviated list of error codes

' Backward Compatibility defines

'==

' MAPBASIC.DEF is converted into MAPBASIC.H by doing the following:

' - concatenate MAPBASIC.DEF and MENU.DEF into MAPBASIC.H

' - search & replace "'" at begining of a line with "//"

' - search & replace "Define" at begining of a line with "#define"

' - delete the following sections:

' * General Purpose defines:

' Macros, Logical Constants, Angle Conversions

' * Abbreviated list of error codes

' * Backward Compatibility defines

' * Menu constants whose names have changed

' * Obsolete menu items

'==

' MAPBASIC.DEF is converted into MAPBASIC.BAS by doing the following:

' - concatenate MAPBASIC.DEF and MENU.DEF into MAPBASIC.BAS

' - search & replace "Define <name>" with "Global Const <name> ="

' e.g. "<Define {[!-z]+} +{[!-z]}" with "Global Const \0 = \1" with Brief

' - delete the following sections:

' * General Purpose defines:

' Macros, Logical Constants, Angle Conversions

' * Abbreviated list of error codes

' * Backward Compatibility defines
MapBasic 11.0 851 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
' * Menu constants whose names have changed

' * Obsolete menu items

'==

'==

' General Purpose defines

'==

'--

' Macros

'--

Define CLS Print Chr$(12)

'--

' Logical constants

'--

Define TRUE 1

Define FALSE 0

'--

' Angle conversion

'--

Define DEG_2_RAD 0.01745329252

Define RAD_2_DEG 57.29577951

'--

' Time conversion

'--

Define SECONDS_PER_DAY 86400

'--

' Colors

'--

Define BLACK 0

Define WHITE 16777215

Define RED 16711680

Define GREEN 65280
MapBasic 11.0 852 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define BLUE 255

Define CYAN 65535

Define MAGENTA 16711935

Define YELLOW 16776960

'--

'Maximum length for character string

'--

Define MAX_STRING_LENGTH 32767

'==

' BrowserInfo() defines

'==

Define BROWSER_INFO_NROWS 1

Define BROWSER_INFO_NCOLS 2

Define BROWSER_INFO_CURRENT_ROW 3

Define BROWSER_INFO_CURRENT_COLUMN 4

Define BROWSER_INFO_CURRENT_CELL_VALUE 5

'==

' ButtonPadInfo() defines

'==

Define BTNPAD_INFO_FLOATING 1

Define BTNPAD_INFO_WIDTH 2

Define BTNPAD_INFO_NBTNS 3

Define BTNPAD_INFO_X 4

Define BTNPAD_INFO_Y 5

Define BTNPAD_INFO_WINID 6

Define BTNPAD_INFO_DOCK_POSITION 7

'==

' New as per MI Pro 10.5.

' Codes returned from ButtonPadInfo() when 'BTNPAD_INFO_DOCK_POSITION' code

' is used to inquiry about the tool bar position

'==

Define BBTNPAD_INFO_DOCK_NONE 0
MapBasic 11.0 853 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define BTNPAD_INFO_DOCK_LEFT 1

Define BTNPAD_INFO_DOCK_TOP 2

Define BTNPAD_INFO_DOCK_RIGHT 3

Define BTNPAD_INFO_DOCK_BOTTOM 4

'==

' ColumnInfo() defines

'==

Define COL_INFO_NAME 1

Define COL_INFO_NUM 2

Define COL_INFO_TYPE 3

Define COL_INFO_WIDTH 4

Define COL_INFO_DECPLACES 5

Define COL_INFO_INDEXED 6

Define COL_INFO_EDITABLE 7

'--

' Column type defines, returned by ColumnInfo() for COL_INFO_TYPE

'--

Define COL_TYPE_CHAR 1

Define COL_TYPE_DECIMAL 2

Define COL_TYPE_INTEGER 3

Define COL_TYPE_SMALLINT 4

Define COL_TYPE_DATE 5

Define COL_TYPE_LOGICAL 6

Define COL_TYPE_GRAPHIC 7

Define COL_TYPE_FLOAT 8

Define COL_TYPE_TIME 37

Define COL_TYPE_DATETIME 38

'==

' CommandInfo() defines

'==

Define CMD_INFO_X 1

Define CMD_INFO_Y 2

Define CMD_INFO_SHIFT 3
MapBasic 11.0 854 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define CMD_INFO_CTRL 4

Define CMD_INFO_X2 5

Define CMD_INFO_Y2 6

Define CMD_INFO_TOOLBTN 7

Define CMD_INFO_MENUITEM 8

Define CMD_INFO_WIN 1

Define CMD_INFO_SELTYPE 1

Define CMD_INFO_ROWID 2

Define CMD_INFO_INTERRUPT 3

Define CMD_INFO_STATUS 1

Define CMD_INFO_MSG 1000

Define CMD_INFO_DLG_OK 1

Define CMD_INFO_DLG_DBL 1

Define CMD_INFO_FIND_RC 3

Define CMD_INFO_FIND_ROWID 4

Define CMD_INFO_XCMD 1

Define CMD_INFO_CUSTOM_OBJ 1

Define CMD_INFO_TASK_SWITCH 1

Define CMD_INFO_EDIT_TABLE 1

Define CMD_INFO_EDIT_STATUS 2

Define CMD_INFO_EDIT_ASK 1

Define CMD_INFO_EDIT_SAVE 2

Define CMD_INFO_EDIT_DISCARD 3

Define CMD_INFO_HL_WINDOW_ID 17

Define CMD_INFO_HL_TABLE_NAME 18

Define CMD_INFO_HL_ROWID 19

Define CMD_INFO_HL_LAYER_ID 20

Define CMD_INFO_HL_FILE_NAME 21

'--

' Task Switches, returned by CommandInfo() for CMD_INFO_TASK_SWITCH

'--

Define SWITCHING_OUT_OF_MAPINFO 0

Define SWITCHING_INTO_MAPINFO 1

'==
MapBasic 11.0 855 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
' DateWindow() defines

'==

Define DATE_WIN_SESSION 1

Define DATE_WIN_CURPROG 2

'==

' FileAttr() defines

'==

Define FILE_ATTR_MODE 1

Define FILE_ATTR_FILESIZE 2

'--

' File Access Modes, returned by FileAttr() for FILE_ATTR_MODE

'--

Define MODE_INPUT 0

Define MODE_OUTPUT 1

Define MODE_APPEND 2

Define MODE_RANDOM 3

Define MODE_BINARY 4

'==

' GetFolderPath$() defines

'==

Define FOLDER_MI_APPDATA -1

Define FOLDER_MI_LOCAL_APPDATA -2

Define FOLDER_MI_PREFERENCE -3

Define FOLDER_MI_COMMON_APPDATA -4

Define FOLDER_APPDATA 26

Define FOLDER_LOCAL_APPDATA 28

Define FOLDER_COMMON_APPDATA 35

Define FOLDER_COMMON_DOCS 46

Define FOLDER_MYDOCS 5

Define FOLDER_MYPICS 39

'==
MapBasic 11.0 856 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
' GetPreferencePath$(), GetCurrentPath$(), and Set Path defines

'==

Define PREFERENCE_PATH_TABLE 0

Define PREFERENCE_PATH_WORKSPACE 1

Define PREFERENCE_PATH_MBX 2

Define PREFERENCE_PATH_IMPORT 3

Define PREFERENCE_PATH_SQLQUERY 4

Define PREFERENCE_PATH_THEMETHEMPLATE 5

Define PREFERENCE_PATH_MIQUERY 6

Define PREFERENCE_PATH_NEWGRID 7

Define PREFERENCE_PATH_CRYSTAL 8

Define PREFERENCE_PATH_GRAPHSUPPORT 9

Define PREFERENCE_PATH_REMOTETABLE 10

Define PREFERENCE_PATH_SHAPEFILE 11

Define PREFERENCE_PATH_WFSTABLE 12

Define PREFERENCE_PATH_WMSTABLE 13

'==

' IntersectNodes() defines

'==

Define INCL_CROSSINGS 1

Define INCL_COMMON 6

Define INCL_ALL 7

'==

' LabelInfo() defines

'==

Define LABEL_INFO_OBJECT 1

Define LABEL_INFO_POSITION 2

Define LABEL_INFO_ANCHORX 3

Define LABEL_INFO_ANCHORY 4

Define LABEL_INFO_OFFSET 5

Define LABEL_INFO_ROWID 6

Define LABEL_INFO_TABLE 7

Define LABEL_INFO_EDIT 8
MapBasic 11.0 857 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define LABEL_INFO_EDIT_VISIBILITY 9

Define LABEL_INFO_EDIT_ANCHOR 10

Define LABEL_INFO_EDIT_OFFSET 11

Define LABEL_INFO_EDIT_FONT 12

Define LABEL_INFO_EDIT_PEN 13

Define LABEL_INFO_EDIT_TEXT 14

Define LABEL_INFO_EDIT_TEXTARROW 15

Define LABEL_INFO_EDIT_ANGLE 16

Define LABEL_INFO_EDIT_POSITION 17

Define LABEL_INFO_EDIT_TEXTLINE 18

Define LABEL_INFO_SELECT 19

Define LABEL_INFO_DRAWN 20

Define LABEL_INFO_ORIENTATION 21

'==

' Codes passed to the GroupLayerInfo function to get info about a group layer.

'==

Define GROUPLAYER_INFO_NAME 1

Define GROUPLAYER_INFO_LAYERLIST_ID 2

Define GROUPLAYER_INFO_DISPLAY 3

Define GROUPLAYER_INFO_LAYERS 4

Define GROUPLAYER_INFO_ALL_LAYERS 5

Define GROUPLAYER_INFO_TOPLEVEL_LAYERS 6

Define GROUPLAYER_INFO_PARENT_GROUP_ID 7

'==

' Values returned by GroupLayerInfo() for GROUPLAYER_INFO_DISPLAY. These

' defines correspond to the MapBasic defines in MAPBASIC.DEF. If you alter

' these you must alter MAPBASIC.DEF.

'==

Define GROUPLAYER_INFO_DISPLAY_OFF 0

Define GROUPLAYER_INFO_DISPLAY_ON 1

'**

' Codes passed to the LayerListInfo function to help enumerating all layers in a
Map.
MapBasic 11.0 858 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
'**

Define LAYERLIST_INFO_TYPE 1

Define LAYERLIST_INFO_NAME 2

Define LAYERLIST_INFO_LAYER_ID 3

Define LAYERLIST_INFO_GROUPLAYER_ID 4

'**

' Values returned by LayerListInfo() for LAYERLIST_INFO_TYPE. These

' defines correspond to the MapBasic defines in MAPBASIC.DEF. If you alter

' these you must alter MAPBASIC.DEF.

'**

Define LAYERLIST_INFO_TYPE_LAYER 0

Define LAYERLIST_INFO_TYPE_GROUP 1

'==

' LayerInfo() defines

'==

Define LAYER_INFO_NAME 1

Define LAYER_INFO_EDITABLE 2

Define LAYER_INFO_SELECTABLE 3

Define LAYER_INFO_ZOOM_LAYERED 4

Define LAYER_INFO_ZOOM_MIN 5

Define LAYER_INFO_ZOOM_MAX 6

Define LAYER_INFO_COSMETIC 7

Define LAYER_INFO_PATH 8

Define LAYER_INFO_DISPLAY 9

Define LAYER_INFO_OVR_LINE 10

Define LAYER_INFO_OVR_PEN 11

Define LAYER_INFO_OVR_BRUSH 12

Define LAYER_INFO_OVR_SYMBOL 13

Define LAYER_INFO_OVR_FONT 14

Define LAYER_INFO_LBL_EXPR 15

Define LAYER_INFO_LBL_LT 16

Define LAYER_INFO_LBL_CURFONT 17

Define LAYER_INFO_LBL_FONT 18
MapBasic 11.0 859 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define LAYER_INFO_LBL_PARALLEL 19

Define LAYER_INFO_LBL_POS 20

Define LAYER_INFO_ARROWS 21

Define LAYER_INFO_NODES 22

Define LAYER_INFO_CENTROIDS 23

Define LAYER_INFO_TYPE 24

Define LAYER_INFO_LBL_VISIBILITY 25

Define LAYER_INFO_LBL_ZOOM_MIN 26

Define LAYER_INFO_LBL_ZOOM_MAX 27

Define LAYER_INFO_LBL_AUTODISPLAY 28

Define LAYER_INFO_LBL_OVERLAP 29

Define LAYER_INFO_LBL_DUPLICATES 30

Define LAYER_INFO_LBL_OFFSET 31

Define LAYER_INFO_LBL_MAX 32

Define LAYER_INFO_LBL_PARTIALSEGS 33

Define LAYER_INFO_HOTLINK_EXPR 34

Define LAYER_INFO_HOTLINK_MODE 35

Define LAYER_INFO_HOTLINK_RELATIVE 36

Define LAYER_INFO_HOTLINK_COUNT 37

Define LAYER_INFO_LBL_ORIENTATION 38

Define LAYER_INFO_LAYER_ALPHA 39

Define LAYER_INFO_LAYER_TRANSLUCENCY 40

Define LAYER_INFO_LABEL_ALPHA 41

Define LAYER_INFO_LAYERLIST_ID 42

Define LAYER_INFO_PARENT_GROUP_ID 43

'Code 44 - 52 are for override styel & label

Define LAYER_INFO_OVR_STYLE_COUNT 44

Define LAYER_INFO_OVR_LBL_COUNT 45

Define LAYER_INFO_OVR_STYLE_CURRENT 46

Define LAYER_INFO_OVR_LBL_CURRENT 47

Define LAYER_INFO_OVR_LINE_COUNT 48

Define LAYER_INFO_OVR_PEN_COUNT 49

Define LAYER_INFO_OVR_BRUSH_COUNT 50

Define LAYER_INFO_OVR_SYMBOL_COUNT 51

Define LAYER_INFO_OVR_FONT_COUNT 52
MapBasic 11.0 860 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
'--

' Values returned by LayerInfo() for LAYER_INFO_LABEL_ORIENTATION and

' LABEL_INFO_ORIENTATION.

'--

Define LAYER_INFO_LABEL_ORIENT_HORIZONTAL 0

Define LAYER_INFO_LABEL_ORIENT_PARALLEL 1

Define LAYER_INFO_LABEL_ORIENT_CURVED 2

'--

' Display Modes, returned by LayerInfo() for LAYER_INFO_DISPLAY

'--

Define LAYER_INFO_DISPLAY_OFF 0

Define LAYER_INFO_DISPLAY_GRAPHIC 1

Define LAYER_INFO_DISPLAY_GLOBAL 2

Define LAYER_INFO_DISPLAY_VALUE 3

'--

' Label Linetypes, returned by LayerInfo() for LAYER_INFO_LBL_LT

'--

Define LAYER_INFO_LBL_LT_NONE 0

Define LAYER_INFO_LBL_LT_SIMPLE 1

Define LAYER_INFO_LBL_LT_ARROW 2

'--

' Label Positions, returned by LayerInfo() for LAYER_INFO_LBL_POS

'--

Define LAYER_INFO_LBL_POS_CC 0

Define LAYER_INFO_LBL_POS_TL 1

Define LAYER_INFO_LBL_POS_TC 2

Define LAYER_INFO_LBL_POS_TR 3

Define LAYER_INFO_LBL_POS_CL 4

Define LAYER_INFO_LBL_POS_CR 5

Define LAYER_INFO_LBL_POS_BL 6

Define LAYER_INFO_LBL_POS_BC 7

Define LAYER_INFO_LBL_POS_BR 8
MapBasic 11.0 861 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
'--

' Layer Types, returned by LayerInfo() for LAYER_INFO_TYPE

'--

Define LAYER_INFO_TYPE_NORMAL 0

Define LAYER_INFO_TYPE_COSMETIC 1

Define LAYER_INFO_TYPE_IMAGE 2

Define LAYER_INFO_TYPE_THEMATIC 3

Define LAYER_INFO_TYPE_GRID 4

Define LAYER_INFO_TYPE_WMS 5

Define LAYER_INFO_TYPE_TILESERVER 6

'--

' Label visibility modes, from LayerInfo() for LAYER_INFO_LBL_VISIBILITY

'--

Define LAYER_INFO_LBL_VIS_OFF 1

Define LAYER_INFO_LBL_VIS_ZOOM 2

Define LAYER_INFO_LBL_VIS_ON 3

'--

' Code passed to StyleOverrideInfo function to get override style information

'--

Define STYLE_OVR_INFO_NAME 1

Define STYLE_OVR_INFO_VISIBILITY 2

Define STYLE_OVR_INFO_ZOOM_MIN 3

Define STYLE_OVR_INFO_ZOOM_MAX 4

Define STYLE_OVR_INFO_ARROWS 5

Define STYLE_OVR_INFO_NODES 6

Define STYLE_OVR_INFO_CENTROIDS 7

Define STYLE_OVR_INFO_ALPHA 8

Define STYLE_OVR_INFO_TRANSLUCENCY 9

Define STYLE_OVR_INFO_LINE 10

Define STYLE_OVR_INFO_PEN 11

Define STYLE_OVR_INFO_BRUSH 12

Define STYLE_OVR_INFO_SYMBOL 13

Define STYLE_OVR_INFO_FONT 14

Define STYLE_OVR_INFO_SYMBOL_COUNT 15
MapBasic 11.0 862 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define STYLE_OVR_INFO_LINE_COUNT 16

Define STYLE_OVR_INFO_PEN_COUNT 17

Define STYLE_OVR_INFO_BRUSH_COUNT 18

Define STYLE_OVR_INFO_FONT_COUNT 19

'--

' Possible return value of StyleOverrideInfo for code STYLE_OVR_INFO_VISIBILITY

'--

Define STYLE_OVR_INFO_VIS_OFF 0

Define STYLE_OVR_INFO_VIS_ON 1

Define STYLE_OVR_INFO_VIS_OFF_ZOOM 2

'--

' Code passed to LabelOverrideInfo function to get override label information

'--

Define LBL_OVR_INFO_NAME 1

Define LBL_OVR_INFO_VISIBILITY 2

Define LBL_OVR_INFO_ZOOM_MIN 3

Define LBL_OVR_INFO_ZOOM_MAX 4

Define LBL_OVR_INFO_EXPR 5

Define LBL_OVR_INFO_LT 6

Define LBL_OVR_INFO_FONT 7

Define LBL_OVR_INFO_PARALLEL 8

Define LBL_OVR_INFO_POS 9

Define LBL_OVR_INFO_OVERLAP 10

Define LBL_OVR_INFO_DUPLICATES 11

Define LBL_OVR_INFO_OFFSET 12

Define LBL_OVR_INFO_MAX 13

Define LBL_OVR_INFO_PARTIALSEGS 14

Define LBL_OVR_INFO_ORIENTATION 15

Define LBL_OVR_INFO_ALPHA 16

Define LBL_OVR_INFO_AUTODISPLAY 17

Define LBL_OVR_INFO_POS_RETRY 18

Define LBL_OVR_INFO_LINE_PEN 19

Define LBL_OVR_INFO_PERCENT_OVER 20
MapBasic 11.0 863 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
'--

' Possible return value of LabelOverrideInfo for code LBL_OVR_INFO_VISIBILITY

'--

Define LBL_OVR_INFO_VIS_OFF 0

Define LBL_OVR_INFO_VIS_ON 1

Define LBL_OVR_INFO_VIS_OFF_ZOOM 2

'--

' LayerControlInfo() defines

'--

Define LC_INFO_SEL_COUNT 1

'--

' LayerControlSelectionInfo() defines

'--

Define LC_SEL_INFO_NAME 1

Define LC_SEL_INFO_TYPE 2

Define LC_SEL_INFO_MAPWIN_ID 3

Define LC_SEL_INFO_LAYER_ID 4

Define LC_SEL_INFO_OVR_ID 5

'--

' Values returned by LayerControlSelectionInfo() for LC_SEL_INFO_TYPE.

'--

Define LC_SEL_INFO_TYPE_MAP 0

Define LC_SEL_INFO_TYPE_LAYER 1

Define LC_SEL_INFO_TYPE_GROUPLAYER 2

Define LC_SEL_INFO_TYPE_STYLE_OVR 3

Define LC_SEL_INFO_TYPE_LABEL_OVR 4

'--

' HotlinkInfo() defines'--

Define HOTLINK_INFO_EXPR 1

Define HOTLINK_INFO_MODE 2

Define HOTLINK_INFO_RELATIVE 3
MapBasic 11.0 864 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define HOTLINK_INFO_ENABLED 4

Define HOTLINK_INFO_ALIAS 5

'--

' Hotlink activation modes, from LayerInfo() for LAYER_INFO_HOTLINK_MODE

'--

Define HOTLINK_MODE_LABEL 0

Define HOTLINK_MODE_OBJ 1

Define HOTLINK_MODE_BOTH 2

'==

' LegendInfo() defines

'==

Define LEGEND_INFO_MAP_ID 1

Define LEGEND_INFO_ORIENTATION 2

Define LEGEND_INFO_NUM_FRAMES 3

Define LEGEND_INFO_STYLE_SAMPLE_SIZE 4

'==

' Orientation codes, returned by LegendInfo() for LEGEND_INFO_ORIENTATION

'==

Define ORIENTATION_PORTRAIT 1

Define ORIENTATION_LANDSCAPE 2

Define ORIENTATION_CUSTOM 3

'--

' Style sample codes, from LegendInfo() for LEGEND_INFO_STYLE_SAMPLE_SIZE

'--

Define STYLE_SAMPLE_SIZE_SMALL 0

Define STYLE_SAMPLE_SIZE_LARGE 1

'==

' LegendFrameInfo() defines

'==

Define FRAME_INFO_TYPE 1

Define FRAME_INFO_MAP_LAYER_ID 2
MapBasic 11.0 865 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define FRAME_INFO_REFRESHABLE 3

Define FRAME_INFO_POS_X 4

Define FRAME_INFO_POS_Y 5

Define FRAME_INFO_WIDTH 6

Define FRAME_INFO_HEIGHT 7

Define FRAME_INFO_TITLE 8

Define FRAME_INFO_TITLE_FONT 9

Define FRAME_INFO_SUBTITLE 10

Define FRAME_INFO_SUBTITLE_FONT 11

Define FRAME_INFO_BORDER_PEN 12

Define FRAME_INFO_NUM_STYLES 13

Define FRAME_INFO_VISIBLE 14

Define FRAME_INFO_COLUMN 15

Define FRAME_INFO_LABEL 16

'==

' Frame Types, returned by LegendFrameInfo() for FRAME_INFO_TYPE

'==

Define FRAME_TYPE_STYLE 1

Define FRAME_TYPE_THEME 2

'==

' Geocode Attributes, returned by GeocodeInfo()

'==

Define GEOCODE_STREET_NAME 1

Define GEOCODE_STREET_NUMBER 2

Define GEOCODE_MUNICIPALITY 3

Define GEOCODE_MUNICIPALITY2 4

Define GEOCODE_COUNTRY_SUBDIVISION 5

Define GEOCODE_COUNTRY_SUBDIVISION2 6

Define GEOCODE_POSTAL_CODE 7

Define GEOCODE_DICTIONARY 9

Define GEOCODE_BATCH_SIZE 10

Define GEOCODE_FALLBACK_GEOGRAPHIC 11

Define GEOCODE_FALLBACK_POSTAL 12
MapBasic 11.0 866 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define GEOCODE_OFFSET_CENTER 13

Define GEOCODE_OFFSET_CENTER_UNITS 14

Define GEOCODE_OFFSET_END 15

Define GEOCODE_OFFSET_END_UNITS 16

Define GEOCODE_MIXED_CASE 17

Define GEOCODE_RESULT_MARK_MULTIPLE 18

Define GEOCODE_COUNT_GEOCODED 19

Define GEOCODE_COUNT_NOTGEOCODED 20

Define GEOCODE_UNABLE_TO_CONVERT_DATA 21

Define GEOCODE_MAX_BATCH_SIZE 22

Define GEOCODE_PASSTHROUGH 100

Define DICTIONARY_ALL 1

Define DICTIONARY_ADDRESS_ONLY 2

Define DICTIONARY_USER_ONLY 3

Define DICTIONARY_PREFER_ADDRESS 4

Define DICTIONARY_PREFER_USER 5

'==

' ISOGRAM Attributes, returned by IsogramInfo()

'==

Define ISOGRAM_BANDING 1

Define ISOGRAM_MAJOR_ROADS_ONLY 2

Define ISOGRAM_RETURN_HOLES 3

Define ISOGRAM_MAJOR_POLYGON_ONLY 4

Define ISOGRAM_MAX_OFFROAD_DIST 5

Define ISOGRAM_MAX_OFFROAD_DIST_UNITS 6

Define ISOGRAM_SIMPLIFICATION_FACTOR 7

Define ISOGRAM_DEFAULT_AMBIENT_SPEED 8

Define ISOGRAM_AMBIENT_SPEED_DIST_UNIT 9

Define ISOGRAM_AMBIENT_SPEED_TIME_UNIT 10

Define ISOGRAM_PROPAGATION_FACTOR 11

Define ISOGRAM_BATCH_SIZE 12

Define ISOGRAM_POINTS_ONLY 13

Define ISOGRAM_RECORDS_INSERTED 14

Define ISOGRAM_RECORDS_NOTINSERTED 15
MapBasic 11.0 867 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define ISOGRAM_MAX_BATCH_SIZE 16

Define ISOGRAM_MAX_BANDS 17

Define ISOGRAM_MAX_DISTANCE 18

Define ISOGRAM_MAX_DISTANCE_UNITS 19

Define ISOGRAM_MAX_TIME 20

Define ISOGRAM_MAX_TIME_UNITS 21

'==

' LegendStyleInfo() defines

'==

Define LEGEND_STYLE_INFO_TEXT 1

Define LEGEND_STYLE_INFO_FONT 2

Define LEGEND_STYLE_INFO_OBJ 3

'==

' LocateFile$() defines

'==

Define LOCATE_PREF_FILE 0

Define LOCATE_DEF_WOR 1

Define LOCATE_CLR_FILE 2

Define LOCATE_PEN_FILE 3

Define LOCATE_FNT_FILE 4

Define LOCATE_ABB_FILE 5

Define LOCATE_PRJ_FILE 6

Define LOCATE_MNU_FILE 7

Define LOCATE_CUSTSYMB_DIR 8

Define LOCATE_THMTMPLT_DIR 9

Define LOCATE_GRAPH_DIR 10

Define LOCATE_WMS_SERVERLIST 11

Define LOCATE_WFS_SERVERLIST 12

Define LOCATE_GEOCODE_SERVERLIST 13

Define LOCATE_ROUTING_SERVERLIST 14

Define LOCATE_LAYOUT_TEMPLATE_DIR 15

'==
MapBasic 11.0 868 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
' Map3DInfo() defines

'==

Define MAP3D_INFO_SCALE 1

Define MAP3D_INFO_RESOLUTION_X 2

Define MAP3D_INFO_RESOLUTION_Y 3

Define MAP3D_INFO_BACKGROUND 4

Define MAP3D_INFO_UNITS 5

Define MAP3D_INFO_LIGHT_X 6

Define MAP3D_INFO_LIGHT_Y 7

Define MAP3D_INFO_LIGHT_Z 8

Define MAP3D_INFO_LIGHT_COLOR 9

Define MAP3D_INFO_CAMERA_X 10

Define MAP3D_INFO_CAMERA_Y 11

Define MAP3D_INFO_CAMERA_Z 12

Define MAP3D_INFO_CAMERA_FOCAL_X 13

Define MAP3D_INFO_CAMERA_FOCAL_Y 14

Define MAP3D_INFO_CAMERA_FOCAL_Z 15

Define MAP3D_INFO_CAMERA_VU_1 16

Define MAP3D_INFO_CAMERA_VU_2 17

Define MAP3D_INFO_CAMERA_VU_3 18

Define MAP3D_INFO_CAMERA_VPN_1 19

Define MAP3D_INFO_CAMERA_VPN_2 20

Define MAP3D_INFO_CAMERA_VPN_3 21

Define MAP3D_INFO_CAMERA_CLIP_NEAR 22

Define MAP3D_INFO_CAMERA_CLIP_FAR 23

'==

' MapperInfo() defines

'==

Define MAPPER_INFO_ZOOM 1

Define MAPPER_INFO_SCALE 2

Define MAPPER_INFO_CENTERX 3

Define MAPPER_INFO_CENTERY 4

Define MAPPER_INFO_MINX 5

Define MAPPER_INFO_MINY 6

Define MAPPER_INFO_MAXX 7
MapBasic 11.0 869 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define MAPPER_INFO_MAXY 8

Define MAPPER_INFO_LAYERS 9

Define MAPPER_INFO_EDIT_LAYER 10

Define MAPPER_INFO_XYUNITS 11

Define MAPPER_INFO_DISTUNITS 12

Define MAPPER_INFO_AREAUNITS 13

Define MAPPER_INFO_SCROLLBARS 14

Define MAPPER_INFO_DISPLAY 15

Define MAPPER_INFO_NUM_THEMATIC 16

Define MAPPER_INFO_COORDSYS_CLAUSE 17

Define MAPPER_INFO_COORDSYS_NAME 18

Define MAPPER_INFO_MOVE_DUPLICATE_NODES 19

Define MAPPER_INFO_DIST_CALC_TYPE 20

Define MAPPER_INFO_DISPLAY_DMS 21

Define MAPPER_INFO_COORDSYS_CLAUSE_WITH_BOUNDS 22

Define MAPPER_INFO_CLIP_TYPE 23

Define MAPPER_INFO_CLIP_REGION 24

Define MAPPER_INFO_REPROJECTION 25

Define MAPPER_INFO_RESAMPLING 26

Define MAPPER_INFO_MERGE_MAP 27

Define MAPPER_INFO_ALL_LAYERS 28

Define MAPPER_INFO_GROUPLAYERS 29

Define MAPPER_INFO_NUM_ADORNMENTS 200

Define MAPPER_INFO_ADORNMENT 200

'--

' Display Modes, returned by MapperInfo() for MAPPER_INFO_DISPLAY_DMS

'--

Define MAPPER_INFO_DISPLAY_DECIMAL 0

Define MAPPER_INFO_DISPLAY_DEGMINSEC 1

Define MAPPER_INFO_DISPLAY_MGRS 2

Define MAPPER_INFO_DISPLAY_USNG_WGS84 3

Define MAPPER_INFO_DISPLAY_USNG_NAD27 4

'--

' Display Modes, returned by MapperInfo() for MAPPER_INFO_DISPLAY
MapBasic 11.0 870 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
'--

Define MAPPER_INFO_DISPLAY_SCALE 0

Define MAPPER_INFO_DISPLAY_ZOOM 1

Define MAPPER_INFO_DISPLAY_POSITION 2

'--

' Distance Calculation Types from MapperInfo() for MAPPER_INFO_DIST_CALC_TYPE

'--

Define MAPPER_INFO_DIST_SPHERICAL 0

Define MAPPER_INFO_DIST_CARTESIAN 1

'--

' Clip Types, returned by MapperInfo() for MAPPER_INFO_CLIP_TYPE

'--

Define MAPPER_INFO_CLIP_DISPLAY_ALL 0

Define MAPPER_INFO_CLIP_DISPLAY_POLYOBJ 1

Define MAPPER_INFO_CLIP_OVERLAY 2

'==

' MenuItemInfoByID() and MenuItemInfoByHandler() defines

'==

Define MENUITEM_INFO_ENABLED 1

Define MENUITEM_INFO_CHECKED 2

Define MENUITEM_INFO_CHECKABLE 3

Define MENUITEM_INFO_SHOWHIDEABLE 4

Define MENUITEM_INFO_ACCELERATOR 5

Define MENUITEM_INFO_TEXT 6

Define MENUITEM_INFO_HELPMSG 7

Define MENUITEM_INFO_HANDLER 8

Define MENUITEM_INFO_ID 9

'==

' ObjectGeography() defines

'==

Define OBJ_GEO_MINX 1

Define OBJ_GEO_LINEBEGX 1
MapBasic 11.0 871 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define OBJ_GEO_POINTX 1

Define OBJ_GEO_MINY 2

Define OBJ_GEO_LINEBEGY 2

Define OBJ_GEO_POINTY 2

Define OBJ_GEO_MAXX 3

Define OBJ_GEO_LINEENDX 3

Define OBJ_GEO_MAXY 4

Define OBJ_GEO_LINEENDY 4

Define OBJ_GEO_ARCBEGANGLE 5

Define OBJ_GEO_TEXTLINEX 5

Define OBJ_GEO_ROUNDRADIUS 5

Define OBJ_GEO_CENTROID 5

Define OBJ_GEO_ARCENDANGLE 6

Define OBJ_GEO_TEXTLINEY 6

Define OBJ_GEO_TEXTANGLE 7

Define OBJ_GEO_POINTZ 8

Define OBJ_GEO_POINTM 9

'==

' ObjectInfo() defines

'==

Define OBJ_INFO_TYPE 1

Define OBJ_INFO_PEN 2

Define OBJ_INFO_SYMBOL 2

Define OBJ_INFO_TEXTFONT 2

Define OBJ_INFO_BRUSH 3

Define OBJ_INFO_NPNTS 20

Define OBJ_INFO_TEXTSTRING 3

Define OBJ_INFO_SMOOTH 4

Define OBJ_INFO_FRAMEWIN 4

Define OBJ_INFO_NPOLYGONS 21

Define OBJ_INFO_TEXTSPACING 4

Define OBJ_INFO_TEXTJUSTIFY 5

Define OBJ_INFO_FRAMETITLE 6

Define OBJ_INFO_TEXTARROW 6

Define OBJ_INFO_FILLFRAME 7
MapBasic 11.0 872 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define OBJ_INFO_REGION 8

Define OBJ_INFO_PLINE 9

Define OBJ_INFO_MPOINT 10

Define OBJ_INFO_NONEMPTY 11

Define OBJ_INFO_Z_UNIT_SET 12

Define OBJ_INFO_Z_UNIT 13

Define OBJ_INFO_HAS_Z 14

Define OBJ_INFO_HAS_M 15

'--

' Object types, returned by ObjectInfo() for OBJ_INFO_TYPE

'--

Define OBJ_TYPE_ARC 1

Define OBJ_TYPE_ELLIPSE 2

Define OBJ_TYPE_LINE 3

Define OBJ_TYPE_PLINE 4

Define OBJ_TYPE_POINT 5

Define OBJ_TYPE_FRAME 6

Define OBJ_TYPE_REGION 7

Define OBJ_TYPE_RECT 8

Define OBJ_TYPE_ROUNDRECT 9

Define OBJ_TYPE_TEXT 10

Define OBJ_TYPE_MPOINT 11

Define OBJ_TYPE_COLLECTION 12

'----------------------*

' RegionInfo() Defines

'----------------------*

Define REGION_INFO_IS_CLOCKWISE 1

'==

' PrismMapInfo() defines

'==

Define PRISMMAP_INFO_SCALE 1

Define PRISMMAP_INFO_BACKGROUND 4
MapBasic 11.0 873 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define PRISMMAP_INFO_LIGHT_X 6

Define PRISMMAP_INFO_LIGHT_Y 7

Define PRISMMAP_INFO_LIGHT_Z 8

Define PRISMMAP_INFO_LIGHT_COLOR 9

Define PRISMMAP_INFO_CAMERA_X 10

Define PRISMMAP_INFO_CAMERA_Y 11

Define PRISMMAP_INFO_CAMERA_Z 12

Define PRISMMAP_INFO_CAMERA_FOCAL_X 13

Define PRISMMAP_INFO_CAMERA_FOCAL_Y 14

Define PRISMMAP_INFO_CAMERA_FOCAL_Z 15

Define PRISMMAP_INFO_CAMERA_VU_1 16

Define PRISMMAP_INFO_CAMERA_VU_2 17

Define PRISMMAP_INFO_CAMERA_VU_3 18

Define PRISMMAP_INFO_CAMERA_VPN_1 19

Define PRISMMAP_INFO_CAMERA_VPN_2 20

Define PRISMMAP_INFO_CAMERA_VPN_3 21

Define PRISMMAP_INFO_CAMERA_CLIP_NEAR 22

Define PRISMMAP_INFO_CAMERA_CLIP_FAR 23

Define PRISMMAP_INFO_INFOTIP_EXPR 24

'==

' SearchInfo() defines

'==

Define SEARCH_INFO_TABLE 1

Define SEARCH_INFO_ROW 2

'==

' SelectionInfo() defines

'==

Define SEL_INFO_TABLENAME 1

Define SEL_INFO_SELNAME 2

Define SEL_INFO_NROWS 3

'==

' Server statement and function defines

'==
MapBasic 11.0 874 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
'--

' Return Codes

'--

Define SRV_SUCCESS 0

Define SRV_SUCCESS_WITH_INFO 1

Define SRV_ERROR -1

Define SRV_INVALID_HANDLE -2

Define SRV_NEED_DATA 99

Define SRV_NO_MORE_DATA 100

'--

' Special values for the status associated with a fetched value

'--

Define SRV_NULL_DATA -1

Define SRV_TRUNCATED_DATA -2

'--

' Server_ColumnInfo() defines

'--

Define SRV_COL_INFO_NAME 1

Define SRV_COL_INFO_TYPE 2

Define SRV_COL_INFO_WIDTH 3

Define SRV_COL_INFO_PRECISION 4

Define SRV_COL_INFO_SCALE 5

Define SRV_COL_INFO_VALUE 6

Define SRV_COL_INFO_STATUS 7

Define SRV_COL_INFO_ALIAS 8

'--

' Column types, returned by Server_ColumnInfo() for SRV_COL_INFO_TYPE

'--

Define SRV_COL_TYPE_NONE 0

Define SRV_COL_TYPE_CHAR 1

Define SRV_COL_TYPE_DECIMAL 2

Define SRV_COL_TYPE_INTEGER 3

Define SRV_COL_TYPE_SMALLINT 4
MapBasic 11.0 875 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define SRV_COL_TYPE_DATE 5

Define SRV_COL_TYPE_LOGICAL 6

Define SRV_COL_TYPE_FLOAT 8

Define SRV_COL_TYPE_FIXED_LEN_STRING 16

Define SRV_COL_TYPE_BIN_STRING 17

'--

' Server_DriverInfo() Attr defines

'--

Define SRV_DRV_INFO_NAME 1

Define SRV_DRV_INFO_NAME_LIST 2

Define SRV_DRV_DATA_SOURCE 3

'--

' Server_ConnectInfo() Attr defines

'--

Define SRV_CONNECT_INFO_DRIVER_NAME 1

Define SRV_CONNECT_INFO_DB_NAME 2

Define SRV_CONNECT_INFO_SQL_USER_ID 3

Define SRV_CONNECT_INFO_DS_NAME 4

Define SRV_CONNECT_INFO_QUOTE_CHAR 5

'--

' Fetch Directions (used by ServerFetch function in some code libraries)

'--

Define SRV_FETCH_NEXT -1

Define SRV_FETCH_PREV -2

Define SRV_FETCH_FIRST -3

Define SRV_FETCH_LAST -4

'--

'Oracle workspace manager

'--

Define SRV_WM_HIST_NONE 0

Define SRV_WM_HIST_OVERWRITE 1

Define SRV_WM_HIST_NO_OVERWRITE 2
MapBasic 11.0 876 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
'==

' SessionInfo() defines

'==

Define SESSION_INFO_COORDSYS_CLAUSE 1

Define SESSION_INFO_DISTANCE_UNITS 2

Define SESSION_INFO_AREA_UNITS 3

Define SESSION_INFO_PAPER_UNITS 4

'==

' Set Next Document Style defines

'==

Define WIN_STYLE_STANDARD 0

Define WIN_STYLE_CHILD 1

Define WIN_STYLE_POPUP_FULLCAPTION 2

Define WIN_STYLE_POPUP 3

'==

' StringCompare() defines

'==

Define STR_LT -1

Define STR_GT 1

Define STR_EQ 0

'==

' StyleAttr() defines

'==

Define PEN_WIDTH 1

Define PEN_PATTERN 2

Define PEN_COLOR 4

Define PEN_INDEX 5

Define PEN_INTERLEAVED 6

Define BRUSH_PATTERN 1

Define BRUSH_FORECOLOR 2

Define BRUSH_BACKCOLOR 3
MapBasic 11.0 877 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define FONT_NAME 1

Define FONT_STYLE 2

Define FONT_POINTSIZE 3

Define FONT_FORECOLOR 4

Define FONT_BACKCOLOR 5

Define SYMBOL_CODE 1

Define SYMBOL_COLOR 2

Define SYMBOL_POINTSIZE 3

Define SYMBOL_ANGLE 4

Define SYMBOL_FONT_NAME 5

Define SYMBOL_FONT_STYLE 6

Define SYMBOL_KIND 7

Define SYMBOL_CUSTOM_NAME 8

Define SYMBOL_CUSTOM_STYLE 9

'--

' Symbol kinds returned by StyleAttr() for SYMBOL_KIND

'--

Define SYMBOL_KIND_VECTOR 1

Define SYMBOL_KIND_FONT 2

Define SYMBOL_KIND_CUSTOM 3

'==

' SystemInfo() defines

'==

Define SYS_INFO_PLATFORM 1

Define SYS_INFO_APPVERSION 2

Define SYS_INFO_MIVERSION 3

Define SYS_INFO_RUNTIME 4

Define SYS_INFO_CHARSET 5

Define SYS_INFO_COPYPROTECTED 6

Define SYS_INFO_APPLICATIONWND 7

Define SYS_INFO_DDESTATUS 8

Define SYS_INFO_MAPINFOWND 9

Define SYS_INFO_NUMBER_FORMAT 10

Define SYS_INFO_DATE_FORMAT 11
MapBasic 11.0 878 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define SYS_INFO_DIG_INSTALLED 12

Define SYS_INFO_DIG_MODE 13

Define SYS_INFO_MIPLATFORM 14

Define SYS_INFO_MDICLIENTWND 15

Define SYS_INFO_PRODUCTLEVEL 16

Define SYS_INFO_APPIDISPATCH 17

Define SYS_INFO_MIBUILD_NUMBER 18

'--

' Platform, returned by SystemInfo() for SYS_INFO_PLATFORM

'--

Define PLATFORM_SPECIAL 0

Define PLATFORM_WIN 1

Define PLATFORM_MAC 2

Define PLATFORM_MOTIF 3

Define PLATFORM_X11 4

Define PLATFORM_XOL 5

'--

' Version, returned by SystemInfo() for SYS_INFO_MIPLATFORM

'--

Define MIPLATFORM_SPECIAL 0

Define MIPLATFORM_WIN16 1

Define MIPLATFORM_WIN32 2

Define MIPLATFORM_POWERMAC 3

Define MIPLATFORM_MAC68K 4

Define MIPLATFORM_HP 5

Define MIPLATFORM_SUN 6

'==

' TableInfo() defines

'==

Define TAB_INFO_NAME 1

Define TAB_INFO_NUM 2

Define TAB_INFO_TYPE 3

Define TAB_INFO_NCOLS 4
MapBasic 11.0 879 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define TAB_INFO_MAPPABLE 5

Define TAB_INFO_READONLY 6

Define TAB_INFO_TEMP 7

Define TAB_INFO_NROWS 8

Define TAB_INFO_EDITED 9

Define TAB_INFO_FASTEDIT 10

Define TAB_INFO_UNDO 11

Define TAB_INFO_MAPPABLE_TABLE 12

Define TAB_INFO_USERMAP 13

Define TAB_INFO_USERBROWSE 14

Define TAB_INFO_USERCLOSE 15

Define TAB_INFO_USEREDITABLE 16

Define TAB_INFO_USERREMOVEMAP 17

Define TAB_INFO_USERDISPLAYMAP 18

Define TAB_INFO_TABFILE 19

Define TAB_INFO_MINX 20

Define TAB_INFO_MINY 21

Define TAB_INFO_MAXX 22

Define TAB_INFO_MAXY 23

Define TAB_INFO_SEAMLESS 24

Define TAB_INFO_COORDSYS_MINX 25

Define TAB_INFO_COORDSYS_MINY 26

Define TAB_INFO_COORDSYS_MAXX 27

Define TAB_INFO_COORDSYS_MAXY 28

Define TAB_INFO_COORDSYS_CLAUSE 29

Define TAB_INFO_COORDSYS_NAME 30

Define TAB_INFO_NREFS 31

Define TAB_INFO_SUPPORT_MZ 32

Define TAB_INFO_Z_UNIT_SET 33

Define TAB_INFO_Z_UNIT 34

Define TAB_INFO_BROWSER_LIST 35

Define TAB_INFO_THEME_METADATA 36

Define TAB_INFO_COORDSYS_CLAUSE_WITHOUT_BOUNDS 37

Define TAB_INFO_DESCRIPTION 38

Define TAB_INFO_ID 39

Define TAB_INFO_PARENTID 40
MapBasic 11.0 880 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define TAB_INFO_ISMANAGED 41

'--

' Table type defines, returned by TableInfo() for TAB_INFO_TYPE

'--

Define TAB_TYPE_BASE 1

Define TAB_TYPE_RESULT 2

Define TAB_TYPE_VIEW 3

Define TAB_TYPE_IMAGE 4

Define TAB_TYPE_LINKED 5

Define TAB_TYPE_WMS 6

Define TAB_TYPE_WFS 7

Define TAB_TYPE_FME 8

Define TAB_TYPE_TILESERVER 9

'--

' TableListInfo() defines

'--

Define TL_INFO_SEL_COUNT 1

'--

' Defines used in LibraryServiceInfo function for what information to return.

'--

Define LIBSRVC_INFO_LIBSRVCMODE 1

Define LIBSRVC_INFO_LIBVERSION 2

Define LIBSRVC_INFO_DEFURLPATH 3

Define LIBSRVC_INFO_LISTCSWURL 4

'--

' TableListSelectionInfo() defines

'--

Define TL_SEL_INFO_NAME 1

Define TL_SEL_INFO_ID 2

'--

' RasterTableInfo() defines

'--
MapBasic 11.0 881 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define RASTER_TAB_INFO_IMAGE_NAME 1

Define RASTER_TAB_INFO_WIDTH 2

Define RASTER_TAB_INFO_HEIGHT 3

Define RASTER_TAB_INFO_IMAGE_TYPE 4

Define RASTER_TAB_INFO_BITS_PER_PIXEL 5

Define RASTER_TAB_INFO_IMAGE_CLASS 6

Define RASTER_TAB_INFO_NUM_CONTROL_POINTS 7

Define RASTER_TAB_INFO_BRIGHTNESS 8

Define RASTER_TAB_INFO_CONTRAST 9

Define RASTER_TAB_INFO_GREYSCALE 10

Define RASTER_TAB_INFO_DISPLAY_TRANSPARENT 11

Define RASTER_TAB_INFO_TRANSPARENT_COLOR 12

Define RASTER_TAB_INFO_ALPHA 13

'--

' Image type defines returned by RasterTableInfo() for
RASTER_TAB_INFO_IMAGE_TYPE

'--

Define IMAGE_TYPE_RASTER 0

Define IMAGE_TYPE_GRID 1

'--

' Image class defines returned by RasterTableInfo() for
RASTER_TAB_INFO_IMAGE_CLASS

'--

Define IMAGE_CLASS_BILEVEL 0

Define IMAGE_CLASS_GREYSCALE 1

Define IMAGE_CLASS_PALETTE 2

Define IMAGE_CLASS_RGB 3

'--

' GridTableInfo() defines

'--

Define GRID_TAB_INFO_MIN_VALUE 1

Define GRID_TAB_INFO_MAX_VALUE 2

Define GRID_TAB_INFO_HAS_HILLSHADE 3
MapBasic 11.0 882 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
'--

' ControlPointInfo() defines

'--

Define RASTER_CONTROL_POINT_X 1

Define RASTER_CONTROL_POINT_Y 2

Define GEO_CONTROL_POINT_X 3

Define GEO_CONTROL_POINT_Y 4

Define TAB_GEO_CONTROL_POINT_X 5

Define TAB_GEO_CONTROL_POINT_Y 6

'==

' WindowInfo() defines

'==

Define WIN_INFO_NAME 1

Define WIN_INFO_TYPE 3

Define WIN_INFO_WIDTH 4

Define WIN_INFO_HEIGHT 5

Define WIN_INFO_X 6

Define WIN_INFO_Y 7

Define WIN_INFO_TOPMOST 8

Define WIN_INFO_STATE 9

Define WIN_INFO_TABLE 10

Define WIN_INFO_LEGENDS_MAP 10

Define WIN_INFO_ADORNEMNTS_MAP 10

Define WIN_INFO_OPEN 11

Define WIN_INFO_WND 12

Define WIN_INFO_WINDOWID 13

Define WIN_INFO_WORKSPACE 14

Define WIN_INFO_CLONEWINDOW 15

Define WIN_INFO_SYSMENUCLOSE 16

Define WIN_INFO_AUTOSCROLL 17

Define WIN_INFO_SMARTPAN 18

Define WIN_INFO_SNAPMODE 19

Define WIN_INFO_SNAPTHRESHOLD 20

Define WIN_INFO_PRINTER_NAME 21
MapBasic 11.0 883 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define WIN_INFO_PRINTER_ORIENT 22

Define WIN_INFO_PRINTER_COPIES 23

Define WIN_INFO_PRINTER_PAPERSIZE 24

Define WIN_INFO_PRINTER_LEFTMARGIN 25

Define WIN_INFO_PRINTER_RIGHTMARGIN 26

Define WIN_INFO_PRINTER_TOPMARGIN 27

Define WIN_INFO_PRINTER_BOTTOMMARGIN 28

Define WIN_INFO_PRINTER_BORDER 29

Define WIN_INFO_PRINTER_TRUECOLOR 30

Define WIN_INFO_PRINTER_DITHER 31

Define WIN_INFO_PRINTER_METHOD 32

Define WIN_INFO_PRINTER_TRANSPRASTER 33

Define WIN_INFO_PRINTER_TRANSPVECTOR 34

Define WIN_INFO_EXPORT_BORDER 35

Define WIN_INFO_EXPORT_TRUECOLOR 36

Define WIN_INFO_EXPORT_DITHER 37

Define WIN_INFO_EXPORT_TRANSPRASTER 38

Define WIN_INFO_EXPORT_TRANSPVECTOR 39

Define WIN_INFO_PRINTER_SCALE_PATTERNS 40

Define WIN_INFO_EXPORT_ANTIALIASING 41

Define WIN_INFO_EXPORT_THRESHOLD 42

Define WIN_INFO_EXPORT_MASKSIZE 43

Define WIN_INFO_EXPORT_FILTER 44

Define WIN_INFO_ENHANCED_RENDERING 45

Define WIN_INFO_SMOOTH_TEXT 46

Define WIN_INFO_SMOOTH_IMAGE 47

Define WIN_INFO_SMOOTH_VECTOR 48

'--

' Window types, returned by WindowInfo() for WIN_INFO_TYPE

'--

Define WIN_MAPPER 1

Define WIN_BROWSER 2

Define WIN_LAYOUT 3

Define WIN_GRAPH 4

Define WIN_BUTTONPAD 19
MapBasic 11.0 884 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define WIN_TOOLBAR 25

Define WIN_CART_LEGEND 27

Define WIN_3DMAP 28

Define WIN_ADORNMENT 32

Define WIN_HELP 1001

Define WIN_MAPBASIC 1002

Define WIN_MESSAGE 1003

Define WIN_RULER 1007

Define WIN_INFO 1008

Define WIN_LEGEND 1009

Define WIN_STATISTICS 1010

Define WIN_MAPINFO 1011

'--

' Version 2 window types no longer used in version 3 or later versions

'--

Define WIN_TOOLPICKER 1004

Define WIN_PENPICKER 1005

Define WIN_SYMBOLPICKER 1006

'--

' Window states, returned by WindowInfo() for WIN_INFO_STATE

'--

Define WIN_STATE_NORMAL 0

Define WIN_STATE_MINIMIZED 1

Define WIN_STATE_MAXIMIZED 2

'--

' Print orientation, returned by WindowInfo() for WIN_INFO_PRINTER_ORIENT

'--

Define WIN_PRINTER_PORTRAIT 1

Define WIN_PRINTER_LANDSCAPE 2

'--

' Antialiasing filters, returned by WindowInfo() for WIN_INFO_EXPORT_FILTER

'--

Define FILTER_VERTICALLY_AND_HORIZONTALLY 0
MapBasic 11.0 885 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define FILTER_ALL_DIRECTIONS_1 1

Define FILTER_ALL_DIRECTIONS_2 2

Define FILTER_DIAGONALLY 3

Define FILTER_HORIZONTALLY 4

Define FILTER_VERTICALLY 5

'==

' Abbreviated list of error codes

'

' The following are error codes described in the Reference manual. All

' other errors are listed in ERRORS.DOC.

'==

Define ERR_BAD_WINDOW 590

Define ERR_BAD_WINDOW_NUM 648

Define ERR_CANT_INITIATE_LINK 698

Define ERR_CMD_NOT_SUPPORTED 642

Define ERR_FCN_ARG_RANGE 644

Define ERR_FCN_INVALID_FMT 643

Define ERR_FCN_OBJ_FETCH_FAILED 650

Define ERR_FILEMGR_NOTOPEN 366

Define ERR_FP_MATH_LIB_DOMAIN 911

Define ERR_FP_MATH_LIB_RANGE 912

Define ERR_INVALID_CHANNEL 696

Define ERR_INVALID_READ_CONTROL 842

Define ERR_INVALID_TRIG_CONTROL 843

Define ERR_NO_FIELD 319

Define ERR_NO_RESPONSE_FROM_APP 697

Define ERR_PROCESS_FAILED_IN_APP 699

Define ERR_NULL_SELECTION 589

Define ERR_TABLE_NOT_FOUND 405

Define ERR_WANT_MAPPER_WIN 313

Define ERR_CANT_ACCESS_FILE 825

'==

' Backward Compatibility defines

'

MapBasic 11.0 886 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
' These defines are provided so that existing MapBasic code will continue

' to compile & run correctly. Please use the new define (on the right)

' when writing new code.

'==

Define OBJ_ARC OBJ_TYPE_ARC

Define OBJ_ELLIPSE OBJ_TYPE_ELLIPSE

Define OBJ_LINE OBJ_TYPE_LINE

Define OBJ_PLINE OBJ_TYPE_PLINE

Define OBJ_POINT OBJ_TYPE_POINT

Define OBJ_FRAME OBJ_TYPE_FRAME

Define OBJ_REGION OBJ_TYPE_REGION

Define OBJ_RECT OBJ_TYPE_RECT

Define OBJ_ROUNDRECT OBJ_TYPE_ROUNDRECT

Define OBJ_TEXT OBJ_TYPE_TEXT

'==

' Codes used to position Adornments relative to mapper

'==

Define ADORNMENT_INFO_MAP_POS_TL 0

Define ADORNMENT_INFO_MAP_POS_TC 1

Define ADORNMENT_INFO_MAP_POS_TR 2

Define ADORNMENT_INFO_MAP_POS_CL 3

Define ADORNMENT_INFO_MAP_POS_CC 4

Define ADORNMENT_INFO_MAP_POS_CR 5

Define ADORNMENT_INFO_MAP_POS_BL 6

Define ADORNMENT_INFO_MAP_POS_BC 7

Define ADORNMENT_INFO_MAP_POS_BR 8

Define SCALEBAR_INFO_BARTYPE_CHECKEDBAR 0

Define SCALEBAR_INFO_BARTYPE_SOLIDBAR 1

Define SCALEBAR_INFO_BARTYPE_LINEBAR 2

Define SCALEBAR_INFO_BARTYPE_TICKBAR 3

'==

' Coordinate system datum id's. These match the id's from mapinfow.prj.

'==
MapBasic 11.0 887 Reference

Chapter E: MapBasic Definitions File
MapBasic.DEF File
Define DATUMID_NAD27 62

Define DATUMID_NAD83 74

Define DATUMID_WGS84 104

'==

' end of MAPBASIC.DEF

'==
MapBasic 11.0 888 Reference

Index

Symbols
! (exclamation point) in menus 187
& (ampersand)

dialog hotkeys 251
finding street intersections 292–295
hexadecimal numbers 770
menu hotkeys 188
string concatenation 845

((open parenthesis) in menus 187
* (asterisk)

fixed length strings 257
multiplication 845

+ (plus) 845
.Net Interoperability

Declare Method statement 241
/ (slash)

division 845
in menus 186, 188

< (less than) character
in menus 186

\ (backslash)
in menus 186
integer division 845

^ (caret)
exponentiation 845
show/hide menu text 188

Numerics
3D maps

changing window settings 677–678
creating 183–185
prism maps 202–204
reading window settings 399–402

A
Abs() function 39
absolute value, Abs() function 39
accelerator keys

in dialog boxes 251

in menus 188
Access databases

connection string attributes 568
Acos() function 39
Add Cartographic Frame statement 40
Add Column statement 42
Add Map statement 48
adding

animation layers 50
buttons 52–57
columns to a table 42–48, 76–78
map layers 48–51
menu items 62–67
nodes 74, 459, 477

addresses
finding 292–295

aggregate functions 555–556
alias variables 258
all-caps text 298–300
Alter Button statement 51
Alter ButtonPad statement 52–57
Alter Cartographic Frame statement 57
Alter Control statement 58
Alter MapInfoDialog statement 60
Alter Menu Bar statement 67
Alter Menu Item statement 68
Alter Menu statement 62
Alter Object statement 70
Alter Table statement 76
animation layers

adding 50
removing 520

ApplicationDirectory$() function 78
ApplicationName$() function 79
arc objects

creating 159
determining length of 438
modifying 70–74
querying the pen style 433–438
storing in a new row 344–346
MapBasic 11.0 889 Reference

Index
storing in an existing row 766
area

spherical calculation 718
units of measure 608

Area() function 79
AreaOverlap() function 80
arithmetic functions. See math functions 38
array variables

declaring 258
determining size of array 762
resizing 507–508

Asc() function 81
ASCII files

exporting 279
using as tables 508–515
See also file input/output 38

Asin() function 82
Ask() function 83
assigning local storage

Server Bind Column statement 562–563
Atn() function 84
AutoCAD

importing files 337–342
AutoLabel statement 85
automatic type conversions 847
automation

handling button event 163
handling menu event 189

autoscroll feature
list of affected draw modes 55–56
reading current setting 779
turning on or off 700
WinChangedHandler 774

Avg() aggregate function 555–556

B
background colors

Brush clause 90–91
Font clause 298–300
MakeBrush() function 389
MakeFont() function 391–392

bar charts
in graph windows 330–331
in thematic maps 714–716

beep statement 86
beginning a transaction

Server Begin Transaction 561
binary file i/o

closing files 113
opening files 471
reading data 320–321
writing data 500

bitmap (*.bmp) files
creating 540–542

bold text 298–300
bounding rectangle 408
branching

Do Case...End Case statement 262
If...Then statement 336

breakpoints (debugging) 727
Browse statement 86
Browser windows

closing 115
determining the name of the table 780
modifying 609, 692–702
opening 86–87
restricting which columns appear 523

BrowserInfo function 88
Brush clause 89–91
brush styles

Brush clause defined 89–91
creating 389
modifying an object’s style 71–72
querying an object’s style 433–438
querying parts of 733–736
reading current style 224
setting current style 688–689

brush variables 258
BrushPicker controls 140
buffer regions

Buffer() function 92
CartesianBuffer() function 97
Create Object statement 194

Buffer() function 92
button controls (in dialog boxes) 132
ButtonPadInfo() function 93
ButtonPads

adding/removing a button 52–57, 757–759
creating a new pad 160–164
docked vs. floating 54, 162
drawing modes 55–57
enabling/disabling a button 51
querying current settings 93
resetting to defaults 164–165
responding to user action 122
selecting/deselecting a button 51
setting which button is active 534
showing/hiding a pad 52–57

byte order in file i/o 472

C
Call statement 94
Calling clause 163, 189
callout lines
MapBasic 11.0 890 Reference

Index
map labels 652, 661, 664
text objects 221

CancelButton clause 132
capitalization

lower case 375
mixed case 499
upper case 763

CartesianArea() function 96
CartesianBuffer() function 97
CartesianDistance() function 99
CartesianObjectDistance() function 100
CartesianObjectLen() function 100
CartesianOffset() function 101
CartesianOffsetXY() function 102
CartesianPerimeter() function 103
cartographic legends

adding frames, Add Cartographic Frame
statement 40–42

changing a frame 57
controlling settings 611
creating 165–169
removing a frame 519

case, converting
LCase$() function 375
Proper$() function 499
UCase$() function 763

Centroid() function 104
centroids

displaying 648, 655, 658
setting a region’s 74

CentroidX() function 105
CentroidY() function 106
character codes

character sets 107–110
converting codes to strings 111
converting strings to codes 81

CharSet clause 107
checkable menu items, creating 187
CheckBox controls 132
checking

dialog box check boxes (custom) 58
dialog box check boxes (standard) 60–62
menu items 68–70

ChooseProjection$() function 110
Chr$() function 111
circle objects

creating 169–171, 173
determining area of 79
determining perimeter of 485
modifying 70–74
querying the pen or brush style 433–438
storing in a new row 344–346
storing in an existing row 766

cleaning objects 447
clicking and dragging. See ButtonPads 38
clipping a map 643
cloning a map 534
Close All statement 112
Close Connection statement 112
Close File statement 113
Close Table statement 114
Close Window statement 115
closing tables

Server Close statement 563
collection objects

combining 118
creating 171
resetting objects within collection 75–76

color
RGB values 524

ColumnInfo() function 116
columns in a table

adding 42–48, 76–78
deleting 76–78
determining column information 116–118, 426
dynamic columns 48
indexing 179

Combine() function 118
combining objects

Combine() function 118
Create Object statement 194
Objects Clean statement 447
Objects Combine statement 449

CommandInfo() function 119
Commit Table statement 124
comparing strings 382, 730–731
comparison operators 845–846
compiler directives

Define statement 246
Include statement 343

concatenating strings
& operator 845
+ operator 845

conditional execution
Do Case...End Case statement 262
If...Then statement 335–336

Conflict Resolution dialog box 127
Connect option

DLG=1 568
connect_string, defined 568
connecting to a data source

Server_Connect 567–574
connection number, returning 567–574
ConnectObjects() function 129
Continue statement 130
Control BrushPicker clause 140
MapBasic 11.0 891 Reference

Index
Control Button clause 132
Control DocumentWindow clause 134
Control EditText clause 135
Control FontPicker clause 140
Control GroupBox clause 136
control key

detecting control-click 122
entering line feeds in EditText boxes 135
selecting multiple list items 137–139

Control ListBox clause 137
Control MultiListBox clause 137
control panels

date formatting 627–628
number formatting 627–628

Control PenPicker clause 140
Control PopupMenu clause 142
Control RadioGroup clause 143
Control StaticText clause 144
Control SymbolPicker clause 140
ControlPointInfo() function 141
controls in dialog boxes

BrushPicker 140
Button 132
CancelButton 132
EditText 135
FontPicker 140
GroupBox 136
ListBox 137–139
MultiListBox 137
OKButton 132
PenPicker 140
RadioGroup 143–144
StaticText 144
SymbolPicker 140

converting
character codes to strings 111
numbers to dates 424–425
numbers to strings 728
objects to polylines 145
objects to regions 146
strings to character codes 81
strings to dates 731–732
strings to numbers 770
text to lower case 375
text to mixed case 499
text to upper case 763
two-digit input into four-digit years 620

ConvertToPline() function 145
ConvertToRegion() function 146
convex hull

Create Object parameter 195
ConvexHull() function 146
coordinate systems 669–670

CoordSys clause
changing a table’s CoordSys 124–129
querying a table’s coordinate system 747
querying a window’s coordinate system 404
setting current MapBasic coordinate system 619
specifying a coordinate system 147

CoordSysName$() function 151
CoordSysStringToEPSG() function 152
CoordSysStringToPRJ$() function 153
CoordSysStringToWKT$() function 153
copying

a projection
from a table 147–151
from a window 147–151

an object
offset by distance 722
offset by XY values 723
offset from source 458–459

files 538
object offset 465–466
objects

offset by specified distance 101
offset by XY values 102

tables 124–129
Cos() function 151, 154
cosmetic layer

accessing as a table 780
Count() aggregate function 555–556
Create Adornment statement 155
Create Arc statement 159
Create ButtonPad statement 160
Create ButtonPads As Default statement 164
Create Cartographic Legend statement 165
Create Collection statement 171
Create Cutter statement 172
Create Frame statement 174
Create Grid statement 176
Create Index statement 179
Create Legend statement 179
Create Line statement 181
Create Map statement 182
Create Map3D statement 183
Create Menu Bar statement 190
Create Menu statement 185
Create Multipoint statement 192
Create Object statement 194
Create Pline statement 199
Create Point statement 201
Create PrismMap statement 202
Create Ranges statement 204
Create Rect statement 207
Create Redistricter statement 208
Create Region statement 209
MapBasic 11.0 892 Reference

Index
Create Report From Table statement 211
Create RoundRect statement 212
Create Styles statement 213
Create Table statement 214
Create Text statement 221
CreateCircle() function 169
CreateLine() function 180
CreatePoint() function 200
CreateText() function 219
Crystal Reports

creating 211
loading 472

CurDate() function 222
CurrDateTime function 223
CurrentBorder Pen() function 223
CurrentBrush() function 224
CurrentFont() function 225
CurrentLinePen() function 226
CurrentPen() function 226
CurrentSymbol() function 227–228
cursor coordinates, displaying 643
cursor shapes 55
cursor, position in table

end-of-table condition 271
positioning the row cursor 286–288

CurTime function 228
custom symbols

Reload Symbols statement 516
syntax 740–744

cutter objects, creating 172

D
data aggregation

combining objects 447, 449–450
filling a column with data from another table 44–

48
grouping rows 555–556

data disaggregation
erasing part of an object 453–456
splitting objects 463–465

data structures 761
databases

using as tables 508–515
date

variables 258
date functions

converting numbers to dates 424
converting strings to dates 627–628, 731–732
current date 222
date window setting 229
extracting day-of-month 229
extracting day-of-week 771

extracting the month 419
extracting the year 786
formatting based on locale 627–628

DateTime feature
description 258

DateWindow() function 229
Day() function 229
DBF files, exporting 279
DDE, acting as client

closing a conversation 238–239
executing a command 230
initiating a conversation 231–234
reading data from the server 236–238
sending data to the server 234

DDE, acting as server
handling execute event 517
handling peek request 518
retrieving execute string 121

DDEExecute statement 230
DDEInitiate function 231
DDEPoke statement 234
DDERequest$() function 236
DDETerminate statement 238
DDETerminateAll statement 239
debugging

Continue statement 130
Stop statement 727

decimal separators 247, 306, 627–628
decision-making

Do Case...End Case statement 262
If...Then statement 335–336

Declare Function statement 239
Declare Method statement 241
Declare Sub statement 244
Define statement 246
definitions file 849
DeformatNumber$() function 247
delaying when user drags mouse 625
Delete statement 248
deleting

all objects from a table 266
columns from a table 76–78
files 352
nodes from an object 70
rows or objects 248
tables 267

dialog boxes, custom
accelerator keys 251
creating 249–255
determining ID of a control 759
determining if user clicked OK 120
determining if user double-clicked 120
modal vs. modeless 250
MapBasic 11.0 893 Reference

Index
modifying 58
preserving after user clicks OK 255
reading user’s input 251, 504–507
sizes of dialog boxes and controls 250
tab order 252
terminating 251, 256

dialog boxes, standard
altering MapInfo dialog boxes 60–62
asking OK/Cancel question 83
opening a file 289–291
percent complete 496–498
saving a file 291
simple messages 423
suppressing progress bars 684

Dialog Preserve statement 255
Dialog Remove statement 256
Dialog statement 249
digitizer

setup 621–623
status 745

digitizer setup 622
Dim statement 257
directory names

extracting from a file name 479
user’s home directory 334
user’s windows directory 334
where application is installed 78
where MapInfo is installed 496

disabling
ButtonPad buttons 51
dialog box controls (custom) 58
dialog box controls (standard) 60–62
handler procedures 633
menu items 68–70
progress bar dialog boxes 684
shortcut menus 190
system menu’s Close command 699

discarding changes
to a local table 527
to a remote server 595

distance
spherical calculation 719
units of measure 624

Distance() function 261
DLG=1 connect option 568
DLLs

declaring as functions 240–241
declaring as procedures 245

Do Case...End Case statement 262
Do...Loop statement 264
dockable

ButtonPads, querying current status 93
document conventions 20, 38

DOS commands, executing 537
dot density maps

thematic maps 710–711
double byte character sets (DBCS)

extracting part of a DBCS string 417
double-clicking in dialog boxes 120, 138
dragging with the mouse

time threshold 625
turning off autoscroll 700

drawing
modes 55–56

drawing objects on a map
See objects, creating 38

drawing tools, custom 52–57
Drop Index statement 266
Drop Map statement 266
Drop Table statement 267
duplicating a map 534
DXF files

exporting 279
importing 337–342

dynamic columns 48
dynamic link libraries. See DLLs

E
editable map layers 403, 648
editing objects

See specific object type
arc, ellipse, frame, line, point, polyline,

rectangle, region, rounded
rectangle, text 38

edits
determining if there are unsaved edits 746–751
discarding 527
saving 124–129

EditText controls 135
elapsed time 757
ellipse objects

Cartesian area of 96
Cartesian perimeter of 103
creating 169–171, 173
determining area of 79
determining perimeter of 485
modifying 70–74
querying pen or brush style 433–438
storing in a new row 344–346
storing in an existing row 766

enabling
ButtonPad buttons 51
dialog box controls 58
menu items 68–70

End MapInfo statement 268
MapBasic 11.0 894 Reference

Index
End Program statement 269
EndHandler procedure 270
enlarging arrays 507–508
EOF() function 270
EOT() function 271
EPSGToCoordSysString$() function 272
Erase() function 273
erasing

entire objects 248
files 352
part of an object 273, 453–456
tables 267

Err() function 274
error handling

determining error code 274
determining error message 275
enabling an error handler 467–468
generating an error 275
returning from an error handler 523

Error statement 275
Error$() function 275
Escape key

cancelling draw operations 54–57
dismissing a dialog box 120
interrupting selection 550

events, handling
application terminated 270
automation method used 516
execute string received 121, 517
map window changed 121, 774
MapInfo got or lost focus 122, 302
peek request received 518
selection changed 121
user clicked with custom tool 122, 757–759
user double-clicked in a dialog box 120
window closed 121, 775
window focus changed 784
See also error handling 38

Excel files
opening 508–515

executing
interpreted strings 532–534
menu commands 534
Run Application statement 531
Run Program statement 536

executing an SQL string
Server_Execute() 585

execution speed
animation layers 50
screen updates 625
table editing 689–691

Exit Do statement 276
Exit For statement 277

Exit Function statement 277
Exit Sub statement 278
exiting MapInfo Professional

End MapInfo statement 268
Exp() function 279
expanded text 298–300
exponentiation 279
Export statement 279
extents of entire table 748
external functions 240–241
extracting part of a string

Left$() function 376
Mid$() function 416
MidByte$() function 417
Right$() function 525

ExtractNodes() function 282

F
Farthest statement 283
Fetch statement 286
file input/output

closing a file 113
determining if file exists 289
end-of-file condition 270
file attributes, reading 288
length of file 386
opening a file 470–472
reading current position 548
reading data in binary mode 320–321
reading data in random mode 320–321
reading data in sequential mode 343, 383
setting current position 549
writing data in binary mode 500
writing data in random mode 500
writing data in sequential mode 491, 785

file names
determining full file spec 760
determining temporary name 754
extracting directory from 479
extracting from full file spec 480

file sharing conflicts 626
FileAttr() function 288
FileExists() function 289
FileOpenDlg() function 289
files

copying 538
deleting 352
determining if file exists 289
importing 337–342
length 386
locating 384
renaming 521
MapBasic 11.0 895 Reference

Index
FileSaveAsDlg() function 291
fill styles. See brush styles
filtering data 553–555
Find statement 292
Find Using statement 296
finding

a substring within a string 346
an address in a map 292–295
an intersection of two streets 292–295
objects from map coordinates 543–548

Fix() function 297
fixed length strings 257
floating point variables 257
flow control

exiting a Do loop 276
exiting a For loop 277
exiting a function 277
exiting a procedure 278
exiting an application 269
exiting MapInfo 268
halting another application 755
unconditional jump 329

focus
active window changes 784
getting or losing 122, 302
within a dialog box 59

folder names. See directory names
Font clause 298–300
font styles

creating 392
Font clause defined 298–300
modifying an object’s style 71–72
querying an object’s style 433–438
querying parts of 733–736
reading current style 225
setting current style 688–689

FontPicker controls 140
fonts

variables 258
For...Next statement 300
ForegroundTaskSwitchHandler procedure 302
foreign character sets 107–110
Format$() function 303
FormatDate$() function 305
FormatNumber$() function 306
FormatTime$ function 307
frame objects

creating 174–176
inserting into a layout 344–346
modifying 70–74, 766
querying the pen or brush style 433–438

frames, cartographic legend
adding a frame 40–42

controlling settings 611
creating 165–169
modifying 57
removing 519

FrontWindow() function 307, 309
FTP Library 793
Function...End Function statement 309
functions, creating

Declare Function statement 239
Exit Function statement 277
Function....End Function statement 309

G
gaps

checking in regions 446–447
cleaning 447
snapping nodes 461–463

Geocode statement 312
GeocodeInfo() function 317
geographic

operators 558
geographic calculations

area of object 79
area of overlap 80
distance 261
length of object 438
perimeter of object 485
See objects, querying 38

geographic operators 846
Get statement 320
GetCurrentPath() function 322
GetDate function 323
GetFolderPath$() function 323
GetGridCellValue() function 324
GetMetadata$() function 325
GetPreferencePath$() function 326
GetSeamlessSheet() function 327
GetTime function 328
Global statement 328
GML files, importing 337–342
Goto statement 329
GPS applications 50–51
Graph statement 330
Graph windows

closing 115
determining the name of the table 780
modifying 628–633, 692–702
opening 323, 330–331

great circle distance 261
grid

tables, adding relief shade information 515
grid surface maps
MapBasic 11.0 896 Reference

Index
in thematic maps 176–179
modifying 641–671

GridTableInfo() function 331
Group By clause 555–557
group layers 666–667
GroupBox controls 136
GroupLayerInfo function 332

H
halo text 298–300
halting another application 755
handlers, assigning to menu items 186
hardware platform, determining 744–746
help messages

button tooltips 54, 161
status bar messages 54, 161

Help window
closing 115
modifying 692–702
opening 475, 692–702

hexadecimal numbers 770
hiding

ButtonPads 52–57
dialog box controls (custom) 58
dialog box controls (standard) 60–62
menu bar 409
progress bar dialog boxes 684
screen activity 625

hierarchical menus
Alter Menu statement 66
Create Menu statement 187

HomeDirectory$() function 334
HotLink tool

querying object attributes 123
HotLinkInfo function 334
HotLinks 671–674

adding 674–675
modifying 675–676
querying 364
removing 676
reordering 676

Hour function 335
HTTP and FTP Library

MICloseContent() procedure 794
MICloseFtpConnection() procedure 794
MICloseFtpFileFind() procedure 794
MICloseHttpConnection() procedure 795
MICloseHttpFile() procedure 795
MICloseSession() procedure 796
MICreateSession() function 796
MICreateSessionFull() function 797
MIErrorDlg() function 798

MIFindFtpFile() function 800
MIFindNextFtpFile() function 801
MIGetContent() function 801
MIGetContentBuffer() function 803
MIGetContentLen() function 803
MIGetContentString() function 804
MIGetContentToFile() function 804
MIGetContentType() function 805
MIGetCurrent FtpDirectory() function 806
MIGetErrorCode() function 806
MIGetErrorMessage() function 807
MIGetFileURL() function 807
MIGetFtpConnection() function 808
MIGetFtpFile() function 809
MIGetFtpFileFind() function 810
MIGetFtpFileName() procedure 811
MIGetHttpConnection() function 811
MIIsFtpDirectory() function 812
MIIsFtpDots() function 813
MIOpenRequest() function 813
MIOpenRequestFull() function 814
MIParseURL() function 816
MIPutFtpFile() function 817
MIQueryInfo() function 818
MIQueryInfoStatusCode() function 819
MISaveContent() function 820
MISendRequest() function 820
MISendSimpleRequest() function 821
MISetCurrentFtpDirectory() function 822
MISetSessionTimeout() function 822

HWND values, querying
SystemInfo() function 744
WindowInfo() function 780

I
iconizing MapInfo

Set Window statement 692
suppressing progress bars 684

icons for ButtonPads 55
identifiers, defining 246
If...Then statement 335–336
Import statement 337
Include statement 343
indexed columns

creating an index 179
deleting an index 266

infinite loops, avoiding 633
Info tool

closing Info window 115
modifying Info window 692–702
opening Info window 475
setting to read-only 701
MapBasic 11.0 897 Reference

Index
setting which data displays 701
initializing variables 261
Input # statement 343
input/output. See file input/output 38
Insert statement 344
inserting

columns in a table 42–48, 76–78
nodes in an object 74
rows in a table 344–346

InStr() function 346
Int() function 347
integer division 845
integer variables 257
integrated mapping

managing legends 179
reparenting dialog boxes 607
reparenting document windows 679–680

international
character sets 107–110
formatting 627–628

interpreting strings as commands 532–534
interrupting the selection 550
intersection of objects

Create Object statement 194
Intersects operator 558
Objects Intersect statement 455
Overlap() function 476

intersection of two streets, finding 292–295
IntersectNodes() function 348
IsGridCellNull() function 348
IsogramInfo() function 349
IsPenWidthPixels() function 352
italic text 298–300

J
joining tables 553–555
JPEG file interchange format (*.jpg)

creating 540–542

K
keys, metadata 413–414
keywords 259, 555
Kill statement 352

L
LabelFindByID() function 353
LabelFindFirst() function 354
LabelFindNext() function 355
Labelinfo() function 356
LabelOverrideInfo() funtion 359
labels

in dialog boxes 144

in programs 329
on maps 85, 353–359, 650–653
reading label expressions 366

launching other applications
Run Application statement 531
Run Program statement 536

LayerControlSelectionInfo() function 363
LayerInfo() function 363–364
LayerListInfo function 372
layers

adding 48–51
cosmetic 780
group 666–667
groups 667–668
modifying settings 641–671
reading settings 364–371
removing 520
thematic maps 687, 704–716

LayerStyleInfo() funtion 373
Layout statement 374
Layout windows

accessing as tables 780
closing 115
creating frames 174–176
modifying 634–636, 692–702
opening 374
specifying layout coordinates 147–151, 619

LCase$() function 375
Left$() function 376
legend frames

querying attributes 377–378
querying styles 379

Legend windows
closing 115
modifying 636–639, 692–702
opening 179, 475
querying 378

legend, cartographic
adding a frame 40–42
controlling settings 611
creating 165–169
modifying a frame 57
removing a frame 519

LegendFrameInfo() function 377–378
LegendInfo() function 378
LegendStyleInfo() function 379
Len() function 380
length

of a file 386
of an object 438
spherical calculation of 721

LibraryServiceInfo() function 381
Like() function 382
MapBasic 11.0 898 Reference

Index
line feed character
Chr$(10) function 111
used in EditText controls 135
used in text objects 221

Line Input statement 383
line objects

Cartesian length of 100
creating 180–181
determining length of 438
modifying 70–74
querying the pen style 433–438
storing in a new row 344–346
storing in an existing row 766

line styles
See pen styles

linked tables
creating 590–592
determining if table is linked 750
refreshing 594
saving 127
unlinking 766

ListBox controls 137–139
locale settings 247, 306, 627–628
LocateFile$() function 384
LOF() function 386
Log() function 386
logical

operators 846
variables 258

looping
Do...Loop statement 264
For...Next statement 300
While...Wend statement 772

Lotus 1-2-3 tables
opening files 508–515

lower case, converting to 375
LTrim$() function 387

M
Main procedure 388–389
MakeBrush() function 389
MakeCustomSymbol() function 390
MakeDateTime function 391
MakeFont() function 391–392
MakeFontSymbol() function 393
MakePen() function 394
MakeSymbol() function 395
map projections

changing a table’s projection 124–129
copying from a table or window 147–151
querying a table’s CoordSys 747
querying a window’s CoordSys 404

setting 669–670
setting the current MapBasic CoordSys 619

map scale
determining in map windows 403
displaying 645

Map statement 396
Map windows

adding map layers 48–51
clipping 643
closing 115
controlling redrawing 48, 625, 643
creating thematic layers 704–716
duplicating 534
handling window-changed event 121, 774
labeling 650
modifying 641–671, 692–702
modifying thematic layers 687
opening 396
prism 202–204
reading layer settings 364–371
reading window settings 402–407
removing map layers 520

Map3DInfo() function 399
MapBasic

definitions file 849
language overview 20–38

MapBasic window
Abs function 39
Acos() function 39
Add Cartographic Frame statement 40
Add Column statement 42
Add Map statement 48
Alter Cartographic Frame statement 57
Alter Object statement 70
Alter Table statement 76
ApplicationDirectory$() function 78
ApplicationName$() function 79
Area() function 79
AreaOverlap() function 80
Asc() function 81
Asin() function 82
Ask() function 83
Atn() function 84
AutoLabel statement 85
Beep statement 86
Browse statement 86
BrowserInfo function 88
Brush clause 89
Buffer() function 92
ButtonPadInfo() function 93
CartesianArea() function 96
CartesianBuffer() function 97
CartesianConnectObjects() function 98
MapBasic 11.0 899 Reference

Index
CartesianDistance() function 99
CartesianObjectDistance() function 100
CartesianObjectLen() function 100
CartesianOffset() function 101
CartesianOffsetXY() function 102
CartesianPerimeter() function 103
Centroid() function 104
CentroidX() function 105
CentroidY() function 106
CharSet clause 107
ChooseProjection$() function 110
Chr$() function 111
Close All statement 112
Close Connection statement 112
Close Table statement 114
Close Window statement 115
ColumnInfo() function 116
Combine() function 118
CommandInfo() function 119
Commit Table statement 124
ConnectObjects() function 129
Continue statement 130
ControlPointInfo() function 141
ConvertToPline() function 145
ConvertToRegion() function 146
ConvexHull() function 146
CoordSys clause 147
CoordSysName$() function 151
CoordSysStringToEPSG() function 152
CoordSysStringToPRJ$() function 153
CoordSysStringToWKT() function 153
Cos() function 154
Create Adornment statement 155
Create Arc statement 159
Create ButtonPad statement 160
Create ButtonPads As Default statement 164–

165
Create Cartographic Legend statement 165
Create Collection statement 171
Create Cutter statement 172
Create Ellipse statement 173
Create Frame statement 174
Create Grid statement 176
Create Index statement 179
Create Legend statement 179
Create Line statement 181
Create Map statement 182
Create Map3D statement 183
Create Menu Bar statement 190
Create Menu statement 185
Create MultiPoint statement 192
Create Object statement 194
Create Pline statement 199

Create Point statement 201
Create PrismMap statement 202
Create Ranges statement 204
Create Rect statement 207
Create Redistricter statement 208
Create Region statement 209
Create Report From Table statement 211
Create RoundRect statement 212
Create Styles statement 213
Create Table statement 214
Create Text statement 221
CreateCircle() function 169
CreateLine() function 180
CreatePoint() function 200
CreateText() function 219
CurDate() function 222
CurDateTime function 223
CurrentBorderPen() function 223
CurrentBrush() function 224
CurrentFont() function 225
CurrentLinePen() function 226, 229
CurrentPen() function 226
CurrentSymbol() function 227
CurrTime function 228
Day() function 229
DeformatNumber$() function 247
Delete statement 248
Dim statement 257
Distance() function 261
Drop Index statement 266
Drop Map statement 266
Drop Table statement 267
EOT() function 271
EPSGToCoordSysString$() function 272
Erase() function 273
Err() function 274
Error statement 275
Error$() function 275
Exp() function 279
Export statement 279
ExtractNodes() function 282
Farthest statement 283
Fetch statement 286
File Using statement 296
FileAttr() function 288
FileExists() function 289
FileOpenDlg() function 289
FileSaveAsDlg() function 291
Find statement 292
Fix() function 297
Font clause 298
Format$() function 303
FormatDate$() function 305
MapBasic 11.0 900 Reference

Index
FormatNumber$() function 306
FormatTime$ function 307
FrontWindow() function 309
Geocode statement 312
GeocodeInfo() function 317
GetCurrentPath$() function 322
GetDate function 323
GetFolderPath$() function 323
GetGridCellValue() function 324
GetMetadata$() function 325
GetPreferencePath$() function 326
GetSeamlessSheet() function 327
GetTime function 328
Graph statement 330
GridTableInfo() function 331
GroupLayerInfo function 332
HomeDirectory$() function 334
HotLinkInfo function 334
Hour function 335
Import statement 337
Include statement 343
Insert statement 344
InStr() function 346
Int() function 347
IntersectNodes() function 348
IsGridCellNull() function 348
IsogramInfo() function 349
IsPenWidthPixels() function 352
Kill statement 352
LabelFindByID() function 353
LabelFindFirst() function 354
LabelFindNext() function 355
Labelinfo() function 356
LabelOverrideInfo() funtion 359
LayerControlInfo() function 363
LayerControlSelectionInfo() function 363
LayerInfo() function 364
LayerListInfo function 372
LayerStyleInfo() funtion 373
Layout statement 374
LCase$() function 375
Left$() function 376
LegendFrameInfo() function 377
LegendInfo() function 378
LegendStyleInfo() function 379
Len() function 380
LibraryServiceInfo() function 381
Like() function 382
LocateFile$() function 384
Log() function 386
LTrim$() function 387
MakeBrush() function 389
MakeCustomSymbol() function 390

MakeDateTime function 391
MakeFont() function 392
MakeFontSymbol() function 393
MakePen() function 394
MakeSymbol() function 395
Map statement 396
Map3DInfo() function 399
MapperInfo() function 402
Maximum() function 407
MBR() function 408
Menu Bar statement 409
Metadata statement 412
MGRSToPoint() function 415
Mid$() function 416
MidByte$() function 417
Minimum() function 417
Minute function 418
Month() function 419
Nearest statement 420
Note statement 423
NumAllWindows() function 423
NumberToDate() function 424
NumberToDateTime() function 425
NumCols() function 426
NumTables() function 427
NumWindows() function 427
ObjectDistance() function 431
ObjectGeography() function 431
ObjectInfo() function 433
ObjectLen() function 438
ObjectNodeHasM() function 439
ObjectNodeHasZ() function 440
ObjectNodeM() function 441
ObjectNodeX() function 443
ObjectNodeY() function 444
ObjectNodeZ() function 445
Objects Check statement 446
Objects Clean statement 447
Objects Combine statement 449
Objects Disaggregate statement 450
Objects Enclose statement 452
Objects Erase statement 453
Objects Intersect statement 455
Objects Move statement 457
Objects Offset statement 458
Objects Overlay statement 459
Objects Pline statement 460
Objects Snap statement 461
Objects Split statement 463
Offset() function 465
OffsetXY() function 466
Open Connection statement 469
Open Report statement 472
MapBasic 11.0 901 Reference

Index
Open Table statement 473
Open Window statement 475
Overlap() function 476
OverlayNodes() function 477
Pack Table statement 478
PathToDirectory$() function 479
PathToFileName$() function 480
PathToTableName$() function 480
Pen clause 481
PenWidthToPoints() function 484
Perimeter() function 485
PointsToPenWidth() function 486
PointToMGRS$() function 487
PointToUSNG$() function 488
Print statement 490
PrintWin statement 492
PrismMapInfo() function 493
ProgramDirectory$() function 496
ProgressBar statement 496
Proper$() function 499
ProportionOverlap() function 499
Randomize statement 501
RasterTableInfo() 502
reference description 38
Register Table statement 508
Relief Shade statement 515
Reload Symbols statement 516
RemoteQueryHandler() function 518
Remove Cartographic Frame statement 519
Remove Map statement 520
Rename File statement 521
Rename Table statement 522
RGB() function 524
Right$() function 525
Rnd() function 526
Rollback statement 527
Rotate() function 528
RotateAtPoint() function 529
Round() function 530
RTrim$() function 531
Run Application statement 531
Run Command statement 532
Run Menu Command statement 534
Run Program statement 536
Save File statement 538
Save MWS statement 538
Save Window statement 540
Save Workspace statement 542
SearchInfo() function 543
SearchPoint() function 546
SearchRect() function 547
Second function 548
Select statement 551

SelectionInfo() function 560
Selrver Begin Transaction statement 561
Serve Create Map statement 576
Server Bind Column statement 562
Server Close statement 563
Server Commit statement 566
Server Create Style statement 578
Server Create Table statement 579
Server Create Workspace statement 581
Server Disconnect statement 582
Server Fetch statement 586
Server Link Table statement 590
Server Refresh statement 594
Server Remove Workspace statement 595
Server Rollback statement 595
Server Set Map statement 596
Server Versioning statement 597
Server Workspace Merge statement 599
Server Workspace Refresh statement 601
Server_ColumnInfo() function 564
Server_Connect() function 567
Server_ConnectInfo() function 575
Server_DriverInfo() function 583
Server_EOT() function 584
Server_Execute() function 585
Server_GetODBCHConn() function 588
Server_GetODBCHStmt() function 589
Server_NumCols() function 592
Server_NumDrivers() function 593
SessionInfo() function 603
Set Adornment statement 604
Set Application Window statement 607
Set Area Units statement 608
Set Browse statement 609
Set Buffer Version statement 610
Set Cartographic Legend statement 611
Set Combine Version statement 612
Set Command Info statement 613
Set Connection Geocode statement 614
Set Connection Isogram statement 617
Set CoordSys statement 619
Set Date Window statement 620
Set Datum Version statement 621
Set Digitizer statement 622
Set Distance Units statement 624
Set Drag Threshold statement 625
Set Event Processing statement 625
Set File Timeout statement 626
Set Format statement 627
Set Graph statement 628
Set Handler statement 633
Set Layout statement 634
Set Legend statement 636
MapBasic 11.0 902 Reference

Index
Set LibraryServiceInfo statement 639
Set Map statement 641
Set Map3D statement 677
Set Next Document statement 679
Set Paper Units statement 680
Set Path statement 681
Set PrismMap statement 682
Set ProgressBars statement 684
Set Redistricter statement 684
Set Resolution statement 686
Set Shade statement 687
Set Style statement 688
Set Table Datum statement 689
Set Table statement 689
Set Target statement 692
Set Window statement 692
Sgn() function 703
Shade statement 704
Sin() function 716
Space() function 717
SphericalArea() function 718
SphericalConnectObjects() function 719
SphericalDistance() function 719
SphericalObjectDistance() function 720
SphericalObjectLen() function 721
SphericalOffset() function 722
SphericalOffsetXY() function 723
SphericalPerimeter() function 724
Sqr() function 725
StatusBar statement 726
Stop statement 727
Str$() function 728
String$() function 729
StringCompare() function 730
StringCompareIntl() function 731
StringToDate() function 731
StringToDateTime function 733
StringToTime function 733
StyleAttr() function 734
StyleOverrideInfo() function 736
Symbol clause 740
SystemInfo() function 744
TableInfo() function 746
TableListInfo() function 751
TableListSelectionInfo() function 753
Tan() function 753
TempFileName$() function 754
Terminate Application statement 755
TextSize() function 756
Time() function 756
Timer() function 757
TriggerControl() function 759
TrueFileName$() function 760

UBound() function 762
UCase$() function 763
UnDim statement 763
UnitAbbr$() function 764
UnitName$() function 765
Unlink statement 766
Update statement 766
Update Window statement 767
URL clause 768
USNGToPoint(string) 769
Val() function 770
Weekday() function 771
WFS Refresh Table statement 772
WindowID() function 776
WindowInfo() function 777
Year() function 786

MapInfo 3.0 symbols 740–744
MAPINFOW.ABB file 295
MapperInfo() function 402
math functions

absolute value 39
arc-cosine 39
arc-sine 82
arc-tangent 84
area of object 79
area of overlap 80
converting strings to numbers 770
cosine 154
distance 261
exponentiation 279
logarithms 386
maximum value 407
minimum value 417
rounding off a number 297, 347, 530
sign 703
sine 716
square root 725
tangent 753

Max() aggregate function 555–556
Maximum() function 407
MBR() function 408
memo fields 76, 124, 127
menu

commands, executing 534
Menu Bar statement 409
MenuitemInfoByHandler() function 409
MenuitemInfoByID() function 411
menus, customizing

adding hierarchical menus 66
adding menu items 62–67
altering menu items 68–70
creating checkable menu items 187
creating new menus 185–190
MapBasic 11.0 903 Reference

Index
disabling shortcut menus 190
querying menu item status 409–411
redefining the menu bar 67–68, 190–192
removing menu items 62–67
showing/hiding the menu bar 409

merging objects. See combining objects
messages

displaying in a Note dialog box 423
displaying on the status bar 726
opening the Message window 475
printing to the Message window 490

metadata
code example 414
keys 413–414
managing in tables 412–414
reading keys 325
statement 412

metric units
area 608
distance 624

MGRSToPoint() function 415
MICloseContent() procedure 794
MICloseFtpConnection() procedure 794
MICloseFtpFileFind() procedure 794
MICloseHttpConnection() procedure 795
MICloseHttpFile() procedure 795
MICloseSession() procedure 796
MICreateSession() function 796
MICreateSessionFull() function 797
Microsoft Access tables

connection string attributes 568
Mid$() function 416
MidByte$() function 417
MIErrorDlg() function 798
MIF files

exporting 279
importing 337–342

MIFindFtpFile() function 800
MIFindNextFtpFile() function 801
MIGetContent() function 801
MIGetContentBuffer() function 803
MIGetContentLen() function 803
MIGetContentString() function 804
MIGetContentToFile() function 804
MIGetContentType() function 805
MIGetCurrentFtpDirectory() function 806
MIGetErrorCode() function 806
MIGetErrorMessage() function 807
MIGetFileURL() function 807
MIGetFtpConnection() function 808
MIGetFtpFile() function 809
MIGetFtpFileFind() function 810
MIGetFtpFileName() procedure 811

MIGetHttpConnection() function 811
MIIsFtpDirectory() function 812
MIIsFtpDots() function 813
military grid reference format 403, 670
Min() aggregate function 555–556
minimizing MapInfo

Set Window statement 692
suppressing progress bars 684

minimum bounding rectangle
of an object 408
of entire table 748

Minimum() function 417
Minute function 418
MIOpenRequest() function 813
MIOpenRequestFull() function 814
MIParseURL() function 816
MIPutFtpFile() function 817
MIQueryInfo() function 818
MIQueryInfoStatusCode() function 819
MISaveContent() function 820
MISendRequest() function 820
MISendSimpleRequest() function 821
MISetCurrentFtpDirectory() function 822
MISetSessionTimeout() function 822
mixed case, converting to 499
MIXmlAttributeListDestroy() procedure 825
MIXmlDocumentCreate() function 825
MIXmlDocumentDestroy() procedure 826
MIXmlDocumentGetNamespaces() function 826
MIXmlDocumentGetRootNode() function 827
MIXmlDocumentLoad() function 827
MIXmlDocumentLoadXML() function 828
MIXmlDocumentLoadXMLString() function 829
MIXmlDocumentSetProperty() function 830
MIXmlGetAttributeList() function 831
MIXmlGetChildList() function 831
MIXmlGetNextAttribute() function 832
MIXmlGetNextNode() function 833
MIXmlNodeDestroy() procedure 833
MIXmlNodeGetAttributeValue() function 834
MIXmlNodeGetFirstChild() function 834
MIXmlNodeGetName() function 835
MIXmlNodeGetParent() function 836
MIXmlNodeGetText() function 836
MIXmlNodeGetValue() function 837
MIXmlNodeListDestroy() procedure 837
MIXmlSCDestroy() procedure 838
MIXmlSCGetLength() function 838
MIXmlSCGetNamespace() function 839
MIXmlSelectNodes() function 839
MIXmlSelectSingleNode() function 840
Mod operator 845
modal dialog boxes 250
MapBasic 11.0 904 Reference

Index
modifying an object. See specific object type
arc, ellipse, frame, line, point, polyline,

rectangle, region, rounded rectangle,
text 38

Month() function 418–419
most-recently-used list (File menu) 187
mouse actions 625
mouse cursor

customizing shape of 55
displaying coordinates of 643

moving
an object 457–458

MRU list (File menu) 187
MultiListBox controls 137
multipoint objects

combining 118
creating 192–194
inserting nodes 75–76

N
natural break

thematic ranges 205
Nearest statement 420
network file sharing 626
nodes

adding 74, 459, 477
displaying 648, 655, 658
extracting a range of nodes from an object 282
maximum number per object 200, 210
querying number of nodes 435
querying x/y coordinates 443–444
removing 74

Noselect keyword 555
note statement 423
null handling 587
NumAllWindows() function 423
number of characters in a string 380
NumberToDate() function 424–425
NumberToDateTime function 425
NumCols() function 426
numeric operators 845
NumTables() function 427
NumWindows() function 427

O
object variables 258
ObjectDistance() function 431
ObjectGeography() function 431
ObjectInfo() function 433
ObjectLen() function 438
ObjectNodeHasM() function 439
ObjectNodeHasZ() function 440

ObjectNodeM() function 441
ObjectNodeX() function 443
ObjectNodeY() function 444
ObjectNodeZ() function 445
objects

moving within input table 457–458
Objects Check statement 446
Objects Clean statement 447
Objects Combine statement 449
Objects Disaggregate statement 450
Objects Enclose statement 452
Objects Erase statement 453
Objects Intersect statement 455
Objects Move statement 457
Objects Offset statement 458
Objects Overlay statement 459
Objects Pline statement 460
Objects Snap statement 461
Objects Split statement 463
objects, copying

offset by distance 465–466
to offset location 458–459

objects, creating
arcs 159
by buffering 92, 194–199
by combining objects 118
by intersecting objects 476
circles 169–171, 173
convex hull 195
ellipses 169–171, 173
frames 174–176
lines 180–181
map labels 85
multipoint 192–194
points 200–201
polylines 199
rectangles 207
regions 209–211
rounded rectangles 212
text 219–221
voronoi polygons 196

objects, modifying
adding nodes 74, 459
combining 118, 449–450
converting to polylines 145
converting to regions 146
erasing entire object 248
erasing part of an object 273, 453–456
moving nodes 70–76
removing nodes 74
resolution of converted objects 686
rotating 528
rotating around specified point 529
MapBasic 11.0 905 Reference

Index
setting the target object 692
snap setting 461–463
splitting 463–465

objects, querying
area 79
boundary gaps 446
boundary overlap 446
centroid 104–106
content of a text object 435
coordinates 431, 443–444
HotLink support 123
length 438
minimum bounding rectangle 408
number of nodes 435
number of polygons in a region 435
number of sections in a polyline 435
overlap, area of 80
overlap, proportion of 499
perimeter 485
points of intersection 348
styles 433–438
type of object 434–438

ODBC connection 129
ODBC tables

changing object styles in mappable tables 596
Offset() function 465–466
OffsetXY() function 466
OKButton clause 132
OLE Automation

handling button event 163
handling menu event 189

OnError statement 467
Open Connection statement 469
Open File statement 470
Open Report statement 472
Open Table statement 473
Open Window statement 475
opening windows

Browse statement 86–87
Create Redistricter statement 208
Graph statement 323, 330
Layout statement 374
Map statement 396
Open Window statement 475

OpenStreetMap tile server 219
operating environment, determining 744–746
operators

automatic type conversions 847
summary of 844

optimizing performance
animation layers 50
screen updates 625
table editing 689–691

Oracle
databases, connection string attributes 568–570

Oracle8i databases
connection string attributes 570

Order By clause
sorting rows 558

ordering layers 667–668
Overlap() function 476
overlaps

checking in regions 446–447
cleaning 447
snapping nodes 461–463

OverlayNodes() function 477

P
Pack Table statement 478
page layout, opening 374
paper units of measure 680
papersize attribute 781
parallel labels 652, 662, 664
parent windows

reparenting dialog boxes 607
reparenting document windows 679–680

partialsegments option 653, 662, 664
PathToDirectory$() function 479
PathToFileName$() function 480
PathToTableName$() function 480
pattern matching 382
peek requests 518
Pen clause 481
pen styles

creating 394
modifying an object’s style 71–72
Pen clause defined 481
querying an object’s style 433–438
querying parts of 733–736
reading current border style 223
reading current line style 226
reading current style 226
setting current style 688–689

pen variables 258
PenPicker controls 140
PenWidthToPoints() function 484
percent complete dialog box 496–498
performance, improving

animation layers 50
screen updates 625
table editing 689–691

Perimeter() function 485
per-object styles 578
PICT files

creating 540–542
MapBasic 11.0 906 Reference

Index
importing 337–342
pie charts

in graph windows 323, 330–331
in thematic maps 712–714

platform, determining 744–746
PNG files

creating 540–542
point objects

creating 200–201
modifying 70–74
querying the symbol style 433–438
storing in a new row 344–346
storing in an existing row 766

point styles. See symbol styles
PointsToPenWidth() function 486
PointToMGRS$() function 487
PointToUSNG$() function 488
polygon draw mode 56
polyline objects

adding/removing nodes 74
Cartesian length of 100
converting objects to polylines 145
creating 199
creating cutter objects 172
determining length of 438
extracting a range of nodes from 282
modifying the pen style 71–72
querying the pen style 433–438
storing in a new row 344–346
storing in an existing row 766

PopupMenu controls 142
positioning the row cursor 286–288
precedence of operators 847
Preferences dialog box(es) 535
preventing user from closing windows 699
Print # statement 491
Print statement 490
printer settings 692–702

overriding default printer 701
printing

attributes 781
PrintWin statement 492
prism maps

creating 202–204
properties 493–495
setting 682–683

PrismMapInfo() function 493
procedures, creating

Call statement 94–96
Declare Sub statement 244
Exit Sub statement 278
Sub...End Sub statement 739

procedures, special

EndHandler 270
ForegroundTaskSwitchHandler 302
Main 388–389
RemoteMapGenHandler 516
RemoteMsgHandler 517
SelChangedHandler 549
ToolHandler 757–759
WinChangedHandler 774
WinClosedHandler 775
WinFocusChangedHandler 784

ProgramDirectory$() function 496
progress bars, hiding 684
ProgressBar statement 496
projections

changing a table’s projection 124–129
copying from a table or window 147–151
querying a table’s CoordSys 747
querying a window’s CoordSys 404
setting the current MapBasic CoordSys 619
setting within an application 110

Proper$() function 499
proportionate aggregates

Proportion Avg() 44–48
Proportion Sum() 44–48
Proportion WtAvg() 44–48

ProportionOverlap() function 499
PSD files

creating 540–542
Put statement 500

Q
quantiled ranges 205

R
RadioGroup controls 143
random file i/o

closing files 113
opening files 471
reading data 320–321
writing data 500

random numbers
Randomize statement 501
Rnd() function 526

Randomize statement 501
ranged thematic maps 204–708
RasterTableInfo() function 502
ReadControlValue() function 504
realtime applications 50–51
rectangle objects

Cartesian area of 96
Cartesian perimeter of 103
creating 207, 212
MapBasic 11.0 907 Reference

Index
determining area of 79
determining perimeter of 485
modifying 70–74
querying the pen or brush style 433–438
storing in a new row 344–346
storing in an existing row 766

ReDim statement 507
Redistricting windows

closing 115
modifying 684, 692–702
opening 208

region objects
adding/removing nodes 74
Cartesian area of 96
Cartesian perimeter of 103
checking for data errors 446
converting objects to regions 146
creating 209–211
creating convex hull objects 146
determining area of 79
determining perimeter of 485
extracting a range of nodes from 282
modifying the pen or brush style 71–72
querying the pen or brush style 433–438
returning a buffer region 97
setting a centroid 74
storing in a new row 344–346
storing in an existing row 766

regional settings 627–628
Register Table statement 508
relational joins 553–555
Relief Shade statement 515
Reload Symbols statement 516
remote databases

creating new tables 579–581
refreshing linked tables 594
retrieving active database connection info 575
shutting down server connection 582

RemoteMapGenHandler procedure 516
RemoteMsgHandler procedure 517
RemoteQueryHandler function 518
Remove Cartographic Frame statement 519
Remove Map statement 520
removing

buttons 52–57
menu items 62–67
nodes 74

Rename File statement 521
Rename Table statement 522
reports

creating 211
loading 472

Reproject statement 523

reserved words 259
resizing

arrays 507–508
Resume statement 523
retrieving

column information
Server_ColumnInfo() 564

data source information
Server_DriverInfo() 583

number of columns in a results set
Server_NumCols() 592

number of toolkits
Server_NumDrivers() 593

records from an open table
Fetch statement 286

rows from a results set
Server Fetch 586–588

retrying on file access 626
returning

a connection number
Server_Connect 567–574

a coordinate system
ChooseProjection$() function 110

a date
FormatDate$() function 305

a pen width for a point size
PointsToPenWidth() function 486

a point size for a pen width
PenWidthToPoints() function 484

ODBC connection handle
Server_GetodbcHConn() function 588

ODBC statement handle
Server_GetodbcHStmt() function 589

pen width units
IsPenWidthPixels() function 352

RGB() function 524
Right$() function 525
Rnd() function 526
Rollback statement 527
Rotate() function 528
RotateAtPoint() function 529
rotated

map labels 652, 662, 664
symbols 393, 742

Round() function 530
rounded rectangle objects

Cartesian area of 96
Cartesian perimeter of 103
creating 212
modifying 70–74
querying the pen or brush style 433–438
storing in a new row 344–346
storing in an existing row 766
MapBasic 11.0 908 Reference

Index
rounding off a number
Fix() function 297
Format$() function 303
Int() function 347
Round() function 530

RowID
after Find operations 122
with SelChangedHandler 121

rows in a Browser, positioning 609
rows in a table

deleting rows 248
end-of-table condition 271
inserting new rows 344–346
packing (purging deleted rows) 478
positioning the row cursor 286–288
selecting rows that satisfy criteria 553–555
updating existing rows 766

RPC (Remote Procedure Calls) 244–245
RTrim$() function 531
Ruler tool

closing Ruler window 115
modifying Ruler window 692–702
opening Ruler window 475

Run Application statement 531
Run Command statement 532
Run Menu Command statement 534
Run Program statement 536
runtime errors, trapping. See error handling

S
Save File statement 538
Save MWS statement 538
Save Window statement 540
Save Workspace statement 542
saving

changes to a table 124–129
linked tables 127
work to the database, Server Commit 566

scale of a map
determining 403
displaying 645

scope of variables
global 328
local 257–261

scroll bars
showing/hiding 700

scrolling
automatically 700

seamless tables
determine if table is seamless 749
prompt user to choose a sheet 326–328
turn seamless behavior on/off 691

SearchInfo() function 543
searching for map objects

at a point 546
processing search results 543–546
within a rectangle 547

SearchPoint() function 546
SearchRect() function 547–548
Second function 548
seconds, elapsed 757
Seek statement 549
Seek() function 548
SelChangedHandler procedure 549
Select statement 551
selectable map layers 648
selection

handling selection-changed event 121, 549
interrupted by Esc key 550
querying current selection 560
Select statement 551

SelectionInfo() function 560
self-intersections

checking in regions 446–447
sequential file i/o

closing files 113
opening files 471
reading data 343, 383
writing data 491, 785

Server Begin Transaction statement 561
Server Bind Column statement 562
Server Close statement 563
Server Commit statement 566
Server Create Map statement 576
Server Create Style statement 578
Server Create Table statement 579
Server Create Workspace statement 581
Server Disconnect statement 582
Server DriverInfo() function 583
Server Fetch statement 586
Server Link Table statement 590
Server Refresh statement 594
Server Remove Workspace statement 595
Server Rollback statement 595
Server Set Map statement 596
Server Versioning statement 597
Server Workspace Merge statement 599
Server Workspace Refresh statement 601
Server_ColumnInfo() function 564
Server_Connect() function 567
Server_ConnectInfo() function 575
Server_EOT() function 584
Server_Execute function 585
Server_GetODBCHConn() function 588
Server_GetODBCHStmt() function 589
MapBasic 11.0 909 Reference

Index
Server_NumCols() function 592
Server_NumDrivers() function 593
server_string, defined 585
SessionInfo() function 603
Set Adornment statement 604
Set Application Window statement 607
Set Area Units statement 608
Set Browse statement 609
Set Cartographic Legend statement 611
Set Command Info statement 613
Set Connection GeoCode statement 614
Set Connection Isogram statement 617
Set CoordSys statement 619
Set Date Window statement 620
Set Datum Transform Version statement 621
Set Digitizer statement 622
Set Distance Units statement 624
Set Drag Threshold statement 625
Set Event Processing statement 625
Set File Timeout statement 626
Set Format statement 627
Set Graph statement 628
Set Handler statement 633
Set Layout statement 634
Set Legend statement 636
Set LibraryServiceInfo statement 639
Set Map statement 641
Set Map3D statement 677
Set Next Document statement 679
Set Paper Units statement 680
Set Path statement 681
Set PrismMap statement 682
Set ProgressBars statement 684
Set Redistricter statement 684
Set Resolution statement 686
Set Shade statement 687
Set Style statement 688
Set Table Datum statement 689
Set Table statement 689
Set Target statement 692
Set Window statement 692
Sgn() function 703
shade statement 704
shadow text 298–300
shapefiles 513
Shift key

detecting shift-click 122
effect on drawing tools 55–56
selecting multiple list items 137–139

shortcut menus
disabling 190
example 67

Show/Hide menu commands 188

showing
ButtonPads 52–57
dialog box controls 58
menu bar 409

shutting down the connection
Server Disconnect 582

simulating a menu selection 534
Sin() function 716
small integer variables 257
smart redraw 645
snap tolerance

controlling 701–702
snapping nodes 461–463
sorting rows in a table 558
sounds, beeping 86
Space$() function 717
spaces

trimming from a string 387
spaces, trimming from a string 531
speed, improving

animation layers 50
screen updates 625
table editing 689–691

SphericalArea() function 718
SphericalConnectObjects() function 719
SphericalDistance() function 719
SphericalObjectDistance() function 720
SphericalObjectLen() function 721
SphericalOffset() function 722
SphericalOffsetXY() function 723
SphericalPerimeter() function 724
splitting objects 463–465
spreadsheets

using as tables 508–515
SQL Select command 551–559
SQL Server

databases connection string attributes 570–573
Sqr() function 725
starting other applications

Run Application statement 531
Run Program statement 536

StaticText controls 144
statistical calculations

average 44, 555–556
count 44, 555–556
min/max 44, 555–556
quantile 205
standard deviation 205
sum 44, 555–556
weighted average 44, 556–557

Statistics window
closing 115
modifying 692–702
MapBasic 11.0 910 Reference

Index
opening 475
Status Bar help 54
Status bar help 161
StatusBar statement 726
Stop statement 727
Str$() function 728
street address, finding 292–295
string concatenation

& operator 845
+ operator 845

string functions
capitalization 375, 499, 763
comparison 730–731
converting codes to strings 111
converting strings to codes 81
converting strings to dates 627–628, 731–732
converting strings to numbers 627–628, 770
converting values to strings 728
extracting part of a string 376, 416–417, 525
finding a substring within a string 346
formatting a number 247, 303–306, 627–628
formatting based on locale 627–628
length of string 380
locale settings 627–628
pattern matching 382
repeated strings 729
spaces 717
trimming spaces from end 531
trimming spaces from start 387

string variables 257
String$() function 729
StringCompare() function 730
StringCompareIntl() function 731
StringToDate() function 731
StringToDateTime function 733
StringToTime function 733
structures 761
style override

add for layer labels 659–662
enable/disable for layer 658–659
enable/disable layer labels 665–666
layers 654–657
modify for layers 657–658
modify layer labels 662–665
remove from layer 658–659
remove layer labels 665–666

StyleAttr() function 734
StyleOverrideInfo() function 736
sub procedures. See procedures
Sub...End Sub statement 739
subtotals, calculating 555–556
Sum() aggregate function 555–556
symbol

variables 258
Symbol clause 740
symbol styles

creating 390, 393, 395
modifying an object’s style 71–72
querying an object’s style 433–438
querying parts of 733–736
reading current style 227
reloading symbol sets 516
setting current style 688–689
Symbol clause defined 740

SYMBOL.MBX utility
custom symbols 516

SymbolPicker controls 140
SystemInfo() function 744

T
TAB files, storing metadata in 412–414
tab order 252
table names

determining _ in Browse or Graph window 780
determining from file 480
determining table name from number 746–751
special names for Cosmetic layers 780
special names for Layout windows 780

table structure
3DMap 183–185
adding/removing columns 76–78
determining how many columns 426, 746–751
making a table mappable 182
making an ODBC table mappable 576–578

TableInfo() function 746
TableListInfo() function 751
TableListSelectionInfo() function 753
tables, closing

Close All statement 112
Close Table statement 114

tables, copying 124–129
tables, creating

creating a new table 214
importing a file 337–342
on remote databases 579–581
using a spreadsheet or database 508–515

tables, deleting 267
tables, importing 337–342
tables, modifying

adding columns 42–48, 76–78
adding metadata 412–414
adding rows 344–346
creating an index 179
deleting a table’s objects 266
deleting an index 266
MapBasic 11.0 911 Reference

Index
deleting columns 76–78
deleting rows or objects 248
discarding changes 527
optimizing edit operations 689–691
packing 478
renaming 522
saving changes 124–129
setting a map’s default view 649
setting a map’s projection 124–129
setting to read-only 689–691
sorting rows 558
updating existing rows 766

tables, opening 473–475
tables, querying

column information 116–118
directory path 749
end-of-table condition 271
finding a map address 292–295
joining 553–555
metadata 325, 412–414
number of open tables 427
objects at a point 546
objects in a rectangle 547–548
positioning the row cursor 271, 286–288
SQL Select 551–559
table information 746–751

Tan() function 753
TempFileName$() function 754
temporary columns 42
Terminate Application statement 755
text files

See also file input/output, files 38
using as tables 508–515

text objects
creating 219–221
modifying 70–74
querying the font style or string 435
storing in a new row 344–346
storing in an existing row 766

text styles
See font styles

TextSize() function 756
thematic maps

bar chart maps 714–716
counting themes in a 3D map window 399–402
counting themes in a map window 402–407
creating arrays of ranges 204–206
creating arrays of styles 213–214
dot density maps 710–711
grid surface maps 176–179
modifying 687
pie chart maps 712–714
quantiled ranges 205

ranged maps 704–708
thinning objects 461–463
thousands separators 247, 306, 627–628
TIFF files

creating 540–542
time delay when user drags mouse 625
Time() function 756
Timer() function 757
ToolHandler procedure 757
tooltip help 54, 161
totals, calculating 555–556
transparent fill patterns 90
trapping errors. See error handling
TriggerControl() function 759
trigonometric functions

arc-cosine 39
arc-sine 82
arc-tangent 84
cosine 151, 154
sine 716
tangent 753

trimming spaces
from end of string 531
from start of string 387

TrueFileName$() function 760
TrueType fonts, using as symbols 393
TrueType symbols 740–744
Type statement 761

U
UBound() function 762
UCase$() function 763
unchecking

dialog box check boxes (custom) 58
dialog box check boxes (standard) 60–62
menu items 68–70

underlined text 298–300
UnDim statement 763
undo system, disabling 689–691
UnitAbbr$() function 764
UnitName$() function 765
units of measure

abbreviated names 764
area 608
distance 624
full names 765
paper 680

Unlink statement 766
unselecting 115
Update statement 766
Update Window statement 767
upper case, converting to 763
MapBasic 11.0 912 Reference

Index
URL 639, 768
USNGToPoint(string) 769

V
Val() function 770
variable length strings 257
variables

arrays 258, 507–508, 762
custom types 761
global variables 328
initializing 261
list of types 257–258
local variables 257–261
reading another application’s variables 328
restrictions on names 259
strings variables 259
undefining 763

version number
.MBX version 744
MapInfo version 745

voronoi polygons
Create Object statement 196

W
Weekday() function 771
weighted averages 556–557

Add Column statement 44
WFS Refresh Table statement 772
While...Wend statement 772
wildcard

matching 382
WinChangedHandler procedure 774
WinClosedHandler procedure 775
WindowID() function 776
WindowInfo() function 777
windows operating system, 16- v. 32-bit 745
windows, closing

Close Window statement 115
preventing user from closing windows 699

windows, modifying
adding map layers 48–51
browser windows 609
forcing windows to redraw 767
general window settings 692–702
graph windows 628–633
layout windows 634–636
legend window 636–639
map windows 641–671
redistrict windows 684–686
removing map layers 520

windows, opening
Browse statement 86–87

Create Redistricter statement 208
Graph statement 330
Layout statement 374
Map statement 396
Open Window statement 475

windows, printing
to a file 540–542
to an output device 492

windows, querying
3D map window settings 399–402
general window settings 777–784
ID of a window 776
ID of front window 309
map window settings 364–371, 402–407
number of document windows 427
total number of windows 423

WinFocusChangedHandler procedure 784
WKS files, opening 508–515
WMF files, creating 540–542
workspaces

loading 531
workspaces, saving

Save Workspace statement 542
Write # statement 785
WtAvg() aggregate function 556–557

X
XCMDs 245
XFCNs 240–241
XLS files, opening 508–515
XML Library

MIXmlAttributeListDestroy() procedure 825
MIXmlDocumentCreate() function 825
MIXmlDocumentDestroy() procedure 826
MIXmlDocumentGetNamespaces() function

826
MIXmlDocumentGetRootNode() function 827
MIXmlDocumentLoad() function 827
MIXmlDocumentLoadXML() function 828
MIXmlDocumentLoadXMLString() function 829
MIXmlDocumentSetProperty() function 830
MIXmlGetAttributeList() function 831
MIXmlGetChildList() function 831
MIXmlGetNextAttribute() function 832
MIXmlGetNextNode() function 833
MIXmlNodeDestroy() procedure 833
MIXmlNodeGetAttributeValue() function 834
MIXmlNodeGetFirstChild() function 834
MIXmlNodeGetName() function 835
MIXmlNodeGetParent() function 836
MIXmlNodeGetText() function 836
MIXmlNodeGetValue() function 837
MapBasic 11.0 913 Reference

Index
MIXmlNodeListDestroy() procedure 837
MIXmlSCDestroy() procedure 838
MIXmlSCGetLength() function 838
MIXmlSCGetNamespace() function 839
MIXmlSelectNodes() function 839
MIXmlSelectSingleNode() function 840

Y
Year() function 786
MapBasic 11.0 914 Reference

	Introduction to MapBasic
	Type Conventions
	Language Overview
	MapBasic Fundamentals
	Variables
	Looping and Branching
	Output and Printing
	Procedures (Main and Subs)
	Error Handling

	Functions
	Custom Functions
	Data-Conversion Functions
	Date and Time Functions
	Math Functions
	String Functions

	Working With Tables
	Creating and Modifying Tables
	Querying Tables
	Working With Remote Data

	Working With Files (Other Than Tables)
	File Input/Output
	File and Directory Names

	Working With Maps and Graphical Objects
	Creating Map Objects
	Modifying Map Objects
	Querying Map Objects
	Working With Object Styles
	Working With Map Windows

	Creating the User Interface
	ButtonPads (ToolBars)
	Dialog Boxes
	Menus
	Windows
	System Event Handlers

	Communicating With Other Applications
	DDE (Dynamic Data Exchange; Windows Only)
	Integrated Mapping

	Special Statements and Functions

	New and Enhanced MapBasic Statements and Functions
	New MapBasic Functions and Statements
	Enhancements to MapBasic Functions and Statements
	Additions to Existing Functions and Statements

	A - Z MapBasic Language Reference
	Abs() function
	Acos() function
	Add Cartographic Frame statement
	Add Column statement
	Filling the New Column with Explicit Values
	Filling the New Column with Values from Another Table
	Filling an Existing Column with Values from Another Table
	Filling the New Column with Aggregate Data
	Using Proportion… Functions with Non-Region Objects
	Dynamic Columns

	Add Map statement
	Alter Button statement
	Alter ButtonPad statement
	Alter Cartographic Frame statement
	Alter Control statement
	Alter MapInfoDialog statement
	Alter Menu statement
	Alter Menu Bar statement
	Alter Menu Item statement
	Alter Object statement
	Alter Table statement
	ApplicationDirectory$() function
	ApplicationName$() function
	Area() function
	AreaOverlap() function
	Asc() function
	Asin() function
	Ask() function
	Atn() function
	AutoLabel statement
	Beep statement
	Browse statement
	BrowserInfo function
	Brush clause
	Buffer() function
	ButtonPadInfo() function
	Call statement
	CartesianArea() function
	CartesianBuffer() function
	CartesianConnectObjects() function
	CartesianDistance() function
	CartesianObjectDistance() function
	CartesianObjectLen() function
	CartesianOffset() function
	CartesianOffsetXY() function
	CartesianPerimeter() function
	Centroid() function
	CentroidX() function
	CentroidY() function
	CharSet clause
	ChooseProjection$() function
	Chr$() function
	Close All statement
	Close Connection statement
	Close File statement
	Close Table statement
	Close Window statement
	ColumnInfo() function
	Combine() function
	CommandInfo() function
	Commit Table statement
	ConnectObjects() function
	Continue statement
	Control Button / OKButton / CancelButton clause
	Control CheckBox clause
	Control DocumentWindow clause
	Control EditText clause
	Control GroupBox clause
	Control ListBox / MultiListBox clause
	Control PenPicker/BrushPicker/SymbolPicker/FontPicker clause
	ControlPointInfo() function
	Control PopupMenu clause
	Control RadioGroup clause
	Control StaticText clause
	ConvertToPline() function
	ConvertToRegion() function
	ConvexHull() function
	CoordSys clause
	CoordSys Earth and NonEarth Projection
	CoordSys Layout Units
	CoordSys Table
	CoordSys Window

	CoordSysName$() function
	CoordSysStringToEPSG() function
	CoordSysStringToPRJ$() function
	CoordSysStringToWKT$() function
	Cos() function
	Create Adornment statement
	Create Arc statement
	Create ButtonPad statement
	Create ButtonPad As Default statement
	Create ButtonPads As Default statement
	Create Cartographic Legend statement
	CreateCircle() function
	Create Collection statement
	Create Cutter statement
	Create Ellipse statement
	Create Frame statement
	Create Grid statement
	Create Index statement
	Create Legend statement
	CreateLine() function
	Create Line statement
	Create Map statement
	Create Map3D statement
	Create Menu statement
	Create Menu Bar statement
	Create MultiPoint statement
	Create Object statement
	Create Object As Buffer
	Create Object As Isogram

	Create Pline statement
	CreatePoint() function
	Create Point statement
	Create PrismMap statement
	Create Ranges statement
	Create Rect statement
	Create Redistricter statement
	Create Region statement
	Create Report From Table statement
	Create RoundRect statement
	Create Styles statement
	Create Table statement
	CreateText() function
	Create Text statement
	CurDate() function
	CurDateTime() function
	CurrentBorderPen() function
	CurrentBrush() function
	CurrentFont() function
	CurrentLinePen() function
	CurrentPen() function
	CurrentSymbol() function
	CurTime() function
	DateWindow() function
	Day() function
	DDEExecute statement
	DDEInitiate() function
	DDEPoke statement
	DDERequest$() function
	DDETerminate statement
	DDETerminateAll statement
	Declare Function statement
	Declare Method statement
	Declare Sub statement
	Define statement
	DeformatNumber$() function
	Delete statement
	Dialog statement
	Dialog Preserve statement
	Dialog Remove statement
	Dim statement
	Distance() function
	Do Case…End Case statement
	Do…Loop statement
	Drop Index statement
	Drop Map statement
	Drop Table statement
	End MapInfo statement
	End Program statement
	EndHandler procedure
	EOF() function
	EOT() function
	EPSGToCoordSysString$() function
	Erase() function
	Err() function
	Error statement
	Error$() function
	Exit Do statement
	Exit For statement
	Exit Function statement
	Exit Sub statement
	Exp() function
	Export statement
	ExtractNodes() function
	Farthest statement
	Fetch statement
	FileAttr() function
	FileExists() function
	FileOpenDlg() function
	FileSaveAsDlg() function
	Find statement
	Find Using statement
	Fix() function
	Font clause
	For…Next statement
	ForegroundTaskSwitchHandler procedure
	Format$() function
	FormatDate$() function
	FormatNumber$() function
	FormatTime$ function
	FME Refresh Table statement
	FrontWindow() function
	Function…End Function statement
	Geocode statement
	GeocodeInfo() function
	Get statement
	GetCurrentPath() function
	GetDate() function
	GetFolderPath$() function
	GetGridCellValue() function
	GetMetadata$() function
	GetPreferencePath$() function
	GetSeamlessSheet() function
	GetTime() function
	Global statement
	Goto statement
	Graph statement
	GridTableInfo() function
	GroupLayerInfo function
	HomeDirectory$() function
	HotlinkInfo function
	Hour function
	If…Then statement
	Import statement
	Importing MIF/MID, PICT, or MapInfo for DOS Files
	Importing DXF Files
	Importing GML Files
	Importing GML 2.1 Files

	Include statement
	Input # statement
	Insert statement
	InStr() function
	Int() function
	IntersectNodes() function
	IsGridCellNull() function
	IsogramInfo() function
	IsPenWidthPixels() function
	Kill statement
	LabelFindByID() function
	LabelFindFirst() function
	LabelFindNext() function
	LabelInfo() function
	LabelOverrideInfo() function
	LayerControlInfo() function
	LayerControlSelectionInfo() function
	LayerInfo() function
	LayerListInfo function
	LayerStyleInfo() function
	Layout statement
	LCase$() function
	Left$() function
	LegendFrameInfo() function
	LegendInfo() function
	LegendStyleInfo() function
	Len() function
	LibraryServiceInfo() function
	Like() function
	Line Input statement
	LocateFile$() function
	LOF() function
	Log() function
	LTrim$() function
	Main procedure
	MakeBrush() function
	MakeCustomSymbol() function
	MakeDateTime function
	MakeFont() function
	MakeFontSymbol() function
	MakePen() function
	MakeSymbol() function
	Map statement
	Map3DInfo() function
	MapperInfo() function
	Maximum() function
	MBR() function
	Menu Bar statement
	MenuItemInfoByHandler() function
	MenuItemInfoByID() function
	Metadata statement
	MGRSToPoint() function
	Mid$() function
	MidByte$() function
	Minimum() function
	Minute function
	Month() function
	Nearest statement
	Note statement
	NumAllWindows() function
	NumberToDate() function
	NumberToDateTime function
	NumberToTime function
	NumCols() function
	NumTables() function
	NumWindows() function
	ObjectDistance() function
	ObjectGeography() function
	ObjectInfo() function
	ObjectLen() function
	ObjectNodeHasM() function
	ObjectNodeHasZ() function
	ObjectNodeM() function
	ObjectNodeX() function
	ObjectNodeY() function
	ObjectNodeZ() function
	Objects Check statement
	Objects Clean statement
	Objects Combine statement
	Objects Disaggregate statement
	Objects Enclose statement
	Objects Erase statement
	Objects Intersect statement
	Objects Move statement
	Objects Offset statement
	Objects Overlay statement
	Objects Pline statement
	Objects Snap statement
	Objects Split statement
	Offset() function
	OffsetXY() function
	OnError statement
	Open Connection statement
	Open File statement
	Open Report statement
	Open Table statement
	Open Window statement
	Overlap() function
	OverlayNodes() function
	Pack Table statement
	PathToDirectory$() function
	PathToFileName$() function
	PathToTableName$() function
	Pen clause
	PenWidthToPoints() function
	Perimeter() function
	PointsToPenWidth() function
	PointToMGRS$() function
	PointToUSNG$(obj, datumid)
	Print statement
	Print # statement
	PrintWin statement
	PrismMapInfo() function
	ProgramDirectory$() function
	ProgressBar statement
	Proper$() function
	ProportionOverlap() function
	Put statement
	Randomize statement
	RasterTableInfo() function
	RegionInfo() function
	ReadControlValue() function
	ReDim statement
	Register Table statement
	Supporting Transaction Capabilities for WFS Layers

	Relief Shade statement
	Reload Symbols statement
	RemoteMapGenHandler procedure
	RemoteMsgHandler procedure
	RemoteQueryHandler() function
	Remove Cartographic Frame statement
	Remove Map statement
	Rename File statement
	Rename Table statement
	Reproject statement
	Resume statement
	RGB() function
	Right$() function
	Rnd() function
	Rollback statement
	Rotate() function
	RotateAtPoint() function
	Round() function
	RTrim$() function
	Run Application statement
	Run Command statement
	Run Menu Command statement
	Run Program statement
	Save File statement
	Save MWS statement
	Save Window statement
	Save Workspace statement
	SearchInfo() function
	SearchPoint() function
	SearchRect() function
	Second function
	Seek() function
	Seek statement
	SelChangedHandler procedure
	Select statement
	SelectionInfo() function
	Server Begin Transaction statement
	Server Bind Column statement
	Server Close statement
	Server_ColumnInfo() function
	Server Commit statement
	Server_Connect() function
	Server_ConnectInfo() function
	Server Create Map statement
	Server Create Style statement
	Server Create Table statement
	Server Create Workspace statement
	Server Disconnect statement
	Server_DriverInfo() function
	Server_EOT() function
	Server_Execute() function
	Server Fetch statement
	Server_GetODBCHConn() function
	Server_GetODBCHStmt() function
	Server Link Table statement
	Server_NumCols() function
	Server_NumDrivers() function
	Server Refresh statement
	Server Remove Workspace statement
	Server Rollback statement
	Server Set Map statement
	Server Versioning statement
	Server Workspace Merge statement
	Server Workspace Refresh statement
	SessionInfo() function
	Set Adornment statement
	Set Application Window statement
	Set Area Units statement
	Set Browse statement
	Set Buffer Version statement
	Set Cartographic Legend statement
	Set Combine Version statement
	Set Command Info statement
	Set Connection Geocode statement
	Set Connection Isogram statement
	Set CoordSys statement
	Set Date Window statement
	Set Datum Transform Version statement
	Set Digitizer statement
	Set Distance Units statement
	Set Drag Threshold statement
	Set Event Processing statement
	Set File Timeout statement
	Set Format statement
	Set Graph statement
	Set Handler statement
	Set Layout statement
	Set Legend statement
	Set LibraryServiceInfo statement
	Set Map statement
	Changing the Behavior of the Entire Map
	Changing the Current View of the Map
	Managing Individual Layer Properties and Appearance
	Settings That Have a Permanent Effect on a Map Layer
	Managing Individual Label Properties
	Adding Style Overrides to a Layer
	Modifying Style Overrides for a Layer
	Enabling, Disabling, or Removing Overrides for a Layer
	Adding Overrides for Layer Labels
	Modifying Layer Label Overrides
	Enabling, Disabling, or Removing Overrides for Layer Labels
	Managing Group Layers
	Ordering Layers
	Managing the Coordinate System of the Map
	Managing Image Properties
	Managing Hotlinks
	Adding New HotLink Definitions
	Modifying Existing HotLink Definitions
	Removing HotLink Definitions
	Reordering HotLink Definitions

	Set Map3D statement
	Set Next Document statement
	Set Paper Units statement
	Set Path statement
	Set PrismMap statement
	Set ProgressBars statement
	Set Redistricter statement
	Set Resolution statement
	Set Shade statement
	Set Style statement
	Set Table Datum statement
	Set Table statement
	Set Target statement
	Set Window statement
	Help Window Syntax
	Map or Layout Window Syntax
	Floating Window (Legend, Ruler, etc.) Syntax
	Controlling the Printer
	Controlling Snap Tolerance
	Saving a .WOR that Can Be Opened in Localized/Unlocalized Versions

	Sgn() function
	Shade statement
	Shading by Ranges of Values
	Shading by Individual Values
	Dot Density
	Graduated Symbols
	Pie Charts
	Bar Charts

	Sin() function
	Space$() function
	SphericalArea() function
	SphericalConnectObjects() function
	SphericalDistance() function
	SphericalObjectDistance() function
	SphericalObjectLen() function
	SphericalOffset() function
	SphericalOffsetXY() function
	SphericalPerimeter() function
	Sqr() function
	StatusBar statement
	Stop statement
	Str$() function
	String$() function
	StringCompare() function
	StringCompareIntl() function
	StringToDate() function
	StringToDateTime function
	StringToTime function
	StyleAttr() function
	StyleOverrideInfo() function
	Sub…End Sub statement
	Symbol clause
	MapInfo 3.0 Symbols
	True Type Font
	Custom Bitmap File
	Symbol Expression

	SystemInfo() function
	TableInfo() function
	TableListInfo() function
	TableListSelectionInfo() function
	Tan() function
	TempFileName$() function
	Terminate Application statement
	TextSize() function
	Time() function
	Timer() function
	ToolHandler procedure
	TriggerControl() function
	TrueFileName$() function
	Type statement
	UBound() function
	UCase$() function
	UnDim statement
	UnitAbbr$() function
	UnitName$() function
	Unlink statement
	Update statement
	Update Window statement
	URL clause
	USNGToPoint(string)
	Val() function
	Weekday() function
	WFS Refresh Table statement
	While…Wend statement
	WinChangedHandler procedure
	WinClosedHandler procedure
	WindowID() function
	WindowInfo() function
	WinFocusChangedHandler procedure
	Write # statement
	Year() function

	HTTP and FTP Libraries
	MICloseContent() procedure
	MICloseFtpConnection() procedure
	MICloseFtpFileFind() procedure
	MICloseHttpConnection() procedure
	MICloseHttpFile() procedure
	MICloseSession() procedure
	MICreateSession() function
	MICreateSessionFull() function
	MIErrorDlg() function
	MIFindFtpFile() function
	MIFindNextFtpFile() function
	MIGetContent() function
	MIGetContentBuffer() function
	MIGetContentLen() function
	MIGetContentString() function
	MIGetContentToFile() function
	MIGetContentType() function
	MIGetCurrentFtpDirectory() function
	MIGetErrorCode() function
	MIGetErrorMessage() function
	MIGetFileURL() function
	MIGetFtpConnection() function
	MIGetFtpFile() function
	MIGetFtpFileFind() function
	MIGetFtpFileName() procedure
	MIGetHttpConnection() function
	MIIsFtpDirectory() function
	MIIsFtpDots() function
	MIOpenRequest() function
	MIOpenRequestFull() function
	MIParseURL() function
	MIPutFtpFile() function
	MIQueryInfo() function
	MIQueryInfoStatusCode() function
	MISaveContent() function
	MISendRequest() function
	MISendSimpleRequest() function
	MISetCurrentFtpDirectory() function
	MISetSessionTimeout() function

	XML Library
	MIXmlAttributeListDestroy() procedure
	MIXmlDocumentCreate() function
	MIXmlDocumentDestroy() procedure
	MIXmlDocumentGetNamespaces() function
	MIXmlDocumentGetRootNode() function
	MIXmlDocumentLoad() function
	MIXmlDocumentLoadXML() function
	MIXmlDocumentLoadXMLString() function
	MIXmlDocumentSetProperty() function
	MIXmlGetAttributeList() function
	MIXmlGetChildList() function
	MIXmlGetNextAttribute() function
	MIXmlGetNextNode() function
	MIXmlNodeDestroy() procedure
	MIXmlNodeGetAttributeValue() function
	MIXmlNodeGetFirstChild() function
	MIXmlNodeGetName() function
	MIXmlNodeGetParent() function
	MIXmlNodeGetText() function
	MIXmlNodeGetValue() function
	MIXmlNodeListDestroy() procedure
	MIXmlSCDestroy() procedure
	MIXmlSCGetLength() function
	MIXmlSCGetNamespace() function
	MIXmlSelectNodes() function
	MIXmlSelectSingleNode() function

	Character Code Table
	Summary of Operators
	Numeric Operators
	Comparison Operators
	Logical Operators
	Geographical Operators
	Precedence

	Automatic Type Conversions
	Wildcards

	MapBasic Definitions File
	MapBasic.DEF File
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

